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Abstract 
In mountainous settings, increases in rock uplift are often followed by a commensurate uptick in 

denudation as rivers incise and steepen hillslopes, making them increasingly prone to 

landsliding as slope angles approach a limiting value.  For decades, the threshold slope model 

has been invoked to account for landslide-driven increases in sediment flux that limit 

topographic relief, but the manner by which slope failures organize themselves spatially and 

temporally in order for erosion to keep pace with rock uplift has not been well documented.  

Here, we review past work and present new findings from remote sensing, cosmogenic 
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radionuclides, suspended sediment records, and airborne lidar data, to decipher patterns of 

landslide activity and geomorphic processes related to rapid uplift along the northward-migrating 

Mendocino Triple Junction in Northern California. From historical air photos and airborne lidar, 

we estimated the velocity and sediment flux associated with active, slow-moving landslides (or 

earthflows) in the mélange- and argillite-dominated Eel River watershed using the downslope 

displacement of surface markers such as trees and shrubs.  Although active landslides that 

directly convey sediment into the channel network account for only 7% of the landscape 

surface, their sediment flux amounts to more than 50% of the suspended load recorded at 

downstream sediment gauging stations.  These active slides tend to exhibit seasonal variations 

in velocity as satellite-based interferometry has demonstrated that rapid acceleration 

commences within 1 to 2 months of the onset of autumn rainfall events before slower 

deceleration ensues in the spring and summer months.  Curiously, this seasonal velocity pattern 

does not appear to vary with landslide size, suggesting that complex hydrologic-mechanical 

feedbacks (rather than 1-D pore pressure diffusion) may govern slide dynamics.  A new analysis 

of 14 years of discharge and sediment concentration data for the Eel River indicates that the 

characteristic mid-winter timing of earthflow acceleration corresponds with increased suspended 

concentration values, suggesting that the seasonal onset of landslide motion each year may be 

reflected in the export of sediments to the continental margin.  The vast majority of active slides 

exhibit gullied surfaces and the gully networks, which are also seasonally active, may facilitate 

sediment export although the proportion of material produced by this pathway is poorly known. 

Along Kekawaka Creek, a prominent tributary to the Eel River, new analyses of catchment-

averaged erosion rates derived from cosmogenic radionuclides reveal rapid erosion (0.76 

mm/yr) below a prominent knickpoint and slower erosion (0.29 mm/yr) upstream.  Such 

knickpoints are frequently observed in Eel tributaries and are usually comprised of massive (>10 

m) interlocking resistant boulders that likely persist in the landscape for long time periods (>105

yr).  Upstream of these knickpoints, active landslides tend to be less frequent and average slope 

angles are slightly gentler than in downstream areas, which indicates that landslide density and 

average slope angle appear to increase with erosion rate.  Lastly, we synthesize evidence for 

the role of large, catastrophic landslides in regulating sediment flux and landscape form. The 

emergence of resistant blocks within the mélange bedrock has promoted large catastrophic 

slides that have dammed the Eel River and perhaps generated outburst events in the past.  The 

frequency and impact of these landslide dams likely depend on the spatial and size distributions 

of resistant blocks relative to the width and drainage area of adjacent valley networks.  Overall, 
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our findings demonstrate that landslides within the Eel River catchment do not occur randomly, 

but instead exhibit spatial and temporal patterns related to baselevel lowering, climate forcing, 

and lithologic variations. Combined with recent landscape evolution models that incorporate 

landslides, these results provide predictive capability for estimating erosion rates and managing 

hazards in mountainous regions.  

Key words: Landslide; Lidar; Landscape evolution; Insar; Erosion; Suspended sediment 

1. Introduction

In mountainous landscapes, landslides liberate soil and bedrock in response to tectonic uplift 

(e.g., Brunsden, 1999; Roering et al., 2005; Korup et al., 2007, 2010; Agliardi et al., 2013; 

Ekstrom and Stark, 2013).  Characterizing how landslides contribute to landscape evolution in 

mountainous regions is challenging given that diverse geologic, climatic, and even biological 

factors influence slope stability.  For example, relatively subtle variations in rock properties can 

dictate whether a mountain range will be subject to infrequent, deep-seated bedrock slumps or 

frequent rockfall and shallow landslides (e.g., Korup, 2008).  Similarly, runout dynamics and 

material properties determine whether landslide materials deposited in valleys will tend to resist 

breaching and form lakes or become subject to downstream dispersal soon after failure occurs 

(e.g., Costa and Schuster, 1988; Iverson et al., 2000).  These highly disparate responses 

highlight the challenge and importance of characterizing landslide processes in order to 

interpret and predict their role in shaing landscapes (Cendrero and Dramis, 1999).  In this 

contribution, we review past work and highlight several new analyses that describe landslide 

dynamics and related geomorphic processes in response to rapid uplift in the Northern 

California Coastal Ranges.  The approaches described here span a range of spatial and 

temporal scales, emphasizing the importance of integrating diverse tools for assessing how 

landslides shape mountainous terrain.   

Early efforts to conceptualize landslide behavior over geologic timescales used the analogy of a 

dry sandpile to represent how landslides influence hillslope form and sediment fluxes (de la Noe 

and de Margerie, 1888; Strahler, 1950; Carson and Petley, 1970; Bak et al., 1987, 1988; 

Burbank et al., 1996; Densmore et al., 1997; Montgomery, 2001).  In the sandpile analogy, 

when channels incise at a sufficient pace, hillslopes attain a threshold slope or ‘angle of repose’ 

as sand avalanches displace material downslope and generate erosion at a rate equal to that of 

river incision (Roering, 2012).  Increasing the rate of incision has the effect of increasing the rate 
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at which hillslopes deliver sand avalanches to channels but does not increase hillslope 

steepness because the maximum stable angle cannot be exceeded.  This simple conceptual 

model implies that channel incision is immediately followed by uniform hillslope lowering of the 

same magnitude.  In other words, the threshold slope model, strictly interpreted, suggests that 

hillslope erosion is directly and instantaneously coupled to vertical lowering of the valley network 

and occurs as uniform ‘sheets’ of erosion.  While this framework is intuitively appealing, 

landslide erosion on natural hillslopes, and even laboratory sandpiles, does not manifest as 

contiguous sheets of cascading sediment or bedrock (Densmore et al, 1997; Roering et al., 

2001; Malamud et al., 2004).  Instead, both natural and experimental slopes exhibit discrete 

slope failures that are highly variable in both space and time.  Many of the local factors that 

influence the propensity for landsliding are highly stochastic and difficult to characterize (e.g., 

rock mass strength, pore pressures, vegetation, rock fabric and slope orientation, the intensity 

and extent of storms, earthquake magnitude and recurrence, and channel–hillslope interactions) 

(Brunsden, 1993).  As a result, it has proven challenging to test the central tenet of the threshold 

slope model: do natural hillslopes achieve a threshold state such that landslide erosion 

balances channel incision?  Furthermore, assuming that slide-driven erosion can pace channel 

lowering, how do landslides organize themselves spatially and temporally in order to maintain 

this balance?  Capturing and quantifying the relevant landslide patterns to tackle these queries 

proved beyond our reach until the accumulation of high-resolution remote sensing imagery in 

recent decades.   

Landslide inventories are often produced by documenting failures over a given time interval or 

following major storms, earthquakes, or snowmelt events, and have become a favored tool for 

addressing how landslides influence landscape evolution (e.g., Hovius et al., 1997; Malamud et 

al., 2004; Schwab et al., 2008; Harp et al., 2011; Bennett et al., 2012; Larsen and Montgomery, 

2012).  These inventory studies are sometimes accomplished through field mapping but more 

typically via air photos, satellite imagery, or airborne lidar (Nichol and Wong, 2005; Guzzetti et 

al., 2012; Borgomeo et al., 2014; Tarolli, 2014).  These studies often reveal that landslide 

density decreases nonlinearly with landslide area and in some cases the slope of this 

relationship implies that infrequent large landslides exhibit a disproportionate influence on 

denudation and valley dynamics (Stark and Hovius, 2001; Korup et al., 2007, Agliardi et al., 

2013; Giordan et al., 2013).  Numerous studies have proposed functional relationships to 

describe landslide area distributions, including commonly observed decreases (or rollovers) in 

frequency at small landslide areas that reflect changing landslide mechanics (Katz and 
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Aharonov, 2006; Brunetti et al., 2009; Stark and Guzzetti, 2009), detection limitations due to 

data resolution (Simoni et al., 2013), or heterogeneity in boundary conditions (Pelletier et al., 

1997; Roering et al., 2005). 

When coupled with chronological constraints as well as depth-area scaling data, landslide 

density functions can be used to calculate denudation rates and determine the extent to which 

landslide erosion balances rock uplift (Hovius et al., 1997; Malamud et al., 2004; Larsen and 

Montgomery, 2012).  Initial efforts to integrate slide-driven fluxes indicate that denudation rates 

are of the same order as independently derived proxies for rock uplift (Hovius et al., 1997; 

Clarke and Burbank, 2010; Larsen and Montgomery, 2012).  The findings of Larsen and 

Montgomery (2012) suggest that increases in exhumation (and presumably incision) tend to 

increase the frequency of all landslide sizes rather than exclusively influence the relative 

importance of large failures. That said, landslide erosion rate estimates are subject to significant 

uncertainty associated with noisy scaling relationships (Guzzetti et al., 2012; Korup et al., 2012; 

Larsen and Montgomery, 2012; Simoni et al., 2013), subjective and uncertain landslide mapping 

(van den Eeckhaut et al., 2007; DeLong et al., 2012), and short time intervals.  Nonetheless, 

these endeavors have profoundly advanced our understanding of the landslide contribution to 

erosion.   

In steep, bedrock-dominated landscapes, landslides tend to evacuate their initiation sites upon 

failure such that slide material translates wholly into valleys, facilitating rather straightforward 

mapping, with some exceptions (Parker et al., 2011; Li et al., 2014).  Landscape evolution 

models for these settings surmise that once a landslide occurs, failure does not tend to recur at 

that location until rock properties and hillslope geometry have evolved sufficiently to promote 

failure in the future (Densmore et al., 1997, Egholm et al., 2013).  In these settings, bedrock 

properties, seismicity, climatic variables, topographic variations, and position within the valley 

network are among the many factors that can contribute to highly stochastic landslide patterns 

(Palmquist and Bible, 1980).  As a result, it can be difficult to decipher the role of topography 

and climate, for example, in modulating how landslides are distributed temporally and spatially 

in order to keep pace with rock uplift and incision.  Apart from studies of earthquake-triggered 

landsliding (Keefer, 1994, 2002; Densmore and Hovius, 2000; Meunier et al., 2008; Huang et 

al., 2012), few inventories have addressed how landslides are spatially distributed in relation to 

topography and other geologic forcings (Scheingross et al., 2013). 
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Less imposing (i.e., gentle and accessible) geologic settings, specifically those that promote 

earthflow erosion, provide an alternative venue for evaluating short- and long- timescale 

landslide dynamics in response to rapid rock uplift and baselevel lowering.  Earthflow-style 

landslides are associated with fine-grained marine sedimentary formations or weathered 

volcanic bedrock often found in regions experiencing rock uplift in the late Cenozoic, including 

portions of the United States, Taiwan, New Zealand, Europe, and Papua New Guinea (Putnam 

and Sharp, 1940, Keefer and Johnson, 1983, Baum et al., 1993; Zhang et al., 1993;  Malet et 

al., 2002; van Asch 2005; Brückl et al., 2006; Rutter and Green, 2011; Daehne and Corsini, 

2012; Di Maio et al., 2013; García-Davalillo et al., 2013;  Simoni et al., 2013;  Guerriero et al., 

2014).  In these areas, shearing and low-grade metamorphism associated with accretion often 

promotes low frictional strength of exhumed sedimentary bedrock.  Mélange bedrock, which 

exemplifies many of these characteristics, has been identified in the mountainous regions of 

over 70 countries (Medley and Lindquist, 1995).   

