Journal of occupational and environmental hygiene, 2017
The use of large electric hammer drills exposes construction workers to high levels of hand vibra... more The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s(2) (ISO weighted) and from 42.7-47.6 m/s(2) (unweighted) when comparing a new bit to a ...
A new equation for predicting the hand activity level (HAL) used in the American Conference for G... more A new equation for predicting the hand activity level (HAL) used in the American Conference for Government Industrial Hygienists threshold limit value®(TLV®) was based on exertion frequency (F) and percentage duty cycle (D). The TLV® includes a table for estimating HAL from F and D originating from data in Latko et al. (Latko WA, Armstrong TJ, Foulke JA, Herrin GD, Rabourn RA, Ulin SS, Development and evaluation of an observational method for assessing repetition in hand tasks. American Industrial Hygiene Association Journal, 58(4):278-285, 1997) and post hoc adjustments that include extrapolations outside of the data range. Multimedia video task analysis determined D for two additional jobs from Latko's study not in the original data-set, and a new nonlinear regression equation was developed to better fit the data and create a more accurate table. The equation, HAL = 6:56 ln D[F(1:31) /1+3:18 F(1:31), generally matches the TLV® HAL lookup table, and is a substantial improvement...
The fingertip pulp modulates the force transmitted to the underlying musculoskeletal system durin... more The fingertip pulp modulates the force transmitted to the underlying musculoskeletal system during finger contact on external bodies. A model of the fingertip pulp is needed to represent the transmission of forces to the tendons, muscles, and bone during these contacts. In this study, a structural model of the in vivo human fingertip was developed that incorporates both the material inhomogeneity and geometry. Study objectives were to determine (1) if this fingertip model can predict the force-displacement and force contact area responses of the in vivo human fingertip during contact with a flat, rigid surface, and (2) if the stresses and strains predicted by this model are consistent with the tactile sensing functionality of the in vivo human fingertip. The in vivo fingertip pulp was modeled as an inflated, ellipsoidal membrane, containing an incompressible fluid, that is quasi-statically compressed against a flat, frictionless surface. The membrane was assigned properties of skin (Veronda and Westmann, 1970) and when inflated, possessed dimensions approximating those of a human fingertip. Finite deformation was allowed. The model was validated by the pulp force-displacement relationship obtained by Serina et al. (1997) and by measurements of the contact area when the fingertip was pressed against a rigid surface with contact forces between 0.25 and 7.0 N. Model predictions represent the experimental data sufficiently well, suggesting that geometry, inhomogeneous material structure, and initial skin tension appear to represent the nonlinear response of the in vivo human fingertip pulp under compression. The predicted response of the fingertip pulp is consistent with its functionality as a tactile sensor.
Repeated loading of the fingertips has been postulated to contribute to tendon and nerve disorder... more Repeated loading of the fingertips has been postulated to contribute to tendon and nerve disorders at the wrist during activities associated with prolonged fingertip loading such as typing. To fully understand the pathomechanics of these soft tissue disorders, the role of the fingertip pulp in attenuating the applied dynamic forces must be known. An experiment was conducted to characterize the response of the in vivo fingertip pulp under repeated, dynamic, compressive loadings, to identify factors that influence pulp dynamics, and to better understand the force modulation by the pulp. Twenty subjects tapped repeatedly on a flat plate with their left index finger, while the contact force and pulp displacement were measured simultaneously. Tapping trials were conducted at three fingertip contact angles from the horizontal plane (0 degree, 45 degrees, and 90 degrees) and five tapping rates (0.25, 0.5, 1, 2, and 3 Hz). The fingertip pulp responds as a viscoelastic material, exhibiting rate-dependence, hysteresis, and a nonlinear force-displacement relationship. The pulp was relatively compliant at forces less than 1 N, but stiffened rapidly with displacement at higher forces for all loading conditions. This suggests that high-frequency forces of a small magnitude (&amp;amp;amp;amp;lt; 1 N) are attenuated by the nonlinearly stiffening pulp while these forces of larger magnitude are transmitted to the bone. Pulp response was significantly influenced by the angle of loading. Fingertip dimensions, gender, and subject age had little to no influence on pulp parameters.
