
Abstract. Kinetic equations are presented for single-particle
spin-density matrices with the Heisenberg exchange interac-
tion in bimolecular collisions of particles and the dipole±dipole
spin±spin interaction between particles taken into account. It is
shown that interactions between individual paramagnetic parti-
cles, despite being rather weak compared to the exchange
interaction, can result in a nonequivalent spin exchange. Spin-
coherence transfer generates collective modes of quantum spin
coherence motion. Collective resonance lines have a mixed form
(absorption + dispersion). A new interpretation of the ex-
change narrowing of the spectrum when the spin-coherence
transfer rate is sufficiently large is proposed. An advanced

theory of paramagnetic relaxation of paramagnetic particles
in dilute solutions due to dipole±dipole interaction is discussed.
A modern paradigm of spin exchange is also presented.

Keywords: spin probes, exchange and dipole±dipole interaction,
spin-exchange rate constant, decoherence of spin, spin coherence
transfer, EPR spectrum shape, mixed form of spectral line
(absorption+dispersion), exchange narrowing of spectra

1. Introduction

Spin exchange is changes in the spin state of unpaired
electrons caused by the exchange interaction in bimolecular
collisions of paramagnetic particles. In collisions of para-
magnetic particles, the electron wave functions overlap and
the electron energy depends on the total electron spin of
colliding particles. The dependence of the energy on the spin
multiplicity can be described by adding an exchange interac-
tion term [1, 2]

Vex � �hJ�r12�S1S2 �1�
to theHamiltonian. Here, J is the exchange integral in circular
frequency units, r12 is the distance between colliding particles,
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and S1; 2 are the operators of their spin moments measured in
�h units. For particles with the spin S � 1=2, the elementary
spin exchange event can be the mutual spin flip in two
particles A and B,

A�"� � B�#� , A�#� � B�"� : �2�

The arrows indicate the two possible orientations of the
electron spin moment with respect to the quantization axis.
We call elementary event (2) the equivalent spin exchange.
Possible changes in the spin states in collisions of particles A
andB do not reduce to only such an equivalent spin exchange:
in collisions, along with the exchange interaction, spin
interactions of individual particles, such as the hyperfine
interaction of electrons with magnetic nuclei, are also
manifested.

We assume that the splitting of spin levels of individual
particles can be described by a parameter D. Then, obviously,
the necessary condition for realizing the equivalent spin
exchange is the relation

jJj4 jDj : �3�

But this condition is not sufficient. To ignore the splitting of
spin levels of individual particles in spin-exchange efficiency
calculations, another condition,

jDjtc < 1 ; �4�

must also be satisfied, where tc is the collision time. If
conditions (3) and (4) are not satisfied, the exchange
interaction in bimolecular collisions should be expected to
not result in spin exchange in the sense of an equivalent
exchange. However, the term `spin exchange' is also used in a
broader sense, meaning any changes in the spin states of
colliding particles, even if the exchange interaction `interferes'
with other spin-dependent interactions of particles. When the
condition

jJjtc > 1 or jJjtc < 1 �5�
is satisfied, the exchange interaction is respectively called
strong or weak.

The rate of bimolecular collisions in a condensed phase
was first calculated by Smoluchowski [3], who obtained the
well-known expression

ZA0 � 4p�rA � rB��DA �DB�CB � KDCB �6�

for the collision rate of a separate type-A molecule with type-
B molecules, where KD � 4pbDAB. Here, rA and rB are the
radii of spheres representing molecules, CB is the concentra-
tion of molecules B, and DA and DB are the diffusion
coefficients of molecules A and B, DAB � DA �DB,
b � rA � rB is the distance of closest approach of spheres,
called the collision radius, and KD is the rate constant of
bimolecular collisions, which is referred to as a constant in the
sense of being independent of the concentration of particles.
We note that when the concentration is measured as the
number of spins per cm3, the dimension of KD is [cm3 sÿ1].

In a condensed medium, the same pair of molecules
collides many times, as is experimentally shown in [4]. Two
molecules in the same pair collide repeatedly. Taking such
repeated collisions in the same pair of particles in a condensed
medium into account, we can speak about bimolecular

encounters, including the first and all repeated collisions in a
chosen pair of molecules. The statistics of repeated collisions
are discussed in detail in books [5, 6]. Smoluchowski formula
(6) gives the rate of first collisions. For charged molecules
(spheres), Debye [7] obtained an analog of (6),

ZA0 � 4preffDABCB ; reff � fD b ; �7�

with the parameter fD > 1 for charged molecules with
different signs and fD < 1 for charged molecules with the
same sign [7, 8].

Bimolecular processes are characterized by a quantity
assigned to the unit concentration of molecules, which is
called the rate constant of the process. In the case of spin
exchange, the rate constant can be written in the form

Kex � 4prexDAB : �8�
The effective radius rex depends on the interaction between
molecules. However, rex also accumulates the effect of
repeated collisions, affecting the total time during which a
pair of interacting spins is located in the interaction region.
We show below that the result of the encounter can also
depend on the spin dynamics of particles in time intervals
between repeated collisions.

An important aspect of the spin exchange theory is the
manifestation of spin exchange in electron paramagnetic
resonance (EPR) spectroscopy. The first theoretical inter-
pretation of changes in spectral shapes observed in EPR
experiments was given in [9]. The shape of the spectrum was
described by adding terms to the equation of motion for the
magnetization of paramagnetic particles [9], as is done in
chemical kinetics:�

qMA

qt

�
ex

� ÿKexCBMA � KexCAMB ;

�9��
qMB

qt

�
ex

� KexCBMA ÿ KexCAMB :

Here, MA and MB are the total magnetization vectors for
spins A and B.

The EPR spectra calculated taking the spin exchange into
account as in (9) reproduce the characteristic spectral
transformations upon increasing the spin concentration.
Namely, in the case of a slow exchange, spectral lines
broaden and shift to the center of gravity. As the spin
exchange rate increases, exchange spectral narrowing
begins. The broadening of spectral lines in the region of a
relatively slow spin exchange can be interpreted using the
uncertainty relation. The spin exchange changes the spin
state and therefore shortens the spin lifetime in a specified
state, thereby leading to the `spread' of spin energy levels. The
spectral narrowing is explained by the effect of averaging the
interactions of paramagnetic particles by rapid spin
exchange, which results in splitting their EPR spectra.
However, the situation proves to be more complicated [10].

Moreover, apart from the exchange interaction, there is
the dipole±dipole spin±spin interaction of paramagnetic
particles resulting in a dependence of the shape of EPR
spectra on the concentration of paramagnetic particles.
Thus, the separation of contributions from the bimolecular
spin exchange process and dipole±dipole interaction is an
urgent problem. Because of this, we also briefly consider the
state-of-the-art theory of paramagnetic spin relaxation in
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nonviscous liquids caused by dipole±dipole interaction.
Considerable attention is devoted to a new paradigm of
EPR spectrum shape transformations caused by spin
exchange and dipole±dipole interaction [10, 11].

In our books [12, 13] published forty years ago, we
presented a comprehensive review of spin exchange investiga-
tions and applications at that time. These books were received
well by the world's scientific community and facilitated the
development of the spin probe method and its applications
in chemistry, molecular biology, and medicine. However,
theoretical results confirmed by experiments have been
accumulated since then that fundamentally change our
concepts about the motion of spins of unpaired electrons in
paramagnetic particles in diluted solutions. In fact, the
paradigm of spin exchange and its manifestation in EPR
spectroscopy has changed.