Weak mélange materials promote widespread slope failure through basal sliding and flow-like 

deformation that drives prodigious erosion despite modest (< 35%) slope angles.  Erosion rates 

in earthflow-dominated regions approach and sometimes exceed 1.0 mm/yr, similar to rates 

from steep, bedrock-dominated settings (Zhang et al., 1993; Cerovski-Darriau et al., 2014).  

Unlike rapid bedrock landslides, however, earthflows do not evacuate completely upon failure 

but instead translate downslope continuously or episodically much like glaciers.  Akin to glacial 

accumulation zones, the upslope margins of earthflows scavenge weathered material that 

coalesces midslope to form a coherent sliding mass much like a conveyor system (Keefer and 

Johnson, 1983) (Fig. 1).  Upon reaching valley floors, earthflows tend to exhibit a lobate or ‘toe’-

like morphology that is often truncated by river incision in areas where hillslopes are coupled to 

the channel network.  These primary physical characteristics (as well as secondary features 

such as gullies and fractures) of earthflow landslides are advantageous because the 

morphologic signature of active or relict sliding can often be readily identified (Keefer and 

Johnson, 1983).  In addition, because earthflows tend to remain active for long periods of time 

(>100 years) (Skempton et al., 1989; Bovis and Jones, 1992; Varnes and Savage, 1996; Schulz 

et al., 2009a; Mackey et al., 2009), they afford the opportunity to document how slide velocity 

varies over a broad range of timescales (i.e., 100 to 109 sec). 

In this contribution, we summarize and synthesize our on-going efforts to quantify landslide 

controls on landscape evolution in a rapidly uplifting section of the Eel River basin in the 



ACCEPTED MANUSCRIPT

7 

Northern California Coastal Ranges.  The ubiquity of active slope failures in this area underlain 

by accretionary bedrock of the Franciscan Complex, a notoriously failure-prone geologic unit, 

provides an ideal natural laboratory to study the temporal and spatial patterns of slope 

instability.  High-resolution topographic data derived from airborne lidar provides essential 

morphologic information and when coupled with datasets on landslide dynamics from remote 

sensing, our analyses provide a spatially explicit means to pinpoint and tally landslide 

contributions to denudation in space and time.  While landsliding is often identified as the 

primary erosional process in mountainous settings, few studies have documented how tectonic 

forcing controls the frequency of landsliding and the tendency for erosion to balance rock uplift.  

Our research also informs the development, calibration, and testing of physically-based models 

to interpret and predict landslide response to tectonic and climatic variations.  In particular, we 

demonstrate how our findings can be used to establish the functional relationships that underlie 

the threshold slope model, such as the variation of landslide frequency (or areal density) and 

hillslope angle with erosion rate.  

 

2. Study area: Eel River Canyon, Northern California 

2.1. General background 

The Northern California Coast Ranges are comprised of the Franciscan Complex, a Jurassic-

Cretaceous, pervasively sheared, meta-sedimentary accretionary prism complex subject to uplift 

since the Neogene (Fig. 2). Annual rainfall averages 1.4 m, primarily falling between October 

and May. The combination of weak lithology, active tectonics, and seasonal rainfall makes the 

Eel River watershed especially prone to landslides and slope instability, and an ideal location to 

study active earthflow processes (Fig. 3). 

 

2.2. Geological context 

The Franciscan Complex is comprised of three structurally separated lithologic belts, the 

Eastern, Central and Coastal belts. These terrains are younger to the west, reflecting the 

cumulative accretion of oceanic sediments to western North America (Jayko et aI., 1989; 

McLaughlin et aI., 2000). The Central belt is especially prone to landsliding as it consists of an 

extensive Late Jurassic to Middle Cretaceous argillaceous mélange, which is broadly defined as 

a mixture of relatively strong inclusions (blocks) of sandstone, chert, and shale, ranging in size 

between sand grains and mountains (i.e., 10-2 to 104 m), embedded within a weaker matrix of 

sheared argillite, shale, or siltstone (Fig. 4).  This assemblage was obducted to North America 

from 88 to 40 Ma, prior to emplacement of the Coastal Belt (McLaughlin et aI., 2000). 
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Furthermore, large blocks of older, meta-sandstone, meta-basalt and high-grade blueschist 

rocks may have been incorporated into the Central belt from the older Eastern belt during 

oblique dextral translation, although alternative emplacement histories are possible. These more 

competent lithologic units have a significant local influence on the topography, manifesting as 

topographic highs amid the argillaceous units and mélange. The mélange bedrock favored open 

oak grassland at the time of European settlement in the 1850s, attracting ranchers, and the 

primary land use remains low-density cattle ranching. Conifer growth and forestry are generally 

limited to isolated outcrops of sandstone or other resistant bedrock.  

The western North American plate boundary switched from subduction to strike-slip in the 

Oligocene with the formation of the San Andreas fault.  Since this transition, the post-

emplacement tectonics of the Northern California Coast Ranges has been dominated by the 

northerly migration of the Mendocino triple junction (MTJ) at 5 cm/yr, which is reflected in the 

northwest trending structural grain that dominates the modern topography, with major axial 

drainages and ridges trending northwest (McLaughlin et aI., 1982) (Fig. 2).  The Pacific and 

Gorda plates are translating north relative to North America, creating the San Andreas Fault to 

the south (Furlong and Schwartz, 2004). Numerical models that account for the change in 

lithospheric thickness, heat flow, and isostatic adjustment predict a zone of rapid rock (>1 

mm/yr) uplift that migrates north at approximately 5 cm/yr (Furlong and Govers, 1999; Lock et 

al., 2006) and a series of northwest-trending emergent fault systems cut through the Northern 

California Coast Ranges associated with the advance of the MTJ (Kelsey and Carver, 1988). 

This migrating zone of uplift has had a profound influence on the landscape, causing river 

capture and drainage reversals. Most notably, the headwaters of the Russian River were 

captured by the Eel River at 2 Ma when river incision was unable to keep up with the transient 

wave of increased uplift rates (Lock et aI., 2006), generating 'fish hook' drainage patterns in 

several Eel River tributaries.  

2.3. Rates of rock uplift and erosion 

Rates of uplift and incision in the region are primarily constrained by analysis of fluvial and 

marine terraces. Merritts and Bull (1989) and Merritts (1996) documented variable rates of 

coastal uplift peaking at 5 mm/yr along the coast near the inland projection of the MTJ. These 

high rates are proposed to be highly localized, however, and are associated with the rapid 

exhumation of a narrow, accreted terrane termed the King Range (Dumitru, 1991).  Further 

inland, uplift rates at this same latitude (40-41°) are modeled to approach 1 mm/yr along the Eel 
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River corridor near Alderpoint (Lock et al., 2006) (Fig. 5), although direct constraints on 

exhumation are sparse and do not correspond with our field area (Dumitru, 1991; Batt et al., 

2010).  Further south, rock uplift is thought to decrease according to predicted surface 

deflections from the Mendocino Crustal Conveyor (MCC) geodynamic model (Furlong and 

Govers, 1999; Lock et al., 2006).  Our review and synthesis in this contribution focuses on the 

zone of rapid uplift along the Eel River corridor, roughly coincident with the inland projection of 

the MTJ and within the Franciscan Complex (Fig. 2). 

 

The Northern California Coast Ranges have received significant attention by geomorphologists 

because of the high erosion rates that have been documented since the 1960s.  Wahrhaftig and 

Curry (1967) warned that rates of erosion in the Eel River were abnormally high in comparison 

to other North American river systems, and called for further research into sediment sources 

and monitoring.  After an intensive period of hydrologic and suspended sediment data collection 

by the USGS in the mid-20th century, Brown and Ritter (1971) established that from 1957 to 

1967, the Eel River had the highest annual sediment yield of any non-glacial, continental river in 

the United States at 10,000 tons per square mile (3900 tons/km2).  Wheatcroft and Sommerfield 

(2005) re-analyzed suspended sediment data (1960-1980) and calculated a sediment yield of 

2200 tons/km2/yr, which equates to a catchment averaged erosion rate of 0.9 ± 0.3 mm/yr 

assuming a bedrock density equal to 2.5 kg/m3.  Extensive research has also been performed in 

the offshore environment focusing on the rate and distribution of shelf sedimentation (e.g., 

Nittrouer, 1999). Notable are the changing rates of sedimentation over the Holocene and late 

Pleistocene (Syvitski and Morehead, 1999; Sommerfield and Wheatcroft, 2007) and in historical 

times (Sommerfield and Nittrouer, 1999; Sommerfield et aI., 2002).  During the 20th century, 

shelf sediments attributed to the Eel River show an increase during the second half of the 

century, coincident with widespread logging and road building as well as major storms in 1955 

and 1964 (Brown and Ritter, 1971; Sloan et aI., 2001; Sommerfield and Wheatcroft, 2007).  

 

Long-term (pre-historic) rates of erosion in the Eel River Basin established using cosmogenic 

radionuclides are consistent with modern records. North of the zone of highest predicted rock 

uplift, Ferrier et al. (2005) used cosmogenic isotopes in stream sediments from Redwood Creek 

to estimate erosion rates of 0.14 to 0.44 mm/yr.  Similarly, Balco et al. (2013) measured 

cosmogenic catchment-averaged erosion rates of 1.1 ± 0.15 mm/yr in the upper Van Duzen 

River and 0.6 ± 0.07 mm/yr in the Eel River upstream of Scotia. Both of these locations coincide 

with the region of high predicted uplift rates (Lock et al., 2006).  To the south, near the 
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headwaters of the Eel system (and coincident with terrain well south of the locus of rapid uplift 

associated with the MTJ), Fuller et aI. (2009) and Willenbring et al. (2013a) used cosmogenic 

isotopes to calculate erosion rates for the upper South Fork Eel River and obtained values 

ranging from 0.2 to 0.5 mm/yr.  