The purpose of this investigation was to determine the effects of perchloroethylene (PCE) exposur... more The purpose of this investigation was to determine the effects of perchloroethylene (PCE) exposure on human semen quality. We compared the semen quality of 34 dry cleaners with that of 48 laundry workers. We examined the relationships of 17 semen parameters to expired air levels of PCE and to an index of exposure based on job tasks in the last three months. The average sperm concentration was over 80 million for both dry cleaners and laundry workers, but approximately one-quarter of each group was oligospermic. The overall percentage of abnormal forms was similar for the two groups; however, sperm of dry cleaners were significantly more likely to be round (t = -3.29, p = 0.002) and less likely to be narrow (t = 2.35, p = 0.02) than the sperm of laundry workers. These effects were dose-related to expired air levels and to the exposure index after controlling for potential confounders (e.g., heat exposure). The average percent motile sperm for both groups was slightly over 60%; however, sperm of dry cleaners tended to swim with greater amplitude of lateral head displacement (ALH) than those of laundry workers (t = -1.73, p = 0.09), and level of PCE in expired air was a significant predictor of ALH in the multiple regression model (t = 2.00, p = 0.05). In addition, exposure index was a significant negative predictor of the sperm linearity parameter (t = -2.57, p = 0.01). These results suggest that occupational exposures to PCE can have subtle effects on sperm quality. Additional analyses are required to determine whether these effects are associated with changes in fertility.
Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
... MEASURING MUSCLE FATIGUE DURING COMPUTER MOUSE USE Peter W. Johnson I*, Steven L. Lehman 2* a... more ... MEASURING MUSCLE FATIGUE DURING COMPUTER MOUSE USE Peter W. Johnson I*, Steven L. Lehman 2* and David M. Rempel 1" 1 Ergonomics Laboratory; University of California - Berkeley and San Francisco; 1301 South 46th Street, Bldg. ...
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Twenty experienced typists participated in a laboratory based study to determine whether wrist an... more Twenty experienced typists participated in a laboratory based study to determine whether wrist and forearm postures changed over a 4 hour period of intensive keyboard use. Subjects were randomly assigned to use a conventional keyboard or a fixed split keyboard. Posture data was acquired using electrogoniometers after a 10 warm-up period and at the end of each hour. Wrist and forearm postures did not change significantly over the four hour period among subjects using the split geometry keyboard. On the conventional keyboard, all joint postures were stable except right wrist extension and left forearm pronation. The right wrist extension increased by 5° over the four hour period (p=.002) and left pronation decreased by approximately 9° (p=.001). Wrist postures among typists exposed for the first time to a split keyboard remained constant throughout a four hour period of intensive typing. On the conventional keyboard, some postures drifted over the four hour period.
Hammer drills are used extensively in commercial construction for drilling into concrete for task... more Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between...
Journal of occupational and environmental hygiene, 2017
The use of large electric hammer drills exposes construction workers to high levels of hand vibra... more The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s(2) (ISO weighted) and from 42.7-47.6 m/s(2) (unweighted) when comparing a new bit to a ...
A new equation for predicting the hand activity level (HAL) used in the American Conference for G... more A new equation for predicting the hand activity level (HAL) used in the American Conference for Government Industrial Hygienists threshold limit value®(TLV®) was based on exertion frequency (F) and percentage duty cycle (D). The TLV® includes a table for estimating HAL from F and D originating from data in Latko et al. (Latko WA, Armstrong TJ, Foulke JA, Herrin GD, Rabourn RA, Ulin SS, Development and evaluation of an observational method for assessing repetition in hand tasks. American Industrial Hygiene Association Journal, 58(4):278-285, 1997) and post hoc adjustments that include extrapolations outside of the data range. Multimedia video task analysis determined D for two additional jobs from Latko's study not in the original data-set, and a new nonlinear regression equation was developed to better fit the data and create a more accurate table. The equation, HAL = 6:56 ln D[F(1:31) /1+3:18 F(1:31), generally matches the TLV® HAL lookup table, and is a substantial improvement...
The fingertip pulp modulates the force transmitted to the underlying musculoskeletal system durin... more The fingertip pulp modulates the force transmitted to the underlying musculoskeletal system during finger contact on external bodies. A model of the fingertip pulp is needed to represent the transmission of forces to the tendons, muscles, and bone during these contacts. In this study, a structural model of the in vivo human fingertip was developed that incorporates both the material inhomogeneity and geometry. Study objectives were to determine (1) if this fingertip model can predict the force-displacement and force contact area responses of the in vivo human fingertip during contact with a flat, rigid surface, and (2) if the stresses and strains predicted by this model are consistent with the tactile sensing functionality of the in vivo human fingertip. The in vivo fingertip pulp was modeled as an inflated, ellipsoidal membrane, containing an incompressible fluid, that is quasi-statically compressed against a flat, frictionless surface. The membrane was assigned properties of skin (Veronda and Westmann, 1970) and when inflated, possessed dimensions approximating those of a human fingertip. Finite deformation was allowed. The model was validated by the pulp force-displacement relationship obtained by Serina et al. (1997) and by measurements of the contact area when the fingertip was pressed against a rigid surface with contact forces between 0.25 and 7.0 N. Model predictions represent the experimental data sufficiently well, suggesting that geometry, inhomogeneous material structure, and initial skin tension appear to represent the nonlinear response of the in vivo human fingertip pulp under compression. The predicted response of the fingertip pulp is consistent with its functionality as a tactile sensor.