The shift of the resonance spin frequency related to the
spin dynamics during bimolecular collisions (directly in
collisions and between them in the same pair of colliding
particles) was theoretically predicted in [14]. This frequency
shift was experimentally confirmed and thoroughly investi-
gated (see, e.g., [15±18]). The spin exchange rate constant was
first consistently calculated in [19] for charged paramagnetic
particles with spin 1/2. The spin exchange rate constants were
carefully measured for nitroxyl free radicals [19, 20]. It was
demonstrated in a number of papers (see, e.g., [10, 11, 17, 18,
21, 22]) that due to the spin exchange, the individual spectral
lines have a mixed shape, being the sum of symmetric and
antisymmetric functions (see, e.g., [10, 11, 17, 18]). The
influence that the anisotropic distribution of the spin density
on the `surface' of paramagnetic particles has on the spin
exchange rate was first experimentally studied in [23].

Spin exchange studies should always take into account
that along with the exchange interaction, the dipole±dipole
spin±spin interaction also exists, whose contribution to the
spin dynamics depends on the spin concentration. The
contribution of the dipole±dipole interaction to spin deco-
herence was reconsidered in recent years [21, 22, 24]. It was
shown that unlike the exchange interaction, the dipole±dipole
interaction tends not to shift spectral lines to their center of
gravity, but `pushes them apart'. This feature of the dipole±
dipole interaction contribution to spin decoherence has been
confirmed experimentally [18]. For uncharged particles with
arbitrary spins, the spin exchange rate constant was calcu-
lated for the diffusion propagation of particles through the
region of the extended exchange interaction [25]. These
studies resulted in the formulation of a new paradigm for
measuring the spin exchange rate from analysis of EPR
spectra in the linear response region (see, e.g., [10, 11]).

The aim of this review is to present a complete state-of-
the-art theory of the bimolecular spin exchange and its
manifestations in EPR spectra. Of special interest for
experimentalists should be Section 5, presenting the modern
protocol for measuring the spin exchange rate constant from
an analysis of the EPR spectrum shape.

2. Calculations of the bimolecular spin
exchange rate constant

Themodel of a sudden switching on the exchange interaction,
being the simplest of possible bimolecular spin exchange
models in solutions, is most often used to calculate the spin
exchange rate constant and interpret spin exchange experi-
mental data. Here, we consider the results of the bimolecular

spin exchange theory obtained in this model of colliding
particles.

It is assumed that particles collide with each other only
once, the second collision being disregarded. In addition, it is
assumed that the exchange interaction in a collision is
switched on and off instantaneously [26, 27]. A mutual spin
flip in colliding particles is regarded as an elementary spin
exchange event (2). In this model, the effective spin exchange
radius is

rex � pexb ; �10�
where pex is the spin exchange probability for one collision of
a pair of molecules in solution. The effective spin exchange
radius rex in this model should always be smaller than the
collision radius of spheres, because the probability cannot
exceed unity, pex 4 1.

2.1 Mutual spin flip for particles with the spin S � 1=2
Most spin-exchange studies were performed with stable free
radicals with the spin S � 1=2, because they are promising for
applications as spin probes or spin labels. In this case, the
probability of mutual spin flip (equivalent spin exchange) and
the equivalent spin exchange rate constant are given by [26,
27]

pex � J 2t 2c =2
1� J 2t 2c

; Kex � pexKD : �11�

Here, J is the exchange integral value at the collision radius b
in units [rad sÿ1] and tc is the average residence time of an
ensemble of colliding pairs of particles at the collision radius.
According to (11), pex 4 1=2 in the sudden collision model.
This means that the spin exchange rate constant at the
collision radius b in this model must be not greater than half
the rate constant of bimolecular collisions calculated by (6)
for neutral molecules or (7) for charge molecules.

The result in (11) is obtained as follows [26]. The exchange
interaction causes a mutual spin flip with the probability

p�t� � sin2
Jt

2
: �12�

It is assumed that the collision duration t in the ensemble of
pairs has the Poisson distribution

j�t� � 1

tc
exp

�
ÿ t

tc

�
: �13�

By averaging the mutual spin flip probability over the
ensemble, we obtain (11).

Equation (11) estimates the spin exchange efficiency from
below because it ignores repeated collisions of a pair of
paramagnetic particles. Repeated collisions can be taken
into account by assuming that the time tc in (11) is equal to
the total residence time of a pair of particles in the exchange
interaction region for all collisions, the first and repeated, in
this region. We assume that the exchange interaction is
instantaneously switched off when the distance between two
particles is in the narrow interval �b; b� a�, a5 b. In the
continuous molecular diffusion model, the total residence
time spent by both colliding particles during one collision in
the configuration space between spheres with radii b and
b� a has the form [5, 6]

tcs � ba

DAB
: �14�
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We note that the use of expression (14) for the total
residence time of two particles in the exchange interaction
region to calculate efficiency pex (11) overstates it, because
the decoherence of spins is ignored, which can occur
between repeated collisions at the distance of the exchange
interaction switching [21]. This means that tcs > teff > tc.
The `thickness' a of interaction region (14) can be estimated
as follows. The exchange integral for the intermolecular
exchange interaction of paramagnetic particles can be
assumed to be proportional to the squared modulus of the
overlap integral of electron orbitals occupied by the
unpaired electrons of interacting molecules [2]. Therefore,
we can expect that the exchange integral is an exponentially
decaying function,

JAB�r� � JAB�b� exp
�ÿK�rÿ b�� ; �15�

where JAB�b� is the exchange integral value at the atomic
collision radius and the parameter K characterizes the
exchange integral decay steepness with increasing the
distance between interacting atoms. For interatomic inter-
actions, the typical values are 1=K � 0:03ÿ0:1 nm [28]. This
value can be used to estimate the `thickness' a of the
exchange interaction region: a � 1=K � 0:03ÿ0:1 nm. For
free radicals, the exchange integral at a distance of the
collision radius is estimated as JAB�b� � 1012ÿ1013 rad sÿ1

[12, 13]. Using these estimates, we can see that for free
radicals, the condition J�b�teff 4 1 is expected to hold.
Then, according to (11), pex � 1=2, and the spin exchange
rate constant is equal to half the rate constant of
bimolecular collisions, Kex � 2pbDAB. However, the condi-
tion J�b�teff 4 1 means that for r > b the exchange integral
can be rather large, and then the spin exchange rate should
be calculated taking the extended nature of the exchange
integral into account. Therefore, the real spin exchange rate
constant can become equal to or even greater than the rate
constant KD of the first collision of spheres in (6).
Theoretical calculations of the spin exchange rate constant
taking the extended nature of the exchange integral into
account are presented in Section 2.3.

2.2 Kinetic equations for the spin density matrix
in the model of sudden collisions of particles
Consistent kinetic equations describing spin exchange
processes in diluted solutions in the model of sudden
collisions are derived in [29]. We consider a solution with
paramagnetic particles A and B. According to [29], we
divide spins into two subsystems: isolated paramagnetic
particles and pairs of particles with the switched exchange
interaction. Both subsystems are in dynamic equilibrium:
for example, a certain paramagnetic particle A leaves the
subsystem of paramagnetic spins with the rate KDCB (CB is
the spin concentration) and forms a pair AB, and pairs
decompose at the rate tÿ1c into two isolated spins.

Before writing kinetic equations, we introduce the
following notation. We let H0�k� be the spin Hamiltonian
of an isolated kth paramagnetic particle, Vex the spin
Hamiltonian of exchange interaction in the AB pair when
particles are directly in contact at the collision radius
(see (1)), r the spin density matrix, and r �2� the spin
density matrix of the AB pair. It is assumed that the
density matrix of a pair during its formation is equal to
the direct product of the spin density matrices of partners
in the collision. It is shown in [30, 31] that kinetic equations

proposed in [29] can be written in the form (see, e.g., [12,
Eqns (1.131)])

qrA
qt
� ÿi�hÿ1�HA; rA�

ÿ KDCB

ÿ
rA ÿ TrB



S�t�rA � rBS

ÿ1�t��� ;
�16�

qrB
qt
� ÿi�hÿ1�HB; rB�

ÿ KDCA

ÿ
rB ÿ TrA



S�t�rA � rBS

ÿ1�t��� :
In these equations, the collision matrix is introduced as

S�t� � exp �ÿi�hÿ1Ht� exp �i�hÿ1H0t� ; �17�
where H0 � HA �HB and H � H0 � Vex. The operator
TrA�B� in Eqns (16) means contraction over spin variables
A(B). The angular brackets denote averaging over the
distribution of t in Eqn (13).