2.4. Landslide investigations 

Our study focuses on a section of the mainstem Eel River between Dos Rios and Alderpoint 

(Figs. 2 and 5), which has one of the highest concentrations of earthflow activity in the Eel River 

catchment (Brown and Ritter, 1971) and coincides with the inland projection of the MTJ and 

thus resides within the predicted zone of rapid uplift (Lock et al., 2006).  

Kelsey (1977, 1978, 1980) performed extensive landslide studies in the Van Duzen river basin, 

a large tributary of the Eel River just south of Humboldt Bay. During the 1970s, Kelsey used 

field surveying and aerial photos to quantify displacement and calculate a sediment budget for 

19 active earthflows.  He found that while active landslides covered just 1% of the Van Duzen 

basin area, these features contributed 10% of the sediment in the channel network over the 

period of monitoring. Furthermore, Kelsey (1980) estimated that earthflow translation accounts 

for approximately 50% of the sediment flux from active features, the remainder being extricated 

by active gullies on the surface of the earthflow.  Kelsey (1980) and Muhs et al. (1987) 

highlighted the role of contrasting geomorphic processes operating in different rock types within 

the Franciscan Complex. The harder, competent, sandstone blocks feature well organized ridge 

and valley drainage networks, with erosion dominated by fluvial and debris flow incision. In 

contrast, the weaker mélange units have a poorly developed ephemeral drainage network and 

long, low-gradient slopes due to earthflow and other mass movement processes. Despite this 

weak lithology, rivers sometimes steepen when they cross particular reaches, as earthflows 

deliver boulders to the channel which armor the bed (Kelsey, 1977, 1978). 

Further north in the Redwood Creek catchment, USGS scientists quantified many aspects of 

sediment production and transport (e.g., Harden et aI.,1995; Nolan and Janda, 1995).  Nolan 

and Janda (1995) monitored the sediment flux from two Redwood Creek earthflows, but 

concluded overland flow and gully processes accounted for only 10% of the long term erosion of 

the earthflow complex, the majority coming from mass movement. They also stressed the 

spatial variability of earthflow activity across Northern California, due to lithology and the 

complex evolution of individual earthflows. Iverson (1986a, 2005; Iverson and Major, 1987) 
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studied the Minor Creek earthflow in the Redwood Creek Basin and developed a numerical 

model to decipher seasonal earthflow movement by the slow infiltration of winter rainfall through 

the landslide mass. More recently, Iverson (2005) used Minor Creek data to argue that earthflow 

movement may be regulated by shear zone dilatancy, which can decrease pore pressures, thus 

preventing catastrophic failure.  

 

Large landslides and earthflows along the Eel River canyon between Dos Rios and Alderpoint 

were addressed by engineering reports for the California Department of Water Resources 

(Dwyer et aI., 1971; Scott, 1973; Smith et aI., 1974) in anticipation of dam construction to supply 

water to the city of Los Angeles (California Department of Water Resources, 1965). These 

reconnaissance studies with descriptions and analysis of the landslides included back-of-the-

envelope estimates of landslide-generated sediment flux and some limited information on slide 

depth and long term movement rates.  Combined with burgeoning public pressure in Round 

Valley (Simon, 2001), the immense cost and hazard associated with dam construction and 

maintenance in highly landslide-prone terrain persuaded the Bureau of Reclamation to abandon 

their massive reservoir scheme. The Northwestern Pacific Railway follows the main stem Eel 

River canyon, connecting Eureka to San Francisco, but this line was abandoned in 1998, 

partially due to the high cost of landslide related maintenance.     

 

Otherwise, very little data exists on the depth of large landslides and earthflows along the Eel 

River. The exceptions are two landslides in the lower reaches of the Middle Fork Eel River 

(California Department of Water Resources, 1970), approximately 34 km southeast of our study 

area, but in comparable Central belt Franciscan lithology. Boreholes in the 1.6 km long, 0.45 

km2 Salt Creek landslide, 3.5 km upstream of Dos Rios, demonstrate that landslide material 

thickens from 6.7 m near the headscarp to 33 and 35 m near the toe. A borehole in the ~1 km-

long Salmon Creek landslide, 16 km upstream from Dos Rios, was sheared off at 34 m depth, 

although the inclinometer also revealed slow deformation at 57 m, attributable to deep seated 

failure within the sheared shale bedrock. Malhase (1938) described an Eel River landslide that 

was coined the ‘Mile 201’ slide after a wet winter in 1938: "The surface of the slide takes on the 

characteristic form of mud glaciers, with lateral terminal moraines, with rolls and pressure ridges 

forming valleys and hummocks. Great cracks open up into which water from the surface enters." 

 

 

3. Key findings 
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In this section, which constitutes the core of this contribution, we review and synthesize our key 

findings for the rapidly eroding Eel River Canyon that have emerged since 2005.  In addition, we 

present a small but not insignificant suite of new datasets and analyses that augment and 

extend our previous work.  Taken together, this suite of studies reveals the dynamics of 

landsliding and related surface processes in a region of rapid uplift and erosion.  In essence, we 

seek to characterize the temporal and spatial scales across which landslides exhibit systematic 

(and potentially predictable) behavior in order to facilitate modeling for human and geologic 

timescale applications.  Put simply, we endeavor to document how landslides enable a 

mountainous landscape to accommodate (and balance) rapid uplift. 

3.1. Landslide mapping and inventory 

A first-order, but non-trivial, task is to document the distribution of active earthflows. Even when 

dormant, earthflows can retain the morphologic features of movement for long periods of time 

(Fig. 1). Mapping active earthflows is therefore complicated because much of the landscape 

bears topographic features diagnostic of past generations of slope failure.  

We tackled the problem of discriminating between dormant and active earthflows by using a 

high resolution airborne lidar dataset (acquired through NCALM) in concert with historic aerial 

photos (Mackey et al., 2009; Mackey and Roering, 2011) and satellite radar interferometry 

(Roering et al., 2009; Handwerger et al., 2013; Handwerger et al., in review).  First, because 

shrubs and trees live on the surface of active earthflows, these markers can be discerned both 

in aerial photos and on unfiltered lidar images (Fig. 6). By identifying identical features in lidar 

and photos, we objectively mapped earthflows that were active between 1944 and 2006 and 

discriminated these portions of the landscape from stable terrain. Using morphologic features 

such as headscarps, levees or lobes, we defined the boundaries of flows identified as active 

and confirmed the activity status of many earthflows in the field (Fig. 6).  This process requires 

high-resolution aerial photos (preferably high-resolution diapositive scans which are not subject 

to warping like photo paper).  Once the historical photos were orthorectified using Leica 

Photogrammetry Suite, we were able to confidently distinguish displacements >3 m between 

successive photos (Mackey and Roering, 2011).  When combined with the time interval 

between photos and/or lidar-derived images, this uncertainty value determines the threshold 

velocity of landslides that we can reliably detect.  For example, we cannot confidently identify 

active landslides with velocities less than 0.3 m/yr given photo intervals of 9 years or less.  

Fortunately, however, long photo (or imager) intervals (e.g., 1944 to 2006) enable us to 
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confidently identify landslides with average velocities on the order of 0.05 cm/yr.  Given that 

slower landslides are precluded from our analysis, our photo-derived landslide inventory 

represents a minimum estimate of active landslides.  

  

Satellite-based InSAR (Interferometric Synthetic Aperture Radar) complements the air photo 

inventory by providing high-precision (<0.01 m) measurements of ground surface deformation 

with a short repeat interval (101 days; Bürgmann et al., 2000).  Several studies have 

successfully used InSAR data to image landslide activity within the accretionary units of 

Western California (Hilley, et al. 2004; Roering et al., 2009; Calabro et al., 2010; Zhao et al., 

2012; Scheingross et al., 2013; Handwerger et al., 2013).  Our datasets were acquired by the 

PALSAR instrument on the ALOS-1 satellite, which operates with a 46-day acquisition interval 

and L-band (23.5 cm wavelength) antenna (Roering et al., 2009; Handwerger et al., 2013). In 

our study area, major ridge and valley axes are oriented such that the ALOS-1 satellite’s line-of-

sight (LOS) is roughly parallel to the downslope axis of many active landslides, which facilitates 

their detection. Additionally, the region lacks dense forest cover that complicates the use of 

InSAR in some mountainous regions (Fig. 3). Satellite track 223 frame 790 and track 224 frame 

790 overlap portions of our field site, which effectively doubles the number of scenes available 

in these areas. We produced 165 differential interferograms between February 2007 and 

January 2011 with the Repeat Orbit Interferometry Package (ROI PAC) developed at 

JPL/Caltech (Rosen et al., 2004). Landslides were identified by stacking interferograms and 

using statistical analysis to reduce noise. We confirmed the location of each landslide using high 

resolution DEMs (1 and 10 m grid spacing).   

 

From the historic air photo analysis (1944 to 2006), we identified 122 active earthflows covering 

16.5 km2 (~7%) of the 226 km2 lidar study area (Mackey and Roering, 2011).  The slide areas 

are log-normal distributed and have a median area of 3.65x104 m2 and an interquartile range of 

1.25x104 to 1.17x105 m2.  Our method enabled us to identify active slides as small as 2x103 m2, 

although this lower detection limit also depends on the presence of surface markers or 

diagnostic features.  Our landslide map also shows that individual active earthflows often 

deviate significantly from the classic hourglass earthflow model (Fig. 7). Many earthflows have 

complex and intricate margins and multiple small tributary earthflows that feed a centralized 

transport zone (Fig. 7). These geometries indicate that earthflows can bifurcate around resistant 

topography, promote ridge migration, and capture the drainage area of adjacent terrain. 

Typically, larger earthflows extend from channels to ridgelines, but smaller earthflows 
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sometimes occupy midslope locations, which suggests that earthflows may persist by colluvial 

loading from upslope.  The largest active earthflow in the study site, the Boulder Creek earthflow 

(~5 km long and 3.1 km2 in area), forms the axis of a small (15 km2) tributary catchment. A 

channel named Boulder Creek bisects this earthflow, which suggests that the upper limit to 

earthflow size may be set by the competition between earthflow movement and channelized 

erosion.  At the downslope end, earthflow toes form lobate features or truncated vertical faces 

depending on the frequency of channel activity.  