Repeated loading of the fingertips has been postulated to contribute to tendon and nerve disorder... more Repeated loading of the fingertips has been postulated to contribute to tendon and nerve disorders at the wrist during activities associated with prolonged fingertip loading such as typing. To fully understand the pathomechanics of these soft tissue disorders, the role of the fingertip pulp in attenuating the applied dynamic forces must be known. An experiment was conducted to characterize the response of the in vivo fingertip pulp under repeated, dynamic, compressive loadings, to identify factors that influence pulp dynamics, and to better understand the force modulation by the pulp. Twenty subjects tapped repeatedly on a flat plate with their left index finger, while the contact force and pulp displacement were measured simultaneously. Tapping trials were conducted at three fingertip contact angles from the horizontal plane (0 degree, 45 degrees, and 90 degrees) and five tapping rates (0.25, 0.5, 1, 2, and 3 Hz). The fingertip pulp responds as a viscoelastic material, exhibiting rate-dependence, hysteresis, and a nonlinear force-displacement relationship. The pulp was relatively compliant at forces less than 1 N, but stiffened rapidly with displacement at higher forces for all loading conditions. This suggests that high-frequency forces of a small magnitude (&amp;amp;amp;amp;lt; 1 N) are attenuated by the nonlinearly stiffening pulp while these forces of larger magnitude are transmitted to the bone. Pulp response was significantly influenced by the angle of loading. Fingertip dimensions, gender, and subject age had little to no influence on pulp parameters.
The purpose of this investigation was to determine the effects of perchloroethylene (PCE) exposur... more The purpose of this investigation was to determine the effects of perchloroethylene (PCE) exposure on human semen quality. We compared the semen quality of 34 dry cleaners with that of 48 laundry workers. We examined the relationships of 17 semen parameters to expired air levels of PCE and to an index of exposure based on job tasks in the last three months. The average sperm concentration was over 80 million for both dry cleaners and laundry workers, but approximately one-quarter of each group was oligospermic. The overall percentage of abnormal forms was similar for the two groups; however, sperm of dry cleaners were significantly more likely to be round (t = -3.29, p = 0.002) and less likely to be narrow (t = 2.35, p = 0.02) than the sperm of laundry workers. These effects were dose-related to expired air levels and to the exposure index after controlling for potential confounders (e.g., heat exposure). The average percent motile sperm for both groups was slightly over 60%; however, sperm of dry cleaners tended to swim with greater amplitude of lateral head displacement (ALH) than those of laundry workers (t = -1.73, p = 0.09), and level of PCE in expired air was a significant predictor of ALH in the multiple regression model (t = 2.00, p = 0.05). In addition, exposure index was a significant negative predictor of the sperm linearity parameter (t = -2.57, p = 0.01). These results suggest that occupational exposures to PCE can have subtle effects on sperm quality. Additional analyses are required to determine whether these effects are associated with changes in fertility.
Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
... MEASURING MUSCLE FATIGUE DURING COMPUTER MOUSE USE Peter W. Johnson I*, Steven L. Lehman 2* a... more ... MEASURING MUSCLE FATIGUE DURING COMPUTER MOUSE USE Peter W. Johnson I*, Steven L. Lehman 2* and David M. Rempel 1" 1 Ergonomics Laboratory; University of California - Berkeley and San Francisco; 1301 South 46th Street, Bldg. ...
Proceedings of the Human Factors and Ergonomics Society Annual Meeting
Twenty experienced typists participated in a laboratory based study to determine whether wrist an... more Twenty experienced typists participated in a laboratory based study to determine whether wrist and forearm postures changed over a 4 hour period of intensive keyboard use. Subjects were randomly assigned to use a conventional keyboard or a fixed split keyboard. Posture data was acquired using electrogoniometers after a 10 warm-up period and at the end of each hour. Wrist and forearm postures did not change significantly over the four hour period among subjects using the split geometry keyboard. On the conventional keyboard, all joint postures were stable except right wrist extension and left forearm pronation. The right wrist extension increased by 5° over the four hour period (p=.002) and left pronation decreased by approximately 9° (p=.001). Wrist postures among typists exposed for the first time to a split keyboard remained constant throughout a four hour period of intensive typing. On the conventional keyboard, some postures drifted over the four hour period.
Hammer drills are used extensively in commercial construction for drilling into concrete for task... more Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between...
Uploads
Papers by David Rempel