Kinetic equations (16) are written taking into account
that there is a hierarchy of processes in time. There is an
encounter of a given pair of molecules and encounters with
newmolecules. The characteristic time tc of one encounter is
considerably shorter than the diffusion mean free time,
which can be estimated as 1=�KDCA�B��. Kinetic equations
(16) describe changes in single-particle spin density matrices
at the mean free time scale. Therefore, we can perform
averaging in (16) over a fast process at the scale tc. In fact,
both the left-hand side of (16) and the commutator term are
mean values at the collision time scale. But the change in the
single-particle matrix at the scale tc can be disregarded.
Therefore, only the term describing the spin dynamics
during the collision is averaged in (16).

We note that kinetic equations for the exchange interac-
tion of an extended nature and arbitrary interaction kine-
matics for the motion of two molecules are derived in
Section 2.4. In the limit corresponding to the sudden
interaction switching model, the general theory repro-
duces the theory based on this model.

Equations (16) can be represented in a more compact
form by introducing the collision efficiency superoperator
T � hS�t� � Sÿ1�t�i,

Tmn; kl �
�
exp

�
ÿ t
tc

�
Smk�t�Sÿ1ln �t�

dt
tc

: �18�

As a result, Eqns (16) take the form

qrA
qt
� ÿi�hÿ1�HA; rA� ÿ KDCB�rA ÿ TrBTrA � rB� ;

�19�
qrB
qt
� ÿi�hÿ1�HB; rB� ÿ KDCA�rB ÿ TrATrA � rB� :

The collision efficiency superoperator satisfies the equation
[31]

�T;Q� � OTÿ Tÿ E

tc
; �20�

where E is the unit operator and

Qmn; kl � ÿi�hÿ1�H0mkdnl ÿH0lndmk� ;
Omn; kl � ÿi�hÿ1�Vmkdnl ÿ Vlndmk� :
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Introducing the matrices s that describe small deviations of
the spin system from thermodynamic equilibrium as

rA � r0A � sA ; rB � r0B � sB ; �21�
substituting (21) in (19), and keeping only terms linear in sA
and sB, we obtain linear equations for the spin exchange
kinetics when the system does not strongly deviate from
equilibrium.

2.3 Calculations of the spin exchange rate constant
in the approximation of instantaneously
switched exchange interaction
2.3.1 Spin exchange between particles withS � 1=2. In the case
of equivalent spin exchange, when only the exchange
interaction S�t� � exp �ÿi�hÿ1Vext� is taken into account at
the collision moment, Eqns (16) reproduce (11).

In this section, we present the results obtained for particles
with the spin S � 1=2 using kinetic equations (16)±(20) and
taking the spin Hamiltonian of individual spins into account
along with the exchange interaction. We assume that the spin
Hamiltonians of particles A and B (see (17)) contain only the
Zeeman energy of interaction with a constant magnetic field
B0, and the spins have different spectroscopic g-factors and
therefore different Larmor frequencies (resonance in EPR
experiments):

HA � gAbB0SAz � �hoASAz ; �22�
HB � gBbB0SBz � �hoBSBz :

Here, b is the Bohr magneton and oA and oB are the Larmor
frequencies of spins. The difference between spin frequencies
can also be caused by the hyperfine interaction of unpaired
electrons with magnetic nuclei. From Eqns (16)±(20), we
obtain the linearized equations (for convenience, we let the
eigenfunctions j� 1=2i and jÿ 1=2i of the operator Sz be
denoted as a and b):

qsAaa

qt
� ÿKexCB�sAaar0Bbb ÿ sAbbr0Baa�
� KexCB�sBaar0Abb ÿ sBbbr0Aaa� ; �23�

qsAab

qt
� ÿioAsAab ÿW1sAab �W2sBab ;

where we set

Kex � J 2

R 2

�
sin2

Rt

2

�
� 1

2

J 2t2c
1� R 2t2c

;

W1 � KDCB

�
1ÿ

�
exp

�
i�oA ÿ oB�t

2

�
�
�
cos

Rt

2
ÿ i

�
oA ÿ oB

R

�
sin

Rt

2

�
�
�
cos

Jt

2
ÿ i sin

Jt

2
�r0Baa ÿ r0Bbb�

���
;

�24�

W2 � KDCB

�
J

R
exp

�
ÿ i�oA ÿ oB�t

2

�
sin

Rt

2

�
�
sin

Jt

2
� i cos

Jt

2
�r0Aaa ÿ r0Abb�

��
;

R � ÿJ 2 � �oA ÿ oB�2
�1=2

:

A similar equation for spins B can be obtained by changing
subscripts A! B, B! A in (23) and (24). We note that in

the limit case J 2 4 �oA ÿ oB�2, R � J, the quantity Kex

in (23), (24) coincides with expression (11) obtained in [26, 27].
The angular brackets in Eqns (24) denote averaging over

the distribution of collision durations (13). Kinetic coeffi-
cients W1 and W2 are complex in the general case. The real
part of W1 describes the decoherence rate or the spin
coherence relaxation caused by the exchange interaction in
bimolecular collisions of paramagnetic particles. The imagin-
ary part of W1 gives the spin frequency shift of oA. The
modulus of W2 characterizes the coherence transfer from
spins B to spins A. The spin frequency shift caused by the
exchange interaction in bimolecular collisions was theoreti-
cally studied in [14]. To demonstrate possible frequency shifts
due to spin dynamics in collisions of particles, we consider
two limit cases:

(1) the equivalent spin exchange, jJj > joA ÿ oBj and
�oA ÿ oB�tc < 1;

(2) the nonequivalent spin exchange, �oA ÿ oB�tc 0 1.
In the case of the equivalent spin exchange, W1 and W2

in (24) are considerably simplified:

W1 � KDCB

�
1

2

J 2t2c
1� J 2t2c

ÿ i
Jtc

2�1� J 2t2c�
�r0Baa ÿ r0Bbb�

�
;

W2 � KDCB

�
1

2

J 2t2c
1� J 2t2c

� i
2

4� J 2t2c
�r0Aaa ÿ r0Abb�

�
:
�25�

It follows from Eqns (23) and (24) that the spin resonance
frequency shifts as

o 0A � oA ÿ KDCB
Jtc

2�1� J 2t2c�
�r0Bbb ÿ r0Baa� : �26�

This shift can be called paramagnetic. The frequency shift
of spins is obtained from (26) by interchanging subscripts
A and B. The sign of the paramagnetic frequency shift
depends on the exchange integral sign. The paramagnetic
frequency shifts for both particles A and B have the same
sign. This shift appears because spins are predominantly
oriented in one direction, they produce some mean
nonzero exchange interaction field at the location of their
partners in the interaction (like the Weiss field in magnetic
materials). Under usual conditions of spin exchange
studies, r0Bbb ÿ r0Baa � 10ÿ3. Therefore, a frequency shift
like (26) can be disregarded.

If the equilibrium dipole polarization of spins is negligibly
small, then in the case of the equivalent spin exchange
(cf. (11)),

W1 �W2 � KexCB
1

2

J 2t2c
1� J 2t2c

KDCB : �27�

For the nonequivalent spin exchange, the theory gives a
result inconsistent with the result of a phenomenological
theory [9]. Assuming that r0aa ÿ r0bb � 0, we use (24) to
obtain

W1 � pAexKDCB ;

pAex �
�
1ÿ

�
exp

�
i�oA ÿ oB�t

2

�
�
�
cos

Rt

2
ÿ i

oA ÿ oB

R
sin

Rt

2

�
cos

Jt

2

��
;

W2 � pBexKDCB ;
�28�

pBex �
�
J

R
exp

�
ÿ i�oA ÿ oB�t

2

�
sin

Rt

2
sin

Jt

2

�
:
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The real part of pAex characterizes the decoherence efficiency
of spins A caused by collisions with spins B.