From our InSAR inventory (spanning 2007–2011), we identified 50 landslides over a ~14,000 

km2 study area that encloses our lidar coverage (Fig. 5).  These slides span two orders of 

magnitude in area (5.4x104 to 7.8x106 m2) and 13 of the 50 were previously identified through 

our air photo analysis (Mackey and Roering 2011) (Fig. 5). Consistent with previous evidence 

for a strong lithologic control on active sliding (Kelsey, 1978), we observe that 97% of these 

InSAR-identified slides coincide with the slide-prone Central and Eastern belts of the Franciscan 

mélange.  In the lidar coverage area, where our photo and InSAR inventories overlap, we note 

that large slides identified with the historical photos were also identified by the InSAR, but the 

InSAR analysis does not reliably detect some small narrow features given the spatial resolution 

(Fig. 8).  Although powerful for detecting deformation patterns in space and time (see below), 

our current implementation of InSAR precludes it from providing a complete and robust 

landslide inventory in our study area for two reasons.  First, radar interferometry is blind to 

surface displacement that is perpendicular to the satellite’s line-of-sight (LOS). Given the ALOS 

satellite’s north-northeast orbit (and east-northeast LOS), any slides whose axis orientation 

roughly coincides with the orbit direction will not be detected (Fig. 8). Additionally, our 

implementation of InSAR has difficulty resolving small slides (<5x104 m2), which occupy only a 

few pixels of each interferogram. For these reasons, our InSAR-derived landslide inventory 

underestimates the area of active landsliding. Fortunately, however, SAR imagery can be 

processed in alternate modes, such as with automated cross-correlation pixel tracking (e.g., 

Cosi-CORR; Leprince et al., 2008), which can detect deformation parallel to the satellite orbit 

and thus increase our ability to resolve smaller slides with sub-optimal orientations. This mode 

of processing uses amplitude information (rather than phase imagery) and thus suffers from 

decreased accuracy such that slides must have substantial velocity to be detected. Even more 

promising, though, the recent and planned launch of new SAR satellites with shorter repeat 

intervals and higher resolution ensures that this technology will continue to improve landslide 

mapping capabilities (Bürgmann and Thatcher, 2013; Scheingross et al., 2013). 
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Given the limitations of our InSAR analyses in their current incarnation, we emphasize the 

photo-derived analysis of active sliding for the purposes of compiling a landslide inventory.  

While the Eel River system is commonly referred to as landslide-dominated, we estimate that no 

less than 7% of the lidar study area is subject to active sliding.  Interestingly, the average axial 

slope of these active features is indistinguishable from that of proximal, inactive slopes (both 

average approximately 34%).  So, in sum, while the vast majority of the landscape exhibits the 

morphologic signature of sliding and remarkably uniform slope angles, less than 10% of the land 

surface currently experiences perceptible activity. This discovery motivates us to determine the 

fluxes associated with active slides as well as determine other factors that might distinguish 

active and inactive hillslopes.  

 

3.2. Historic landsliding and sediment production 

After identifying active earthflows, our next task was to quantify their contribution to the 

sediment yield of our study area.  Because annual rates of sliding can vary due to climate and 

other factors (Mackey and Roering, 2011), we sought to characterize their average pace to 

facilitate comparison with rates of uplift and erosion.  For this analysis, Mackey and Roering 

(2011) focused on the photo-based landslide inventory because it offers the most 

comprehensive and long-term (>60 yr) depiction of active sliding albeit in a somewhat limited 

spatial domain (226 km2 study area).  As detailed in Mackey and Roering (2011), we used the 

displacement of features on the earthflows combined with measurements of landslide geometry 

to estimate sediment delivery to the channel network. Of the 122 active earthflow features, 62 

directly entered a channel (or gully) and these connected or coupled slides account for ~6% of 

the study area (Fig. 7). We calculated the average annual sediment flux for each slide as the 

product of average slide velocity, slide width and slide thickness measured at the hillslope-

channel interface from field observations and/or lidar analysis.  Landslide thickness is 

notoriously difficult to estimate although recent advances hold promise (Booth et al., 2013).  

  

From the 62 connected earthflows, we estimated an average sediment production rate of 

1.2x105 m3/yr which emanated from 13.6 km2 of the 226 km2 study area (Mackey and Roering, 

2011).  When this flux is attributed only to this area of active sliding, we estimate a landslide-

specific sediment yield of 1.9x104 t/km2/yr, or an equivalent bedrock erosion rate of 

approximately 7.6 mm/yr given a bedrock density 2.5 g/cm3. This lowering rate is an order of 

magnitude faster than estimates of rock uplift and erosion in the region (0.3 to 1.0 mm/yr) which 
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suggests that when viewed in isolation, these active slides denude rapidly at an unsustainable 

pace.  However, when this rate of sediment production is distributed over the entire lidar study 

area of 226 km2, the slide-driven sediment yield is 1.1x103 t/km2/yr (or equivalent to a bedrock 

lowering rate of 0.45 mm/yr), which coincides with the range of erosion and uplift rates 

estimated for the region.  Furthermore, when compared to suspended sediment data collected 

along the Eel River near Scotia, CA, we discovered that slide-derived sediment accounts for 

more than half of the catchment flux (Wheatcroft and Sommerfield, 2005).  Thus, our data can 

be interpreted in two key ways: 1) landslides constitute the primary erosional process in the Eel 

River, and 2) erosion rates for the Eel River are similar to predicted rock uplift rates implying the 

potential for an approximate balance and steady state topography.   

Although steady-state interpretations have been established for many landscapes (Hovius et al., 

1997; Meigs et al., 1999; Larsen and Montgomery, 2012), additional constraints in our study 

area enable us to estimate the frequency with which landslides ‘migrate’ across the landscape 

in order to keep pace with uplift.  Specifically, observed earthflow velocities (0.5 to 2 m/yr) as 

well as meteoric 10Be profiles on an active earthflow have been used to estimate an average 

earthflow residence time of 1.5 kyr (Mackey et al., 2009; Mackey and Roering, 2011).  

Combined with our finding that ~7% of the landscape experiences slope instability at a given 

time, this residence time suggests that the recurrence interval for sliding at a given hillslope 

location is 21,000 yr.  For this calculation, we estimated recurrence interval as the average 

residence time for an individual landslide (1.5kyr) divided by the areal density of active sliding 

(in this case 7%). This frequency of landscape sculpting by slope failure accounts for the 

abundance of ancient landslide features with varying states of dormancy; in other words, the 

morphologic signature of past earthflow activity persists for >104 yr.  In addition, the uniformity of 

slope angles, particularly the similarity for active landslides and inactive slopes, implies that 

sliding must propagate across the landscape with sufficient frequency to prevent the emergence 

of morphologic discontinuities that reflect the time since last failure.  In other words, active 

landsliding revisits each locale in the landscape often enough to maintain uniformly graded 

slopes (Strahler, 1950).  Lastly, our estimation of the frequency with which landslides ‘repave’ 

hillslopes also explains the relative paucity of Late Pleistocene fluvial terraces (or shorelines) in 

the Eel River corridor (Mackey et al., 2011) as these features have been almost wholly 

obliterated by sliding.   

3.3. Automated landslide velocity analysis 
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Our analysis of slide-driven sediment production in Mackey and Roering (2011) is localized 

whereas a regional-scale landslide inventory for comparison with tectonic models will require a 

substantial increase in the area mapped. Manual feature mapping is labor intensive and 

because many slides have limited tree coverage, manual feature tracking can have limitations, 

potentially leading to an underestimate of sediment production values.  Recent advances in 

image processing and comparison can automate the identification of changes between 

successive images. These techniques have the advantage of allowing images (e.g., successive 

orthorectified aerial photos) to be compared rapidly and objectively. Additionally, because image 

matching algorithms rely on transformation (e.g., Fast Fourier Transformation) of local patches 

of terrain rather than discrete features, they can quantify movement in regions of an earthflow 

that may be devoid of discrete markers. The software module COSI-Corr uses precise 

orthorectification (Ayoub et al., 2009) to identify changes in sequential images at the sub-pixel 

scale (e.g., Leprince et al., 2008). By comparing rectified aerial photos of the same area from 

different times, COSI-Corr can identify areas of continuous displacement.  

 

In a new analysis, we used the COSI-Corr algorithm to estimate displacements across the 

Boulder Creek earthflow using photos taken in 1964 and 1976 (Fig. 9). The displacement field is 

very similar (within 10%) to that generated from the InSAR analysis and manual tree tracking 

(specifically, the fastest rates occur in the transport zone and movement of the toe is minor), but 

our COSI-Corr result boasts a relatively continuous deformation as displacement vectors are 

generated where they could not be manually identified (Fig. 9).  This analysis is particularly 

useful for quantifying the orientation of earthflow fluxes proximal to axial and lateral gullies, 

which serve to transport earthflow-prone material into the fluvial network.  In particular, Fig. 9 

shows diverging displacement vectors along the northern margin of the earthflow that constitute 

sediment delivery into the gully network.  Unfortunately, in the upper (branching) reaches of the 

earthflow, large displacement gradients and surface disruption preclude robust resolution of 

displacement in some zones.  Nonetheless, this technique promises to facilitate quantification of 

landslide kinematics through the use of archival imagery, including air photos and troves of 

declassified optical satellite imagery (e.g., Hollingsworth et al., 2012).  

 

3.4. Gully-landslide interactions 

Our velocity and sediment production analysis does not explicitly account for gully networks that 

often become etched atop active earthflows and may contribute to landslide kinematics and 

sediment production (Roering et al., 2009; Handwerger et al., in prep).  During significant rainfall 
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events, these sometimes discontinuous gullies convey overland flow with high concentrations of 

suspended sediment (Kelsey, 1978).  To assess the relationship between gullies and earthflow 

features in our study area, we used the lidar data to apply a drainage area threshold and map 

gully networks as pixels with area between 3×103 and 1×106 m2 (Fig. 10).  According to this new 

analysis, the resulting gully network corresponds well with field observations generated for 

several earthflows, but more importantly, zones of high gully density exhibit a strong association 

with active or dormant earthflows (Fig. 10).  At least two factors may be responsible for this 

association: 1) earthflows tend to occur in topographically convergent terrain, which favors 

overland flow, and 2) surface disruption due to landsliding (such as fractures and broken 

ground) reduces the ability of vegetation and soil sealing to resist shear stresses imposed by 

overland flow.  In some cases, examination of the historical imagery shows significant 

expansion and evolution of gully networks as earthflow motion can close and/or reorient gullies.  

Field observations indicate that gully systems rarely attain depths greater than 5 m (with the 

exception of Boulder Creek that has incised the Boulder Creek earthflow > 40 m) and thus are 

unlikely to intersect the basal sliding surface (Handwerger et al., 2013).  In the vast majority of 

gullies atop active slides, the channel beds are lined with coarse boulders that appear to 

originate from upstream transport as well as local bank failure.  We often observe that boulders 

accumulate and form interlocking structures and armored beds that appear to limit further 

channel incision.  As a result, gully incision on earthflows may be subject to a negative feedback 

as incision increases the delivery of coarse sediment from the adjacent banks.  Combined with 

the influence of on-going landslide movement, these processes contribute to the ephemeral 

nature of these features.  

In the absence of suspended sediment data for gully systems, we have limited ability to assess 

their contribution to the sediment budget of our study area.  Our earthflow flux calculations, 

however, may incorporate some component of gully erosion because these slot-like features are 

not accounted for in our measurements of earthflow depth and width.  In order words, our ‘plug-

flow’ characterization of earthflow transport may indirectly include fluxes associated with gully 

dissection because we do not subtract these gully volumes from our analyses.  By contrast, 

however, gullies can extend upslope into the amphitheater-like landforms above earthflows and 

sediments emanating from these areas are not included in our current analysis.  Most generally, 

the tight coupling of earthflow and gully systems in our study area motivates future 

investigations to explore feedbacks between gully incision and slope movement that may 

influence sediment yield and dictate long-term patterns of hillslope evolution.   
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3.5. Knickpoints, landslides, and cosmogenic radionuclide erosion rates 

In recent decades, in-situ cosmogenic radionuclides (CRN) analyzed in modern stream 

sediments have become a staple for geomorphic studies seeking to decipher how erosion rates 

depend on topography, climate, tectonic forcing, and rock type (e.g., Portenga and Bierman, 

2011; Granger et al., 2013; Willenbring et al., 2013b).  This method accounts for total 

denudation of the land surface and thus integrates the erosional contributions of earthflows, 

gullies, soil creep, and other processes.  Here, we present a new analysis of cosmogenic 

erosion rates for a major tributary (Kekawaka Creek) in our study area that exhibits a substantial 

knickpoint separating somewhat gentle headwaters terrain from steep channels coupled to 

active landslides in the lower portions of the catchment.  This configuration implies that the 

upper portion of Kekawaka Creek is essentially isolated from the regional uplift/erosion rate and 

thus provides an opportunity to analyze how incision regulates hillslope gradients as well as 

active sliding and erosion rates.  

 

Although the paucity of quartz-bearing sediments limits the application of in-situ cosmogenic 

radionuclides in some earthflow-dominated landscapes (Reusser and Bierman, 2010), meta-

sandstone blocks (often termed knockers) crop out in sufficient abundance in many Northern 

California catchments, generating readily sampled quartz-rich stream sediments.  Resistant, 

quartz-rich clasts smaller than 10 m often emerge within earthflows while larger clasts (up to 

km-scale) can form promontories of sufficient size to deflect earthflows and anchor prominent 

peaks.  In stream channels, clasts <0.5 m in diameter are subject to frequent fluvial transport 

and are thus likely to account for the majority of modern sand and gravel in stream sediments 

used for cosmogenic radionuclide analysis.   

 

Knickpoints often regulate the adjustment of fluvial networks to baselevel changes driven by 

tectonic forcing and in the Eel River system many tributaries harbor substantial knickpoints that 

arise from large (>10 m) resistant bedrock clasts that are composed mostly of sandstone, but 

also greenstone and chert (Figs. 3 and 4).  Along the main stem of the Eel River, we observe no 

major boulder-derived knickpoints owing to the wide channel and high discharge.  By contrast, 

knickpoints composed of megaclasts within tributaries are common and emerge locally or 

through downslope transport within earthflow bodies as noted by Kelsey (1977).  Regardless of 

the pathway, the impressive resistance of these clasts guarantees their persistence in the fluvial 

network for long timescales (>105 yr).  In Kekawaka Creek, our lidar dataset reveals a large 
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knickpoint zone that separates the gentler (average slope = 23%) upper catchment with a 

paucity of active slides from the steeper lower catchment (average slope = 30%) that features at 

least five active landslides each exceeding 1 km in length (Fig. 11). In a new analysis, we 

sampled Kekawaka stream sediments for CRN analysis about 100 m upstream of the junction 

with the Eel River as well as near the upstream extent of the steep, boulder-dominated reach 

that defines the knickpoint zone (Fig. 11).  We processed stream sediments with 0.25 to 0.5 mm 

median diameter at the University of Washington Cosmogenic Nuclide Laboratory following the 

techniques described in Balco et al. (2013) and references therein (Table 1).  Because the lower 

catchment sample incorporates sediments from both the lower and upper catchments, we used 

the mixing model described in Granger et al. (1996) to calculate independent erosion rates for 

the upper and lower portions of the catchment (Table 1). 

 

According to our CRN analyses, erosion rates above the knickpoint zone average 0.29 ± 0.05 

mm/yr, while erosion rates for the lower reaches of Kekawaka Creek average 0.76 ± 0.11 mm/yr 

(Fig. 11).  The lower catchment erosion rate is similar to values established by suspended 

sediments (Wheatcroft and Sommerfield, 2005) as well as cosmogenic erosion rates in the 

nearby Van Duzen River (Balco et al., 2013).  Given the >2x erosion rate difference and the 

relatively subdued topography and wide valley floors in the upper reaches of the catchment, we 

postulate that Kekawaka Creek is increasing in relief.  The multitude and magnitude of boulders 

composing the knickpoint zone within Kekawaka Creek suggest that these features are long-

lived such that large, infrequent resistant blocks within the mélange likely have a 

disproportionate influence on river channel evolution and regional relief.  The lower portion of 

the catchment exhibits active earthflows, and although the upper catchment exhibits some 

marginal morphological evidence of dormant landslide features, neither air photo nor InSAR 

analyses revealed evidence for active landsliding in the upstream reaches.  This suggests that 

the frequency of active earthflows is highly sensitive to the pace of channel incision.  More 

specifically, the slow-eroding upper catchment may require relatively infrequent sliding in order 

to denude at the observed rate of just under 0.3 mm/yr.  At this erosion rate, the combination of 

gully erosion and soil creep may be able to generate sediment with sufficient pace, whereas 

increases in incision would likely promote earthflow contributions with increased frequency. 

 

3.6. Erosion from topography: Slope evolution model with landsliding 

To interpret our Kekawaka erosion rate and topographic data with a mechanistic approach, we 

invoked the predictions of a 1-D model for hillslope evolution subject to slow-moving landslides 
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(Booth and Roering, 2011).  Essentially, we seek to establish and calibrate a functional 

relationship between topography (average slope angle, in this case) and erosion rate.  In a 

given setting, topography-denudation studies frequently demonstrate that average slope (or 

mean local relief) accounts for a significant amount of the observed variance in erosion rate 

values (e.g., Ahnert, 1970; Larsen et al., 2014).  Specifically, erosion rate and average slope are 

often positively correlated, but this linear relationship tends to break down when slope angles 

approach threshold values and small increases in steepness generate large increases in 

erosion rate (Montgomery and Brandon, 2002).  This threshold regime has been observed in 

numerous settings, including the San Gabriel Mountains, the Himalayas, and other active 

orogens which are dominated by steep, bedrock hillslopes (Montgomery and Brandon, 2002; 

Binnie et al., 2007; Ouimet et al., 2009; DiBiase et al., 2010).  These topography-denudation 

relationships are consistent with the predictions of a nonlinear sediment transport model that 

accounts for rapid increases in flux at steep angles (Andrews and Bucknam, 1987; Roering et 

al., 1999; Roering et al., 2007) such that slope angles become independent of erosion rate in 

steep terrain.  The universality of such relationships and in particular their application to 

earthflow-prone terrain, however, has not been tested.   

 

Our physically-based hillslope evolution model assumes that earthflows behave similarly to 

glaciers (Glen, 1955). Specifically, it states that the shear deformation rate is a power law 

function of the driving shear stress with a stress exponent greater than one (Booth and Roering, 

2011; Booth et al., 2013).  This is consistent with plug-flow velocity profiles from earthflows and 

other slow moving landslides around the world, where shear deformation is concentrated in a 

basal layer ranging from millimeters to meters in thickness, and material nearer the surface 

translates as a rigid block (Vulliet, 2000; Casson et al., 2005; Coe et al., 2009).  Iverson 

(1986a,b,c) first assumed this type of rheological model for slow moving landslide deformation, 

while Vulliet and Hutter (1988a,b,c), and Vulliet (2000) demonstrated that the flow law exponent 

ranged from 1 to 15 at a variety of sites.  An exponent of 1 indicates linear viscous flow, while 

exponents greater than 1 indicate an increasing degree of plug flow approaching a rigid sliding 

block.  In addition, our model incorporates the influence of gully erosion and soil creep on 

average hillslope gradients using previously published transport laws (Booth and Roering, 

2011).   

 

The form of slide-prone slopes in our study area records topography-erosion feedbacks  

integrated over time scales (1 to 5 ka) similar to cosmogenic erosion rate timescales (~1 ka).  In 
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other words, the link between topographic form and cosmogenic erosion rates allows us to 

constrain hillslope erosional processes well beyond historical timescales.  Assuming steady 

erosion of a given hillslope, our model predicts landslide erosion dominates the hillslope 

response at high rates of erosion such that S ~ E(1/p), where S is the mean slope, E is the 

erosion rate due to earthflows, and p is the stress exponent in the power law rheology (Booth 

and Roering, 2011).  At lower erosion rates, the relationship between mean slope and erosion 

rate follows a different scaling exponent, n, (i.e., S ~ E(1/n)) that reflects how gully erosion 

depends on the average gully slope in a similar fashion (n is typically ~1).  In other words, our 

model predicts that a log-log plot of erosion rate versus average slope angle exhibits a kink that 

separates two power-law regimes with scaling exponents of p and n, assuming a significant 

difference in the values of p and n. The erosion rate that coincides with the transition between 

these two regimes varies with process law parameter values and has not been quantified for a 

real landscape (Booth and Roering, 2011).   

Currently, we have limited erosion rate data to calibrate and test a landslide topography–erosion 

relationship.  If we assume that erosion in both the upper and lower portions of Kekawaka Creek 

is dominated by landsliding, such that slope and erosion rate follow the 1/p scaling, our data 

indicate that p is 3.7, consistent with observations of thin shear zones and velocity profiles for 

similar earthflows in other settings (Booth and Roering, 2011).  In this scenario, landsliding 

would dictate erosion in the upper catchment but at a frequency that is undetectable over 

historic timescales with our remote sensing analysis.  Alternatively, given the paucity of active 

landsliding in the upper catchment, the observed erosion rate of 0.29 mm/yr may reside in the 

regime wherein erosion is accommodated primarily by gullying and soil creep and slope angle 

scales with erosion rate as 1/n.  In this scenario, our limited erosion dataset precludes us from 

uniquely constraining parameter values that relate slope and erosion rate.  Although 

unsatisfying, this interpretation is appealing given the lack of landslides in the upper catchment 

and the abundance of active sliding in the lower section.  Thus, the erosion rate that coincides 

with the transition between the non-slide and slide-dominated erosion-slope angle scaling would 

be bracketed by our observed rates of 0.29 and 0.76 mm/yr.  Additional data are required to 

further refine and test this interpretation, but these results suggest that from topographic data 

our model can be calibrated to interpret how both process and form respond to changes in 

erosion rate (Booth and Roering, 2011; Booth et al., 2013). 

3.7. Seasonal dynamics: Landslide velocity 
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When averaged over long timescales (>10 yrs), individual earthflows in our study area tend to 

exhibit relatively consistent velocities (Mackey and Roering, 2011), suggesting that they persist 

in a chronic state of failure.  By contrast, when examined over hourly to monthly timescales, 

notable field-based studies have shown that fluctuations in earthflow velocity are substantial 

(often greater than 50%), reflecting the influence of individual storms, seasonal and decadal 

rainfall patterns, and fluctuations in atmospheric pressure that drive changes in pore pressure 

along basal surfaces (Iverson and Major, 1987; Malet et al., 2002; Coe et al., 2003; Schulz et al. 