Under the conditions �oA ÿ oB�tc< 1, J 2 4 �oA ÿ oB�2,
and J 2t2c 4 1, the imaginary part of W1 gives the frequency
shift of spin A. The frequency shift for spin B can be found
similarly. As a result, we have

DoA � ÿ 1

4
�oA ÿ oB�tcKDCB ;

�29�
DoB � 1

4
�oA ÿ oB�tcKDCA :

Thus, we see that the simultaneous influence of the exchange
interaction and the difference between the resonance
frequencies of colliding spins in a pair leads to the frequency
shift of spins. We note that the resonance frequency shifts of
spins A and B have opposite signs; moreover, the frequen-
cies of A and B shift to the mean frequency. This result is
expected. Indeed, it is well known that a sufficiently strong
exchange interaction can lead to the exchange narrowing of
an inhomogeneous EPR spectrum. The situation with fre-
quency shifts can actually prove to be unexpected. A detailed
analysis of Eqns (28) shows that the resonance frequency shift
changes sign in the region jJjtc � 1 upon changing this
parameter (the sign of Im pAex changes; see (28)).

The change of the frequency shift sign and the role of
repeated collisions between particles are considered in [14]. It
was shown there that the spin frequency shift increases due to
repeated collisions. Repeated collisions can be qualitatively
taken into account by assuming that tc in Eqns (29) is the
total duration of all collisions of two particles during one
encounter in a solution (see (14)). However, the role of
repeated collisions in the model of sudden exchange interac-
tion switching, when colliding paramagnetic particles are in a
narrow interval of collision radii �b; b� a�, cannot be taken
into account only by replacing the duration of one collision by
the total residence time of a pair of particles in the exchange
interaction region during one encounter of this pair in
solution. It was shown in [14] that an important role is
played by the free precession of spins in intervals between
repeated contacts when the exchange interaction is switched
off. When the repeated collisions of a pair are taken into
account, one more parameter, tD � b 2=DAB, appears. In the
case of free radicals in nonviscous media, the conditions

joA ÿ oBjtc < 1 ; joA ÿ oBjtD < 1 �30�
are typically satisfied. Under these conditions, the resonance
frequencies diverge when Jtc < 1:

d 0A �
J 2t2c
4

�
dtc � sign d

�jdjtD
2

�1=2�
KDCB ;

�31�

d 0B � ÿ
J 2t2c
4

�
dtc � sign d

�jdjtD
2

�1=2�
KDCA ;

where d � oA ÿ oB. In another limit case Jtc > 1, the
resonance frequencies converge (cf. (29)):

d 0A � ÿ
1

4

"
dtc � sign d

�jdjtD
2

�1=2
#
KDCB ;

�32�

d 0B �
1

4

"
dtc � sign d

�jdjtD
2

�1=2
#
KDCA :

The convergence of frequencies for Jtc > 1 is expected,
because a strong exchange interaction causes spectral
narrowing, whereas the divergence of frequencies for
Jtc < 1 in Eqns (31) is unexpected.

The shift of resonance frequencies caused by the spin
dynamics in collisions of particles was experimentally studied
in [15±18] with the EPR spectra of nitroxyl radicals using
interesting methodological procedures. For example, colli-
sions between the same nitroxyl radicals were studied, but
either 14N or 15N radicals were used in different experiments.
In this situation, the exchange integral, the collision radius,
and practically the diffusion coefficient and therefore the
collision duration should coincide. These radicals differ only
by hyperfine interaction constants (by d values in (31) and
(32)) and the statistical weights of hyperfine-structure
components in the EPR spectrum. But these quantities are
known, which allowed verifying the correctness of theoreti-
cally predicted line shifts [17]. The additional spin frequency
shift caused by spin evolution in collisions between particles
predicted theoretically was verified in experiments with
nitroxyl radicals with two equivalent 14N [16].

Thus, theoretical [14] and experimental [15±18] studies
have shown that an important parameter for the spin
exchange is q � �oA ÿ oB�tc. Spin exchange experiments
are usually performed under the conditions q < 1 and
J 2 > �oA ÿ oB�2. Because of this, the spin exchange theory
was mainly developed just in this case of the equivalent spin
exchange. In this situation, we have a good approximation
according to (28):

pAex � pBex �
�
sin2

Jt

2

�
� 1

2

J 2t2c
1� J 2t2c

:

The situation fundamentally changes if the condition q > 1
holds. For example, for q > 1 and J 2 > �oA ÿ oB�2, we have
R � J and it then follows from Eqns (28) that

Re pAex � 1ÿ 1

2

2� J 2t2c � q 2=4

�1� J 2t2c��1� q 2=4� ; �33�
Re pBex � 1

2

J 2t2c
�1� J 2t2c��1� q 2=4� :

Unlike the efficiency in the case of equivalent spin exchange
(27), for quite large values of q, efficiencies (33) do not tend to
the same value 1/2. The limit values of efficiencies (33) are

Re pAex ! 1ÿ 2

4� q 2
>

1

2
; Re pBex ! 2

4� q 2
<

1

2
: �34�

We can see from (34) that for q4 1,

Re pAex ! 1 ; Re pBex ! 0 : �35�

Stable nitroxyl free radicals, for which the condition q < 1 is
typically satisfied, are often used as spin probes. Therefore,
the spin exchange between nitroxyl radicals occurs in fact
under conditions of the equivalent spin exchange, although a
frequency shift was observed in experiments [15±18].

The nonequivalent spin exchange can be realized for
triplet excitons [32] or in collisions among stable free radicals
with paramagnetic complexes having very short paramag-
netic relaxation times [33, 34].

We note that the earlier spin-exchange paradigm con-
sidered only the equivalent spin exchange. It was assumed
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that only the exchange interaction can be taken into account
at the collision moment. The modern paradigm includes both
the equivalent and nonequivalent spin exchanges.

2.3.2 Spin exchange between triplet excitons. Rather interest-
ing objects for studying spin exchange are the excited electron
states with the total electron spin S � 1, triplet excitons (see,
e.g., [35±37]). In the case of triplet excitons, a parameter D
appears that characterizes the spin±spin interaction in
isolated excitons. Due to this interaction, triplet excitons
have two EPR frequencies, their difference being 2D. The
spin exchange between triplet excitons was theoretically
analyzed in [32]. Spin-exchange characteristics were calcu-
lated from Eqns (16)±(21), as described in Section 2.2 for
exchange between free radicals. For example, in the case of
the equivalent spin exchange, when the conditions J 2 > D 2

and D 2t2c < 1 are satisfied, the spin-exchange rate constant
has the form

Kex � KD
2J 2t2c

1� 9J 2t2c
: �36�

The limit value of the equivalent spin exchange rate constant
is Kex � �2=9�KD.

In the same situation J 2 > D 2 and D 2t2c < 1, the theory
predicts the shift of EPR lines to the center of the spectrum by

Do � 2

9

Dtc
1� 1=�1� 9J 2t2c�

KDC ; �37�

where C is the exciton concentration. This line shift was
probably observed in [38] in the study of spin exchange
between triplet excitons in tetracyanoqinodimethane crys-
tals. In [38], the spin exchange rate was measured from the
broadening of spectral lines, line shifts, and the width of the
spin-exchange-narrowed spectrum. The exchange rate found
from the line shifts proved to be greater than the rate obtained
from the broadening of lines. This can be explained by the
contribution (37) to the line shift, which was neglected in [38].

2.3.3 Spin exchange between particles with the spin S � 1=2
and paramagnetic particles with an arbitrary spin. In [39], the
equivalent spin-exchange rate constants were calculated in
the approximation of sudden exchange interaction switch-
ing for solutions of paramagnetic particles of two types, the
spin of particles of the first type being S1 � 1=2 and the spin
S2 of particles of the second type being arbitrary. Examples
of such systems are solutions containing free radicals
(S1 � 1=2) and complexes of paramagnetic ions of transi-
tion metals (S2 5 1=2). It was shown that the rate constants
of the equivalent spin exchange for different particles were
different. The spin exchange efficiency pex�S1� for a radical
(S1 � 1=2) with ions S2 and the spin exchange efficiency
pex�S2� for ions with radicals are described by the expres-
sions [39]

pex�S1� � 2

3
S2�S2 � 1� J 2

0 t
2
c

1� �S1 � S2�2J 2
0 t2c

; �38�

pex�S2� � 2

3
S1�S1 � 1� J 2

0 t
2
c

1� �S1 � S2�2J 2
0 t

2
c

: �39�

For example, for solutions of radicals and bivalent manga-
nese ions (Mn(II)) with the spin S2 � 5=2, the ratio of these

efficiencies is

pex�S1�
pex�S2� �

S2�S2 � 1�
S1�S1 � 1� �

35

3
;

which is quite consistent with the results of EPR experi-
ments [39]. We note that Eqns (38) and (39) can be used only
when the spin relaxation times T1 and T2 greatly exceed the
collision time tc. This condition is satisfied, for example, for
organic radicals, complexes of bivalentmanganese, trivalent
chromium, bivalent vanadium, trivalent iron, and bivalent
copper.

Transition metal ions can also have small paramagnetic
relaxation times, shorter than the collision time tc. For
example, the times T1 and T2 forMn(III), Co(II), and Ni(II)
complexes are about a few picoseconds, whereas the
collision duration is about 0.1 ns. In this case, the influence
of the exchange interaction with a paramagnetic complex S2

on the spin state of a free radical decreases, and fast S2 spin
flips that occur during paramagnetic relaxation tend to
eliminate the action of the exchange interaction JS1S2 on
the motion of S1. The influence of fast spin±lattice
relaxation on the spin exchange efficiency for radicals in
solutions containing free radicals (S1 � 1=2) and complexes
of paramagnetic ions of transition metals in the approxima-
tion of sudden exchange interaction switching was studied
in [33, 34]. The radical spin decoherence efficiency was
found in the form

pex�S1� � 1

3
S2�S2 � 1�J 2

0 �T1 � T2�tc �40�

instead of (38). A comparison of Eqns (38) and (40) shows
that the fast paramagnetic relaxation of the complex
decreases the radical spin exchange decoherence efficiency
by tc=T1 times, where tc=T1 4 1. This conclusion is consistent
with experimental data [33, 34].

During collisions between free radicals and paramag-
netic complexes with small paramagnetic relaxation times,
the spin coherence transfer from the complex to the radical
is not expected. In this case (collisions with rapidly
relaxing paramagnetic particles), nonequivalent spin exchange
occurs.

2.3.4 Positronium quenching by paramagnetic particles. An
interesting example of spin exchange is the exchange quench-
ing of a positronium by paramagnetic additives [40]. The
quenching mechanism is the exchange interaction during the
collision of a positronium atom (Ps) with a paramagnetic
particle, which induces the transition of a long-lived ortho-
positronium (with the lifetime to � 143 ns) to the short-lived
para-state (with the lifetime tp � 125 ps). The exchange
interaction causes a mutual electron spin flip in the positro-
nium and in the paramagnetic particle (a radical or a
complex). The efficiency of this process was discussed in
Section 2.3.3. In [41], the rate constant of the exchange
quenching of a positronium by paramagnetic additives was
calculated, and the role of the paramagnetic relaxation rate of
complexes in the exchange quenching efficiency of Ps was
discussed. The obtained results coincide qualitatively with
results on the influence of the paramagnetic relaxation rate of
particles on the spin exchange efficiency.

The rate constant of positronium quenching by para-
magnetic particles with the spin S, when Ps converters have
long paramagnetic relaxation times, i.e., T1, T2, tp > tc, is
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described by the expression [41]

K � 1

6

Wtc
1�Wtc

KD : �41�

Here,

W � J 2tcS�S� 1�
1� �D� J=2�2t2c

�42�

is the rate of the `quasi-molecular' electron spin flip process in
the positronium atom caused by the exchange interaction of a
paramagnetic particle with the electron of the positronium
during a collision. The parameter D is the singlet±triplet
splitting in the positronium atom caused by contact interac-
tion of the electron with positronium. For an arbitrary
relation between the time of one collision and the lifetime of
para-positronium, the positronium quenching rate constant
is [41]

K � Wptc
1�Wptc�1� 5t=tc� KD ;

�43�
Wp � 1

6

J 2t=S�S� 1�
1� �D� J=2�2t2 ;

1

t
� 1

tc
� 1

tp
:

The results presented above can be used to analyze the Ps
quenching by paramagnetic additives such as organic free
radicals and complexes of Cu(II), Fe(III), Mn(II), and Cr(III)
ions with relatively long paramagnetic relaxation times. But
there are paramagnetic additives with short relaxation times
T1;T2 � 10ÿ11ÿ10ÿ13 s. Examples are Co(II), Fe(II), and
Ni(II) complexes. Similarly to the decrease in the spin
exchange efficiency in collisions with particles with short
paramagnetic relaxation times (see Eqns (38) and (40)), the
exchange interaction induces spin flip in the positronium less
efficiently because of the fast spin relaxation of the complex,
and therefore such complexes should quench the positronium
also less efficiently. Experiments [41] confirm a similar
behavior of the Ps conversion rate constant and the spin
exchange rate constant found from the shape of EPR spectra
of solutions containing free radicals and paramagnetic
complexes.

2.3.5 Influence of the rotational and translational diffusion of
particles on the spin exchange in the case of an anisotropic
distribution of the spin density in paramagnetic particles. It is
assumed in all calculations of the effective radius and spin
exchange rate constant that the exchange integral is indepen-
dent of the mutual orientation of colliding paramagnetic
particles. This assumption is justified if the spin density is
uniformly distributed over the `surface' of colliding para-
magnetic particles, for example, of ferricyanide ions [42].
However, the spin density in stable nitroxyl radicals, which
are often used as spin probes, is concentrated on an oxygen
atom, and the spin exchange efficiency is mainly determined
by collisions in which just the NO group of the radical
approaches the paramagnetic particles most closely. The
anisotropic distribution of the spin density on the surface of
a paramagnetic particle can be approximately described with
a parameter f, the fraction of the particle surface where the
spin density is mainly concentrated. The parameter f is called
the spin-exchange steric factor [23, 42±44].

The rotational and translational diffusion of particles
randomly changes the mutual orientation of colliding

particles, thereby changing their exchange interaction in
collisions. The influence of the rotational diffusion of
particles on the spin exchange efficiency was theoretically
studied in the model of sudden exchange interaction switch-
ing in [44]. Rotational diffusion is characterized by the
correlation time t1 for the orientation of a particle [45, p. 280],

t1 � 4pZa 3

3kBT
; �44�

where Z is the solution viscosity, a is the van der Waals radius
of the particle, and kB is the Boltzmann constant.