2009b).  The extent to which these historical timescale variations influence the long-term 

evolution of slide-prone landscapes is uncertain.  For example, do seasonal fluctuations in 

velocity simply represent variations around long-term trends OR do sub-annual patterns have a 

cumulative effect on hydrologic-mechanical interactions that modulate the evolution of 

landslides, including their propensity to fail catastrophically?  The tendency for earthflows in our 

study area to resist catastrophic failure is a critical characteristic that allows for the persistence 

of rapidly eroding, low-gradient topography.  To document sub-annual landslide dynamics for 

the purpose of assessing landslide mechanics, Handwerger et al. (2013) performed a detailed 

time series analysis for a subset of slides in the InSAR landslide inventory discussed above. 

 

Deep-seated slow-moving landslides typically require long (weeks to months) periods of 

precipitation in order for pressure changes to occur in the subsurface (Iverson and Major, 1987). 

Field-based studies have shown that pore-water pressure can diffuse from the surface through 

the landslide body and be represented with a simple one-dimensional linear diffusion equation 

(Iverson and Major, 1987; Haneberg, 1991; Reid, 1994; Iverson, 2000; Berti and Simoni, 2010, 

2012). This model suggests that the time required for landslides to respond to rainfall (i.e., 

landslide response time) should vary with the thickness and hydraulic properties of each 

landslide. Thus, in regions with similar climate, soil properties, and topographic slopes, landslide 

response time should scale with the square of landslide thickness.   

 

 e quantified seasonal slide velocity patterns for 10 active earthflows by inverting 51 small-

baseline interferograms using the method of Schmidt and   rgmann (2003) and by combining 

both satellite tracks to achieve a temporal sampling as short as ~30 days (rather than 46 days 

for a single track) in certain time periods (Handwerger et al., 2013).  These 10 landslides have 

areas ranging from 0.16 to 3.1 km2 and average thicknesses of 8 to 40 m (Handwerger et al., 

2013). Between 2007 and 2011, each slide displayed seasonal velocity changes that were 

remarkably similar in timing and magnitude despite a fivefold variation in slide depth (Fig. 12). 
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Each slide accelerated within 40 days of the onset of seasonal rainfall each fall before velocities 

peaked in mid-winter and decreased through the spring and summer. However, we are unable 

to resolve shorter onset times given the temporal resolution of the data. Observations of similar 

response times irrespective of landslide size appear to contradict a parsimonious 

implementation of the depth-dependent diffusion model. In Handwerger et al. (2013), we 

explored possible explanations for these observations. First, we used a 1D diffusion model with 

a range of hydraulic diffusivities measured at the nearby Minor Creek landslide (Iverson and 

Major, 1987) to show that negligible pore-water pressure changes likely occur in the deepest 

slides within 40 days of rainfall commencement. Among the possible explanations for the short 

and consistent onset times of the deepest slides is that field-based values of hydraulic diffusivity 

may underestimate the effective hydraulic diffusivity because field estimates are often derived 

from monitoring sites that are selected to avoid heterogeneities (e.g., large open mode 

deformation cracks) that facilitate rapid pressure transmission.  In addition, like many hydraulic 

parameters, the effective diffusivity may scale with landslide size such that larger landslides 

exhibit high diffusivity values.  Curiously, tracer studies show that hydraulic diffusivity values for 

mass transport vary as a power law function of transport length scale (Neuman, 1990; Gelhar et 

al., 1992) and the scaling exponent is often estimated to be between 1 and 2.  If landslide 

thickness is considered the effective length, these scaling relationships could potentially account 

for our inability to detect a scale-dependent difference in landslide response time.  In other 

words, if the effective hydraulic diffusivity of our landslides increases with length scale, larger 

(and thicker) slow-moving landslides may respond over a similar timescale as smaller (and 

thinner) ones due to scale-dependent hydraulic properties that dictate pore pressure dynamics.  

Unfortunately, however, these scaling relationships are derived for tracer data and thus far have 

not been established for pressure changes, which is more relevant for our purposes.  

Alternatively, our results may suggest that a simple 1D diffusion model may fail to characterize 

the multi-dimensional mechanical-hydrologic interactions that modulate the dynamics of an 

evolving earthflow. More generally, our analyses challenge us to: 1) increase the sampling 

frequency of our landslide time series with InSAR datasets, and 2) assess the hydrologic and 

mechanical processes that control the seasonal deformation of slow-moving landslides. 

3.8. Seasonal dynamics: suspended sediment transport 

Because our InSAR analysis suggests that the timing of seasonal landslide acceleration, peak 

velocity, and deceleration is similar across our study area, we anticipate implications for the 

timing of sediment delivery to the channel network.  The predominantly fine-grained lithology of 
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the Franciscan Complex (notwithstanding the presence of resistant clasts) favors suspended 

load transport of earthflow-derived sediment.  Thus, in addition to providing an estimation of 

catchment-averaged erosion on historic timescales, suspended sediment records may reveal 

the signature of seasonal earthflow activity when examined in detail.   

Power-law relationships between discharge and sediment concentration are often used to 

generate sediment rating curves and estimate cumulative suspended sediment yields and thus 

erosion rates (e.g., Syvitski et al., 2000; Cohen et al., 2014). In many cases, sediment rating 

curves reveal a systematic and non-unique relationship between river discharge and sediment 

concentration. In other words, for a given river discharge, sediment concentration values exhibit 

variability that is not solely due to uncertainty or statistical noise (Walling and Webb, 1996; 

Hicks et al., 2000). Rather, discharge-concentration data can reveal sediment supply limitations 

whereby sediment concentrations drop to negligible values for discharges that previously 

exhibited measurable suspended sediment concentrations, or hysteresis whereby sediment 

concentrations for a given discharge in the rising limb of a hydrograph are greater than those 

corresponding the same discharge during the falling stage (Lopes and Ffolliott, 1993; Hovius et 

al., 2000). In a new analysis, we analyze suspended sediment records for the Eel River, 

anticipating systematic deviations in the discharge-concentration data that result from the mid-

winter acceleration of earthflows and the delivery of fine-grained sediment to the channel 

network. 

From 1960 to 1980, the US Geological Survey measured daily river discharge and suspended 

sediment concentration for the mainstem of the Eel River near the town of Scotia.  While the 

data have been used to estimate sediment export and erosion rates (Wheatcroft and 

Sommerfield, 2005; Lock et al., 2006), the data also reveal inter-annual variability that 

presumably relates to variations in precipitation. In particular, a series of intense storms with a 

recurrence interval greater than 100 years occurred in 1964 and liberated enormous quantities 

of sediment across Northern California leading to extensive valley aggradation (Brown and 

Ritter, 1971). Similar to sediment rating curve changes observed after volcanic eruptions (Major, 

2004), the 1964 event heavily perturbed the relationship between river discharge and 

suspended sediment concentration for several years following the storm.  

In order to avoid the legacy of the 1964 event and isolate the signature of earthflow-driven 

sediment delivery, we analyzed suspended sediment data from 1960 to 1963 and 1970 to 1980. 
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In addition, following Wheatcroft and Sommerfield (2005), we culled data during low-flow 

conditions when sediment concentrations are contaminated by authigenic organic material such 

as diatoms. To do this, we plotted log-transformed daily discharge values (Qw) and noted a bi-

modal distribution with the higher peak associated with winter events and the lower peak 

associated with low-flow summer conditions. The discharge associated with the minimum 

between the two peaks reasonably separates these two regimes and thus we trimmed data with 

log(Qw) < 1.55 (or Qw < 35 m3/s). After this filtering, the 14-year record contains >4000 data

points and reveals a distinctive discharge-concentration relationship that is not well described by 

a single power-law equation (Fig. 13A). We used a locally weighted scatterplot smoothing 

(LOWESS) algorithm following Major (2004) to fit the discharge-concentration data and 

calculated the residuals. Surmising that the residuals vary seasonally because of lagged 

earthflow activity, we plotted residuals as a function of water day (defined as October 1 = 1 and 

September 31 = 365) for the aggregated 14-year dataset. Similar to other studies, the data 

exhibits hysteresis, which in our case is reflected by decreasing residual values through the 

water year.  Specifically, we observe positive residuals early in the water year that progressively 

decrease before switching to negative residuals later in the water year (Fig. 13B). Between 

water days 120 and 180, which corresponds to the months of February and March, however, we 

observe a positive deviation in the trend of decreasing residuals. Average and peak daily rainfall 

values during this period are not different from preceding months which leads us to conclude 

that a simple climate mechanism fails to account for this pattern.  Instead, because the timing of 

this positive excursion corresponds with the period of earthflow acceleration noted by 

Handwerger et al. (2013) using InSAR, we interpret this period of increased sediment 

concentration to reflect sediment production associated with the delayed (or lagged) 

acceleration of earthflows.  This finding suggests that earthflows may impart a distinct signature 

in the discharge-concentration relationship of slide-prone systems. Put otherwise, our analysis 

shows that for a given discharge, sediment concentrations tend to be higher in mid-winter 

months due to the acceleration of earthflows, imparting a signal that may be reflected in 

sedimentary records.  

3.9. Resistant bedrock and landslide dams 

The slow-sliding behavior of landslides in our study area encourages a conceptually appealing 

and relatively simple rheological modeling framework to interpret and predict long-term controls 

on landscape form and dynamics in our study area (Booth et al., 2013).  During the course of 

our investigations, however, we discovered landforms indicative of a large, catastrophic 
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landslide in the Eel River corridor that preclude us from exclusively invoking this perspective to 

decipher the evolution of the Northern California Coastal Ranges.  Motivated by lidar-enabled 

observations of terrace-like features located at the same elevation along the mainstem of the 

Eel River, Mackey et al. (2011) documented evidence for a landslide-dammed paleo-lake that 

dates to 22.5 ky BP.  In contrast to the earthflow style of landsliding that has been our focus 

thus far, the lake-forming landslide appears to have originated from a high-relief, resistant 

greenstone outcrop.  The landslide would have formed a 130 m high dam in order to account for 

the observed paleo-shoreline features that were originally (and incorrectly) surmised to be fluvial 

in origin.  A 100 m deep landslide scar can be readily observed on the flanks of Nefus Peak and 

the downslope intersection of that hillslope with the Eel River corresponds with the downstream 

cessation of paleo-shoreline features (Fig. 3).  The dam supported a 55-km long lake that 

temporarily impounded 1.3 km3 of water and facilitated delta formation and lacustrine deposition 

at scattered locations along the Eel River corridor.  This previously unrecognized event 

described by Mackey et al. (2011) correlates with a period of genetic divergence for local 

anadromous trout (Oncorhynchus mykiss) that can be explained by a period of interbreeding 

downstream of the dam between typically isolated summer- and winter-run ecotypes (Nielsen 

and Fountain, 1999).  Following dam breaching that likely occurred 600 to 6,000 years after 

dam formation, the steelhead trout reproductive ecotypes reoccupied their preferred 

geographically isolated spawning areas. The signal of genetic introgression was recognized by 

Nielsen and Fountain (1999) who attributed the timing of genetic divergence to drought and low-

flow conditions, rather than a landslide dam. In addition, the paleo-lake may explain a curious 

cessation of sediment delivery from the Eel River system that VanLaningham et al. (2008) 

observed in sediment cores along the continental slope.  While much of the landslide dam and 

paleo-lake evidence has been subsequently erased by pervasive earthflows in the Eel River 

canyon, the work of Mackey et al. (2011) shows that catastrophic events with long-lived effects 

contribute to the evolution of the region in diverse and profound ways.   