If rotational diffusion does not have time to change the
mutual orientation of colliding particles during the collision
time, tc < t1, the efficiency of the equivalent change between
particles with steric factors f1 and f2 should be described not
by Eqn (11) but by the relation

pex � 1

2

f1 f2 J
2t2c

1� J 2t2c
; �45�

where f1 f2 � f12 is the probability that paramagnetic parti-
cles collide with atoms on which the spin density is concen-
trated. The influence of the rotational diffusion during one
collision on the spin exchange efficiency was considered
in [44]. For example, in the limit case of a relatively rapid
rotation, t1 < tc and d�J�t1tc < 1, where d�J� is the disper-
sion of J, the spin exchange efficiency during one collision was
obtained in the form

pex � 1

2

hJi2t2c � d�J�t1tc
ÿ
1� d�J�t1tc

�ÿ
1� d�J�t1tc

�2 � hJi2t2c : �46�

In this model, the mean value of the exchange integral is
hJi � fJ, and the dispersion of the exchange integral in the
collision is d�J� � f �1ÿ f �J 2. In the limit of a strong
exchange interaction, when f 2J 2t2c 4 1, we have pex ! 1=2,
and hence pex coincides with the spin exchange efficiency for
particles with an isotropic distribution of the spin density.

The role that the repeated contacts and translational
diffusion in intervals between repeated collisions play in the
spin exchange efficiency was discussed in [42, 43]. It was
shown that the average effect that the spin density distribu-
tion anisotropy has on the spin exchange due to translational
diffusion of particles can be estimated from formulas
obtained for the isotropic distribution of the spin density by
properly defining the effective collision time tc. For the
isotropic spin density distribution, the total residence time in
the exchange interaction region for two particles during one
encounter is tc � ba=DAB, Eqn (14). In the case of an
anisotropic spin density distribution, averaging the anisotro-
pic exchange interaction by the translational diffusion of
molecules in intervals between repeated collisions at the
collision radius b is described by the expression

tc � f
1=2
12 ba

DAB
�47�

instead of (14). For identical particles with the anisotropic
spin density distribution with a steric factor f, we have
f12 � f 2 (see (45)), and therefore (47) takes the form
tc � f ba=DAB.

The manifestation of the steric factor in the spin exchange
between stable radicals attached to rather largemolecules was
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experimentally studied in [23] and confirmed by a comparison
of the spin exchange rates for a nitroxyl radical and its adduct.

2.4 Kinetic equations
for the bimolecular spin exchange taking
the extended nature of exchange interaction into account
Kinetic equations for the one-particle spin density matrix
taking bimolecular collisions and the extended nature of
exchange interaction into account were first formulated in
[31] and further developed in [21, 25, 46±50].

We consider a diluted solution of paramagnetic particles
(spin probes) of two types, A and B. The spin Hamiltonian of
such a system can be written in the form

H � HA �HB �
X

V
ÿjrAk ÿ rBnj

�
� HA �HB �

X
VAB

ÿ
rkn�t�

�
: �48�

In the simplest case, HA and HB are related to the Zeeman
interaction energy of the spin moment of paramagnetic
particles with a constant external magnetic field,

HA � �ho0ASAz ; HB � �ho0BSBz ; �49�
whereo0A;B are the Larmor frequencies of spins A and B.We
note that in (49), the exchange interaction AÿA, BÿB does
not change the state of the spin ensemble, and therefore we
can ignore the bimolecular collisions of identical particles,
A�A, B� B.

We assume that the exchange interaction between two
spin probes Ak and Bn depends only on the distance rkn
between them and has the form

VAB

ÿ
rkn�t�

� � �hJ0 exp
�ÿkÿrkn�t� ÿ b

��
SASB : �50�

In the spin-exchange theory for solutions, rkn are treated as
external parameters changing randomly in time due to the
diffusion of molecules.

The complete description of the spin system of N
paramagnetic particles is given by the multiparticle spin
density matrix rN�t�. Experiments can usually be described
with the help of only one-particle or two-particle density
matrices, which can be obtained as contractions of rN�t� over
the spin states ofNÿ 1 orNÿ 2 particles [51]. It is well known
from statistical mechanics that partial density matrices for a
multiparticle system satisfy a chain of coupled Bogoliubov±
Born±Green±Kirkwood±Yvon equations. For a system with
spin Hamiltonian (49), the one-particle spin density matrix,
for example, rA for a particle A, satisfies the equation of
motion

qrA�t�
qt

� ÿ i

�h

�
HA; rA�t�

�
ÿ 1

V
TrB

X�
i

�h

�
VAB

ÿ
rn�t�

�
; r2�n; t�

�
d3rn : �51�

Here, r2�n; t� is the two-particle density matrix of a pair
consisting of an arbitrarily chosen molecule A and amolecule
B with the nth number (n � 1; 2; . . . ;NB, NB being the total
number of molecules B). Therefore, the distance rn between
spins depends only on the number of a B spin. Summation
in (51) is performed over all molecules B, integration is
performed over the entire volume V, and TrB denotes the
contraction over the spin variables of particles B. In the
thermodynamic limit as V;NB !1 under the condition
NB=V! CB, each molecule B makes on average the same

contribution to the change in the state of the chosen molecule
A, and therefore Eqn (51) takes the form

qsA�t�
qt

� ÿ i

�h

�
HA; sA�t�

�
ÿ CB TrB

�
i

�h

�
VAB

ÿ
r�t��; r2�t�� d3r : �52�

For spins B, the equation for the one-particle spinmatrix sB is
obtained from Eqn (52) by the replacement A! B and vice
versa. As noted in Section 2.2 in connection with the model of
sudden collisions (see Eqn (16)), the one-particle density
matrix changes on the time scale of the diffusion of particles
between collisions with different molecules, whereas the last
term in (52) changes on a considerably smaller collision time
scale.

We introduce one-particle density matrices sA and sB
averaged over the collision time interval. By averaging (52) on
the collision time scale, we obtain

qsA�t�
qt

� ÿ i

�h

�
HA; sA�t�

�
ÿ CB TrB

��
i

�h

�
VAB

ÿ
r�t��; s2�t�� d3r� ; �52a�

where the angular brackets denote averaging over all possible
realizations of the random process r�t�.

The equation for the pair density matrix r2�n; t� can be
obtained similarly; it contains the three-particle density
matrix [51]:

qr2�1; t�
qt

� ÿ i

�h

�
HA �HB � VAB

ÿ
r1�t�

�
; r2�1; t�

�
� F

ÿ
r3�1; 2; t�

�
: �53�

The last term in the right-hand side of (53) contains the three-
particle density matrix r3�1; 2; t� of three particles, A, B1, and
B2, and r1 and r2 are the respective distances between particles
in pairs AÿB1 and AÿB2. We assume that the spin
concentration is sufficiently low, �4=3�pr 3exCB 5 1, and triple
spin collisions can be ignored. Therefore, we truncate the
chain of equations and use the equation

qr2�t�
qt
� ÿ i

�h

�
HA �HB � VAB

ÿ
r�t��; r2�t�� �54�

for the pair density matrix. Equation (54) depends on the
random process r�t�. This stochastic equation should be
solved for each possible realization of the random process
r�t�, and then the results should be averaged. However,
because we assume that r�t� is an external parameter
independent of the spin state, the problem can be reformu-
lated such that instead of stochastic equation (54), equations
with time-independent coefficients must be solved [31, 47, 52].
This reformulation of the problem is in fact based on the
ergodic hypothesis about the equivalence of averaging over a
long time interval and over an ensemble. Therefore, we divide
the ensemble of pairs of particles A and B into subensembles
of pairs with a specified distance r between partners A and B
in a pair. We introduce the partial two-particle spin density
matrix s2�tjr� for each subensemble of pairs. This pair spin
density matrix changes for two reasons. On the one hand, the
state of a pair of spins changes due to the spin dynamics under
the action of the spin Hamiltonian HAB�r� � HA �HB�
VAB�r� of the given pair subensemble with the specified
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distance r between partners in the pair AÿB. The change in
the pair spin density matrix caused by the spin dynamics is
described by the expression�
qs2�tjr�

qt

�
spin dynamics

� ÿ i

�h

�
HA �HB � VAB�r�; s2�tjr�

�
:

�55�

Here, the distance r between particles in a pair is no longer a
stochastic process but an external parameter.