In contrast to the persistent and pervasive activity of earthflows in the Northern California 

Coastal Ranges, resistant blocks of the Franciscan Complex may fail in a punctuated fashion 

with widespread impacts.  Field observations and lidar imagery indicates that highly sheared 

and weak matrix enables earthflows to deform or (‘flow’) around resistant blocks enabling the 

blocks to become progressively exposed and increasingly prone to bedrock failure.  This 

conceptual model invites an investigation of block size and position in our study area.  In this 

new analysis, we seek to better understand the frequency with which resistant blocks of 
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sufficient size to dam rivers will be exhumed in our study area.  In the Franciscan Complex, 

resistant bedrock blocks of sandstone, greenstone, chert, and limestone, tend to be elliptical to 

spheroidal and are often organized in linear ‘trains’ that parallel structural boundaries, which 

tend to be northwest-oriented in Northern California (Medley and Lindquist, 1995).  A statistical 

analysis of Franciscan Complex blocks using measurements from field maps and digitized 

photos demonstrates that block size (estimated as the longest exposed axis) is power-law 

distributed, implying scale-independence over 7 orders of magnitude (Medley and Lindquist, 

1995).  We can use this power law distribution to estimate the relative frequency of blocks of a 

given size in our study area.  For example, in our lidar coverage of 226 km2, this power law 

distribution implies that blocks with a maximum length of 3 km account for less than 10% of all 

blocks in the study area.  Additionally, 9 km long blocks are likely to comprise less than 2% of 

the block population.  By comparison, the area of the resistant outcrop that anchors Nefus Peak 

and spawned the Eel-damming landslide 22.5 ky BP has a maximum length of approximately 4 

km and is one of the largest resistant blocks observed in our lidar coverage.  Furthermore, the 

density of large (>1 km) blocks observed in our study area is similar to expectations from the 

Medley and Lindquist (1995) analysis (Fig. 4).   

Landslide scaling relationships have been expanded to three dimensions (e.g., Larsen and 

Montgomery, 2010) enabling us to determine the frequency of landslides with sufficient volume 

to block the Eel River.  Because tributary streams tend to be narrower and steeper, landslide 

volumes required to induce blockage are much smaller.  As a result, the statistical distribution of 

stream (and valley) size also must also be considered when assessing the potential for 

landslide damming events.  Most simply, the frequency of river-damming events in mélange-

dominated mountainous landscapes is dictated by the pace of earthflow activity that exhumes 

coherent blocks and the convolution of two systems that tend to exhibit power-law scaling: river 

networks and resistant block sizes.  The spatial coincidence of large blocks and high drainage 

area river valleys increases the likelihood of damming events that can affect large fractions of 

watersheds similar to what occurred in the Eel River 22.5 ky BP.   

4. Summary and synthesis

Our analyses, combined with previously published work, demonstrate that earthflow-prone 

mountainous landscapes do not behave like idealized sandpiles (i.e., they do not 

instantaneously and uniformly shed material into valleys in response to channel incision).  On 

the other hand, landslides in our study area are not chaotic or random occurrences.  Instead, 
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landsliding in the Northern California Coastal Ranges is highly localized, yet somehow 

organized or tuned such that at a given time active slides occupy only a small fraction of the 

landscape area yet transmit the majority of sediments required to keep pace with rock uplift and 

baselevel lowering.  This observation is all the more remarkable given that the slope angles of 

active landslides cannot be readily distinguished from the slope angles of relict earthflow terrain, 

which constitutes the vast majority of our study area (Fig. 14).  Our analyses indicate that active 

landslides erode at an unsustainable pace (e.g., approximately an order of magnitude faster 

than the background rate of denudation).  As a result, zones of active sliding must migrate 

across the landscape over time in order to maintain the balance between rock uplift and 

denudation and maintain the relatively uniform distribution of slope angles.  We estimate that 

the recurrence interval of sliding at a given location is on the order of 20kyr, which appears 

sufficient to maintain roughly uniform slope angles across both inactive and active terrain.   

The mechanism that sets the frequency of slope failure at a given location is still unclear.  After 

earthflow activity has denuded a hillslope segment, perhaps weathering must ensue for a period 

of time in order for weak material to accumulate thickness and flow.  Recent analyses indicate 

that weathering of similar substrate is driven by the position and dynamics of the water table 

(Rempe and Dietrich, 2014).  Material testing of mélange bedrock is notoriously difficult and as 

a result it is unclear whether significant material alteration and/or weathering beyond wet/dry 

cycles is required in order for earthflows to initiate.  If weathering and hillslope hydrology is a 

primary factor modulating the evolution of individual earthflows, then our calculations indicate 

that these processes condition the subsurface for slope instability on timescales of 103 to 104 yr.  

More generally, these observations encourage us to revisit the threshold slope model by 

combining the landslide inventories and kinematic information we describe here with process-

based predictions of landslide dynamics and bedrock weathering.  The goal of this endeavor 

would be to predict how changes in rock uplift and incision or climate would alter the frequency 

and pattern of active landslides.    

Because channel processes trim away earthflow toes that impinge on valley floors as well as 

drive hillslope steepening through vertical incision, the coupling between hillslopes and valleys 

may also be a key factor dictating zones of slide activity.  For example, active landslides are 

common along the steep, lower reaches of Kekawaka Creek, a tributary to the Eel River. 

Erosion rate estimates from cosmogenic radionuclides above and below the knickpoint zone on 

Kekawaka Creek differ by more than a factor of two and average hillslope gradients are steeper 
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in the lower reaches consistent with predictions from a physically-based earthflow-driven 

hillslope evolution model.  According to our maps, earthflows also exhibit a remarkable 

tendency to retrogress upslope to ridgelines, liberating accumulated colluvial material that 

moves downslope and becomes part of the earthflow body.  Thus, in addition to baselevel 

forcing via channel processes, earthflows are also subject to an upslope material supply 

limitation that regulates their dynamics.  

Once active, landslides in our study area tend to exist in a state of chronic failure.  Historically, 

active earthflows in our study area are relatively immune to catastrophic failure, potentially due 

to hydrologic-mechanical feedbacks, such as dilatant shear strengthening (Iverson, 2005; 

Schulz et al., 2009a).  Furthermore, continued deformation of these slides may enable them to 

generate their own hydrologic boundaries through the localization of low permeability materials 

in shear zones and thus become hydrologically isolated (Baum and Reid, 2000).  On seasonal 

timescales, earthflows of varying size exhibit remarkably similar seasonal acceleration and 

deceleration patterns that lag the onset of seasonal rainfall by months.  This seasonal pattern 

also manifests in suspended sediment records such that earthflows promote higher sediment 

concentrations months during mid-winter periods.   

The highly sheared earthflow-prone materials that constitute much of the Northern California 

Coastal Ranges are locally interrupted by highly resistant blocks of sandstone, greenstone, or 

other lithology.  Because earthflows can deform around these blocks, the relief of individual 

blocks appears to increase through time and progressively reveal discontinuities that promote 

catastrophic bedrock failures.  These events are much less frequent than persistent earthflow 

activity but may have a profound role in shaping valleys as well as perturbing biotic and 

depositional patterns.  These contrasting styles of slope failure highlight the central role of 

lithology and geologic history in dictating landform evolution and natural hazards. 

5. Future directions and opportunities

Landscapes respond to tectonic perturbations through the evolution of channel networks and 

hillslope form. Given steady state conditions whereby erosion balances rock uplift, uplift causes 

channels to steepen, leading to increased fluvial incision, baselevel lowering, and increased 

slope angles. In this sense, changes in topography and stress fields should manifest as 

changes in total landslide flux, which can be quantified by examining the frequency, magnitude, 

and velocity of landsliding across wide swaths. Quantitative scaling relationships derived from 
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the frequency and magnitude of landsliding typically show a power-law decrease in frequency 

as slide magnitude increases (Hovius et al., 1997; Pelletier et al., 1997; Guzzetti et al., 2002; 

Malamud et al., 2004; Larsen et al., 2010; Mackey and Roering, 2011; Bennett et al., 2012). 

This behavior is common regardless of landslide style and triggering mechanisms. 

The Eel River catchment provides an opportunity to investigate the relationship between 

landsliding and tectonic forcing (via baselevel lowering through channel incision). The 

northwest-southeast trending Central Belt of the Franciscan mélange maintains a constant 

lithologic and climatic regime that coincides with what has been hypothesized as double-

humped zone of uplift (Lock et al., 2006). It is well established that changes in uplift have 

occurred through time due to the northward migration of the MTJ, yet there are no direct 

measurements of uplift inland of the coast. Thus, we are currently unable to determine how 

landsliding patterns change as a result of variable tectonic forcing.  We hypothesize that areas 

with greater uplift rates have larger, faster, and/or more frequent earthflows. 

Currently, we have little ability to predict where imminent zones of earthflow activity are likely to 

arise given that slope angles do not readily distinguish active and inactive earthflows.  While 

most earthflows in our study area span from ridge to channel, a handful occupy midslope 

positions and it’s not obvious whether these features are in the process of elongating or 

contracting.  Historically, the earthflows documented by Mackey and Roering (2011) do not 

appear to appreciably change their planform extent, so the evolution of earthflow areas may 

take place slowly or in fits and starts that are infrequently witnessed through monitoring efforts 

(Baum et al. 1993; Aryal et al., 2012). The rapid vertical lowering of landslide surfaces, 

sometimes referred to as deflation, however, may provide a key tool for discerning features that 

have recently experienced a phase of activity and are thus unlikely to experience activity until 

adjacent slopes become active.  This conceptual framework assumes that earthflows are driven 

by the downslope movement of mobile material in midslope and upslope locations.  Mackey et 

al. (2009) used meteoric 10Be data to implicate sediment (or colluvium) supply as a potential 

factor leading to the long-term slowing of an earthflow in our study area.  The 2-D numerical 

modeling results of Booth et al. (2013) demonstrate that a supply-driven landsliding transport 

law can generate landform patterns and landslide dynamics reminiscent of natural landscapes, 

although few settings offer observations to thoroughly test these model predictions.  The 

expanding array of geochemical tracers may enable us to better constrain the status and history 

of active and inactive hillslopes. 
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Ephemeral meter-scale gully networks are ubiquitous in earthflow-prone landscapes, leaving a 

distinctive topographic signature.  For example, in the Eel River watershed, McLaughlin et al. 

(2000) used the “rounded, poorly incised, lumpy and irregular topography” resulting from gullied 

earthflow surfaces in part to identify areas underlain by mélange.  We further quantified this 

topographic signature using slope–area statistics, and found that in the Eel river LiDAR data set, 

gullies have relatively constant channel slopes of ~25% over drainage areas ranging from 

~3000 to 106 m2 (Booth et al., 2013).  Areas of high gully density identified with this drainage 

area criterion correspond to active and dormant earthflow surfaces, while areas of low gully 

density correspond to stable hillslopes and more widely spaced and well defined channels (Fig. 

10).  We hypothesize that earthflow deformation continually perturbs the channel network, 

favoring gullies over the establishment of well-ordered and widely spaced ridge-valley 

topography common in stable terrain.  Furthermore, since currently active earthflows are difficult 

to distinguish from recently active (but currently dormant) earthflows (Mackey and Roering, 

2011), this suggests that characterizing the spatial pattern and extent of gullying with remotely-

sensed data might inform investigations of earthflow activity.     

The presence of gully networks on active and dormant earthflows also provides an efficient 

means of delivering sediment to channels adjacent to earthflow toes.  Kelsey (1978) found that 

earthflow movement and surface erosion by gullying contributed approximately equal amounts 

of sediment to the adjacent channel.  Our modeling efforts confirm that gully erosion supplies a 

some fraction of the material removed from hillslopes in the Eel watershed (Booth and Roering, 

2011), and we find that this mechanism is effective even when the toe of an earthflow shows 

little movement while gullies allows sediments from faster moving upslope sections of the 

earthflow to bypass slow moving sections and deliver directly to the channel network (Roering et 

al., 2009).  Field-based estimates of sediment delivery by gullies and related earthflow 

processes are lacking in order to establish their role in sediment production.     

The presence of resistant blocks in the Eel River and other landscapes with highly contrasting 

lithologic properties provides a means for individual outcrops and events to impart a long-lived 

impact on landscapes by damming rivers, retarding fluvial incision, or suppressing earthflow 

activity in areas where block densities are high.  In each of these scenarios, the influence of 

resistant bedrock depends on the weathering rate or in-situ comminution rate of the blocks.  Our 

field observations suggest that megaclasts along Kekawaka Creek, for example, are seldom 
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mobilized and do not exhibit evidence for significant weathering.  Although we currently lack 

exposure age data to determine the age of these large boulder-derived knickpoints, it is not 

unreasonable that they reside in the fluvial system for timescales approaching 106 years or 

longer. 
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Figure captions 
 
Fig. 1. Expected earthflow morphology and natural hillslopes. A) Schematic earthflow showing 
primary morphologic and kinematic zones.  Modified from Keefer and Johnson (1983) and 
USGS.  B) Airborne lidar shaded relief image of hillslope near the Eel River and Boulder Creek 
confluence showing a mosaic of active and inactive earthflows and gullies.  Note the abundance 
of relict amphitheater-shaped accumulation zones along the ridgeline.  
 
Fig. 2. Relief image of study area in Northern California showing the Mendocino Triple Junction 
and associated plate boundaries as well as the outline of the landslide-prone Franciscan 
Complex.  The area of lidar coverage used for the air photo landslide inventory is shown in red.  
Modified from Google Earth image. 
 
Fig. 3. Photographic perspectives from Northern California study area. A) View upstream along 
the Eel River corridor near the confluence of Kekawaka Creek and the Eel River.  Note the 
consistent and relatively low-gradient hillslopes. B) Eel River tributary view looking upstream 
just above a boulder-dominated knickpoint. Note the wide aggradational surface.  The blue 
vertical line is 1.8 meter person for scale. C) Same location as in B, but looking downstream 
across the mega-boulder knickpoint.  Note the active earthflow toe on river left with 20 m scale. 
D) Three-dimensional digital reconstruction of 22.5 ky BP paleolake formed by a catastrophic 
landslide dam emanating from a resistant block (modified from Mackey et al., 2011).  View is 
upstream (looking south-southeast) and from just above Nefus Peak. The Kekawaka/Eel 
confluence is on the left in the foreground.  
 
Fig. 4. Perspective view of shaded relief lidar data looking east into the Kekawaka Creek 
tributary with the Eel River confluence in the foreground.  In the foreground, an 8-km stretch of 
the Eel River flows from right to left. Resistant bedrock blocks (e.g., meta-sandstone, blueschist, 
and meta-basalt) form high-relief areas (red) which contrast with low-gradient terrain composed 
of argillaceous mudstone and mélange that is shaped by active earthflows (yellow) that flow 
around the resistant blocks.  
 
Fig. 5. Shaded relief map (10 m DEM) of the Eel River field area covered by InSAR (modified 
from Handwerger et al., in review). Red polygons show active landslides identified and mapped 
using InSAR. Green polygons show landslides previously mapped using airborne lidar and 
historical imagery in the zone of lidar coverage (Mackey and Roering, 2011). Black polygons 
show slides mapped with lidar and historical photos.  See Fig. 8 for more detail in the region 
with lidar data.  The light blue filled area outlines the Central and Eastern belts of the Franciscan 
Complex. Inset in the upper right corner shows relative location within California. 
 
Fig. 6. Example of historical landslide velocity estimation using A) historical imagery in 1944 
and B) airborne lidar shaded relief image in 2006 with vegetation colored in green to track the 
location of markers (trees and shrubs) that translate atop an active earthflow. C) Composite 
image of lidar and historical image with red vectors showing 62-years of displacement. The thin 
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black line denotes active earthflow boundaries based on morphology characteristic of earthflows 
and displaced markers. 

Fig. 7. Earthflow mapping derived from historical air photos.  A) Map of lidar coverage and 
active earthflows modified from Mackey and Roering (2011). B–D) Selection of active 
earthflows. Note the variance in planform shape that contrasts with the conceptual model shown 
in Fig. 1. Most active earthflows connect to the channel network and several span channel to 
ridgeline. Contour interval is 200 m. Coordinates are UTM zone 10 N. 

Fig. 8. Map of SAR interferogram stack draped over lidar hillshade, Eel River. Colorscale 
represents average deformation over a 4 year period (modified from Handwerger et al., in 
review). Negative values correspond to motion towards the satellite. Green polygons show 
earthflows mapped by Mackey and Roering (2011). Short black lines show tree vector 
displacement between 1944-2006 (Mackey and Roering, 2011). The LOS (line of sight) vector 
shows the trajectory (N–NW) and look direction (E–NE) of the PALSAR satellite. 

Fig. 9. Map of movement of the Boulder Creek earthflow from 1964–1976. Deformation was 
determined automatically from two orthorectified aerial photos using COSI-Corr software. 
Vectors are indicative of relative magnitude and direction of movement and do not reflect true 
ground displacement.  

Fig. 10. Map of gully density from a subset of the Eel River lidar data along the mainstem 
between Kekawaka Creek and Boulder Creek.  Gully pixels (in black) are defined as having 
drainage areas of 3000 to 106 m2 based on their distinctive morphologic signature, and gully 
density is the percent of these pixels in a moving window of radius 100 m.  Areas of high gully 
density are commonly associated with active and recently active earthflows, outlined in white. 

Fig. 11. Shaded relief map of Kekawaka Creek, tributary to the Eel River with in-situ 
cosmogenic radionuclide sampling sites superimposed. Inset image shows collection of 
megaboulders (>10 m diameter) that correspond with the upper end of the knickpoint zone.  
Profile of elevation and slope along Kekawaka Creek shows CRN sampling sites.  Erosion rate 
values summarized in Table 1. The Lower Kekawaka erosion rate was calculated using the 
mixing model from Granger et al. (1996).  

Fig. 12. InSAR velocity time series for 10 earthflows; twenty-day averaged precipitation shown 
in lower panel. Water years are outline with gray and white boxes. Precipitation data provided 
by NOAA rain gage located in Richardson Grove State Park near Garberville, CA. Db1 = 
Dobbyn Creek 1, Db2 = Dobbyn Creek 2, Lf = Lauffer Road, Kw1 = Kekawaka Creek 1, Kw2 = 
Kekawaka Creek 2, Kw3 = Kekawaka Creek 3, Cc = Chamise Creek, Bc = Boulder Creek, Lr = 
Lundblade Ranch, Sy = Simmerly Road.  Modified from Handwerger et al. (2013). 

Fig. 13. Analysis of suspended sediment data. A) Sediment rating curve (discharge, Qw, vs. 
sediment concentration, Cs) for the Scotia, CA (Eel River) gauging station, for 1960-1963 and 
1970-1980.  Data for summer low flow conditions (Qw < 35 m3/s) were culled (see text).



ACCEPTED MANUSCRIPT

51 

LOWESS fit represents a moving average to the data.  B) Variation of residuals from fit in A with 
water day for 14-yr dataset.  Average daily precipitation is shown for the same period.  Note that 
the progressive decline in residual values (which reflects hysteresis) experiences a positive 
excursion consistent with the timing of earthflow acceleration shown in Fig. 12. 
 
Fig. 14. Histograms of average slope angles (in percent) for resistant blocks mapped in Fig. 4, 
active earthflows mapped in Fig. 7, and terrain underlain by argillaceous bedrock and inactive 
earthflows.  Note that inactive and active earthflow terrain has indistinguishable slope 
distributions while resistant blocks have a much higher proportion of steep angles. 
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Table 1. Summary data for in-situ cosmogenic radionuclide analysis of stream sediments 

Sample Lat/Long

Grain 
Size 
(mm)

10Be 
Concent

ration 
(atoms 

g-1) 

Be 
AM
S 

stan
dard
izati
on

Watershed 
mean 

latitude

Watershed 
mean 

elevation 
(m)

Watershed 
effective 
elevation 

(m)

Watershed 
apparent 

basin-scale 
erosion rate 

(m Myr-1) 

Watershed 
area (km2) 

KWCK-
Input 

(above 
knickpoi

nt)
40.094, -
123.516

0.25-
0.5

3.354E+
04

KNS
TD 40.0728 889 896

292.02 ± 
16.91 51.6

KWCK-
Mouth 
(Eel 

confluen
ce)

40.115, -
123.458

0.25-
0.5

1.950E+
04

KNS
TD 40.0891 808 822

477.80  ± 
29.17 85

Erosion rates were calculated following the production rate calibration data in Balco et al. (2008). 
Note that erosion rates for the upper and lower portions of the catchment were calculated using the 
mixing model employed by Granger et al. (1996).   
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
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Fig. 14 
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Highlights 
· We review diverse methods for exploring how landslides influence landscapes in rapidly

uplifting regions of Northern California

· We use field data to explore and test the threshold slope concept and state-of-the-art landslide

process models

· We analyze suspended sediment and cosmogenic nuclide erosion rates as well as seasonal

landslide dynamics to determine the timescales over which landslide erosion balances rock

uplift
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