On the other hand, due to the diffusion of molecules, each
pair can transfer from one subensemble of pairs to another.
Changes in s2�tjr� caused bymolecular diffusion can be found
from the continuity equation�

qs2�tjr�
qt

�
diffusion

� divr
ÿ
j�s2�tjr��

� � 0 : �56�

Here, j�s2�tjr�� is the flux of pairs in the configuration space.
For the continuous diffusion model for neutral molecules,

j
ÿ
s2�tjr�

� � ÿDABHHrs2�tjr� : �57�
In solutions of charged particles A and B in electrolytes, the
flow is induced not only by the diffusion of particles but also
by their drift caused by electrostatic interaction [7, 19].

The total change in the pair partial spin density matrix is
described by the sum of these two contributions:

qs2�tjr�
qt

� ÿ i

�h

�
HAB�r�; s2�tjr�

�ÿ divr
ÿ
j�s2�tjr��

�
: �58�

In themodel of continuous diffusion ofmolecules, this kinetic
equation takes the form

qs2�tjr�
qt

� ÿ i

�h

�
HA�HB� VAB�r�; s2�tjr�

��DABD
ÿ
s2�tjr�

�
:

�59�

We note that for a Markov random process, Eqns (58) and
(59) can be obtained by the direct summation of solutions of
stochastic equation (54) for all possible realizations of the
random process (see, e.g., [31, 47, 52]).

To obtain the kinetic equation for a one-particle spin
density matrix, the pair density matrix in Eqn (54) should be
expressed in terms of one-particle density matrices. Kinetic
equations describe the behavior of the system at times
exceeding the collision time of particles, t > tc. For these
times, we seek the solution of Eqn (59) for s2�tjr� in the
form [51]

s2�tjr� � G�r�sA�t�sB�t� : �60�
After substituting (60) in Eqn (59), the left-hand side of (59)
takes the form

Y � G�r� qsA�t�
qt

sB�t� � G�r�sA�t� qsB�t�qt
: �61�

If we now substitute expressions for qsA;B=qt here (see (52a)),
quadratic terms containing sA�t�sB�t� and cubic terms
containing sA�t�sB�t�sB�t� and sA�t�sA�t�sB�t� appear.
Cubic terms correspond to trimolecular collisions, which we
disregard. Therefore, in (58) we set

qsA�t�
qt

� ÿ i

�h

�
HA; sA�t�

� � ÿiQ0AsA�t� ;

qsB�t�
qt

� ÿ i

�h

�
HB; sB�t�

� � ÿiQ0BsB�t� :
�62�

As a result, we obtain the equations for the operator G�r� [31]
W�r�G�r� � �Q0;G�r�

��DABDG�r� � 0 ; �63�
W�r�ik; lm � ÿiJ�r�

��SASB�mkdli ÿ �SASB�ildkm
�
;

Q0 � Q0A �Q0B ; �64�
Q0ik; lm � ÿi

��HA �HB�mkdli ÿ �HA �HB�ildkm
�
:

Wenote that Eqn (63) is obtained for themodel of continuous
diffusion of particles. For the sudden exchange interaction
model, Eqn (63) reduces to (20).

We formulate boundary conditions for G�r�. When the
partners in a pair are separated, the correlation between their
states must weaken [51]. Therefore, we impose the condition

G�r� ! E as r!1 : �65�

At the closest approach radius, particles are completely
reflected. This gives the second boundary condition: the
flow s2�tjr� through a sphere with the radius r � b must be
zero. For neutral particles, we have

HHrG�r � r0� � 0 : �66�
We introduce the collision superoperator

P �
�
W�r�G�r� d3r : �67�

We note that in some particular cases, when the term
ÿi�Q0;G�r�

�
can be ignored or is zero, collision super-

operator (67) can be written in a different form [31, 46]:

P � ÿDAB

�
DG�r� d3r : �68�

Thus, we obtain kinetic equations

qsA�t�
qt

� ÿ i

�h

�
H0A; sA�t�

�� CBTrB
ÿ
PsA�t�sB�t�

�
; �69�

qsB�t�
qt

� ÿ i

�h

�
H0B; sB�t�

�� CATrA
ÿ
PsA�t�sB�t�

� �70�

for one-particle density matrices.
We note that in the model discussed in Section 2.2, when a

pair of particles enters some `cell' at the collision distance r0
where a constant exchange interaction switches on abruptly
or when the pair leaves the `cell' and the interaction switches
off, a jump-like passage through the interaction region is
assumed. In this case, spin pairs can be divided into two
subensembles. In the first one, spins are located in the `cell' at
the collision distance, and in the second, the distance between
spins exceeds the collision distance, and hence the pair is
located outside the `cell'. In this model, the kinematic flux of
the pair density matrix is not specified by an equation like
(57), and for the density matrix of pairs in the `cell', instead of
(59) and (63), we have the equation [31]

qs2�tjr0�
qt

� ÿ i

�h

�
HA �HB � VAB�r0�; s2�tjr0�

�
ÿ 1

tc

ÿ
s2�tjr0� ÿ sA�t�sB�t�

�
;

W�r0�G�r0� �
�
Q0;G�r0�

�ÿ 1

tc

ÿ
G�r0� ÿ E

� � 0 ;

where E is the unit operator. This equation coincides with (20).
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Equations (69) and (70) are kinetic equations for the spin
density matrix of paramagnetic particles in diluted solutions,
taking the bimolecular spin exchange into account. Equa-
tions (63) and (68) are used to calculate effective spin
exchange radii taking the extended nature of the exchange
interaction into account. The kinetic equations obtained are
fundamentally simplified if systems are considered in a state
close to equilibrium (see (21)). Substituting (21) in (69), (70)
and keeping only the density matrix terms linear in small
deviations, we obtain

qDsA�t�
qt

� ÿ i

�h

�
H0A;DsA�t�

�
� CBTrB

ÿ
PDsA�t�sBeq � PsAeqDsB�t�

�
;

qDsB�t�
qt

� ÿ i

�h

�
H0B;DsB�t�

� �71�

� CATrA
ÿ
PDsA�t�sBeq � PsAeqDsB�t�

�
:

In EPR experiments, the averaged characteristics of the
total molecular ensemble are measured. A constant external
magnetic field B0 is usually assumed to be directed along the
z axis of the coordinate system. Inmost EPR experiments, the
observed magnetization component of the system is perpen-
dicular to the constant magnetic field direction, i.e., the Mx

andMy magnetization components.
The derivation of equations for the magnetization of the

system is illustrated below for a solution of paramagnetic
particles A and B with one unpaired electron. We consider a
model situation where the spin Hamiltonians of particles A
and B are specified by Eqns (22). Then the eigenfunctions of
operators HA and HB are SAz and SBz. The spin density
matrix in the basis of eigenfunctions of the spin operator Sz

has the form

r � ��r1=2; 1=2; r1=2;ÿ1=2�; �rÿ1=2; 1=2; rÿ1=2;ÿ1=2�	 :
The diagonal elements of the density matrix characterize the
populations of spin states, and the nondiagonal elements
describe the quantum spin coherence. For particles with the
spin S � 1=2 considered here, we have

hSx ÿ iSyi � Tr
ÿ�Sx ÿ iSy�r

� � r1=2;ÿ1=2 ; �72�
hSzi � Tr �Szr� � 1

2
�r1=2; 1=2 ÿ rÿ1=2;ÿ1=2� :

The macroscopic magnetization of particles A and B is
expressed in terms of one-particle spinmatrices. For example,

MAÿ � CATrA
��SAx ÿ iSAy�rA�t�

�
;

�73�
MBÿ � CBTrB

��SBx ÿ iSBy�rB�t�
�
:

Multiplying the first of Eqns (71) byCA and the second byCB,
we obtain kinetic equations for spin magnetization, which
take the simplest form when jo0Aÿ o0Bjtc<1 and the
equivalent spin exchange occurs during the bimolecular
encounter of particles A and B. In this case, we obtain the
equations (cf. (9))

qMAÿ
qt

� ÿio0AMAÿ ÿ KexCBMAÿ � KexCAMBÿ ;

qMBÿ
qt
� ÿio0BMBÿ � KexCBMAÿ ÿ KexCAMBÿ ;

qMAz

qt
� ÿKexCBMAz � KexCAMBz ;

qMBz

qt
� KexCBMAz ÿ KexCAMBz : �74�

2.5 Calculations of the effective spin exchange radius
for arbitrary-spin particles with the extended nature
of the exchange interaction and the diffusive propagation
of particles through the interaction region
taken into account
The effective radii of the bimolecular equivalent spin
exchange for particles with arbitrary spins were calculated
in [25] with the help of kinetic equations presented in Sec-
tion 2.4. The spin Hamiltonian of the exchange interaction is
described by Eqns (1) and (15). It is assumed in [25] that in
nonviscous liquids and in the case of fast rotational diffusion,
the so-called zero field splitting of energy levels of para-
magnetic particles averages to zero. Therefore, it is assumed
that the exchange interaction in the region of collisions of
particles is strong enough to allow all the other spin
interactions to be disregarded. Based on these assumptions,
analytic expressions have been obtained for the effective radii
of the equivalent spin exchange between particles with
arbitrary spins [25]. For example, the transverse components
of the magnetization of the subensembles of spins A and B are
described by the kinetic equations

qMAÿ
qt

� ÿio0AMAÿ ÿ KACBMAÿ � KBCAMBÿ ;
�75�

qMBÿ
qt
� ÿio0BMBÿ � KACBMAÿ ÿ KBCAMBÿ :

These equations look similar to Eqns (74). But unlike the spin
exchange between free radicals with the spin S � 1=2 (74), in
the case of arbitrary spins of colliding particles, the equivalent
spin exchange is specified in (75) not by a single constant Kex,
as in (74), but by two spin exchange rate constantsKA andKB:

KA � 4pDAB

XSA�SB

S�mod �SAÿSB��1

N�S�
SA�SA � 1� rex�S� � 4pRexADAB;

KB � 4pDAB

XSA�SB

S�mod �SAÿSB��1

N�S�
SB�SB � 1� rex�S� � 4pRexBDAB ;

�76�
where

rex�S� � 1

2

�
b� 1

k

�
ln

� jJ0jS
DABk 2

�
� 2Cÿ C 01

��
;

C 01 �
pRe

�
N1�2x0�x0kbÿ 2N0�2x0�

�
I1�2x0�x0kbÿ 2I0�2x0� ;

x0 �
� jJ0jS
DABk 2

�1=2

exp
ip
4
;

andC � 0:57721566 is the Euler constant. Summation over S
in these equations is performed with the increment 1. We can
see from Eqns (76) that the ratio of spin exchange kinetic
constantsKA andKB is determined by the ratio of the squares
of spins of the partners,

KA

KB
� SB�SB � 1�

SA�SA � 1� : �77�
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This coincides with the result obtained for the model of
sudden exchange interaction switching for collisions of
paramagnetic particles with the spin S � 1=2 and particles
with arbitrary spins, Eqns (38) and (39).

For �jJ0jS=�DABk 2��1=2 4 1, C 01 ! 0 in (76), and the
effective radius depends on the exchange integral logarith-
mically:

rex�S� � 1

2

�
b� 1

k

�
ln

� jJ0jS
DABk 2

�
� 2C

��
: �78�

In this case, the characteristic collision time of particles is
determined by the time of diffusive propagation through a
regionwith the radius� 1=k. Because the exchange integral in
the model under study decreases exponentially, for large
values of J0 and a quite small steepness of its decrease with
increasing distance, a logarithmic dependence of the effective
spin exchange radius on the interaction strength and the
diffusion coefficient should be expected. These expectations
are indeed justified (see (78)). If the exchange integral
decreases rapidly, i.e., b > 1=k, the spin exchange occurs in a
thin layer � 1=k in thickness, and the characteristic collision
time is tc � b=�DABk� (see (76)). These theoretical results are
illustrated in Fig. 1 by the dependences of the effective spin
exchange radius on the parameters of the exchange integral
and the mutual diffusion coefficient of molecules.

As the mutual diffusion coefficient of paramagnetic
particles increases, the effective spin exchange radius always
decreases, as expected. Indeed, the greater the mobility of
molecules in solutions, the shorter is the residence time of a
pair of colliding particles in the exchange interaction region.
As a result, the effect of exchange interaction decreases. The
effective spin exchange radius always increases with increas-
ing the exchange integral J0 at the collision radius and with
decreasing the steepness of the exchange integral decay with
the distance between colliding particles. These results are
expected qualitatively and are quantitatively predicted theore-
tically.

Spin probes commonly used in experiments are free
nitroxyl radicals. Therefore, we here present explicit expres-
sions for the effective spin exchange radius for this case [25,
46]. We have

rex � b

2
�Re

�
C� ln �x0=2�

k
ÿ c

2

�
; �79�

where

x0 � 2

�
ÿ iJ0
Dk 2

�1=2

; c � p
k
N1�x0�x0kbÿ 2N0�x0�
I1�x0�x0kbÿ 2I0�x0� ;

C is the Euler constant, D is the mutual diffusion coefficient
for two colliding particles, J0 is the exchange integral at the
collision radius, and Ik andNk are Bessel functions of the first
and second kinds.

As could be expected, in the limit of relatively small values
of the exchange integral J0 and a very abrupt decrease in the
exchange integral with increasing the distance between
particles, when the condition jx0j2 � 4J0=�Dk 2�5 1 is
satisfied, the effective spin exchange radius can be written in
the same form as in the approximation of sudden exchange
interaction switching (see (11), (27)):

rex � b

2

J 2
0 t

2

1� J 2
0 t

2
; t � b

Dk
: �80�

Equation (80) coincides in its form with Eqn (11) in the
approximation of sudden exchange interaction switching. But
the total time t in (80) includes the first and all the repeated
collisions of a pair of particles in the region between two
spheres with the radii b and b� 1=k.

In the limit of a strong exchange interaction, when
4J0=�Dk 2� > 1, the spin exchange is efficient not only when
particles come closest together, but also at distances r > b.
Because of the extended nature of the exchange integral, the
effective radius of the equivalent spin exchange can exceed the
maximum possible value b=2 predicted for these systems by
the theory based on themodel of sudden exchange interaction
switching, Eqns (11) and (27). We also note that the spin
exchange rate constant is not a linear function of the mutual
diffusion coefficient of paramagnetic particles, unlike the rate
constant of bimolecular collisions found by Smoluchowski,
Eqn (6).

2.6 Spin exchange between charged particles
with the spin S � 1=2 in electrolytes
A consistent theory of spin exchange between charged
paramagnetic particles in electrolytes was developed in [19].
The Coulomb interaction was considered taking the Debye
screening of charges in electrolytes into account:

U�r� � qAqB
er

exp

�
ÿ r

rD

�
: �81�

Here, qA and qB are the charges of particles, e is the medium
permittivity, and rD is the Debye screening radius. The flux of
pairs in the r space (see (56) and (57)) is then described by the
expression

j�r� � ÿDAB gradr
ÿ
r�tjr��� r�tjr�v�r� ; �82�

where v�r� � mF�r� � ÿ�DAB=�kBT �
�
gradU�r�. Kinetic

equations for spin density matrices were formulated for this
situation based on considerations presented in Section 2.4.
Because of the change in the flux of pairs in passing from
neutral molecules to charged particles, Eqn (63) for the
superoperator G�r� changes. Instead of (63), we obtain the
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Figure 1. Dependences of rAex=b (see Eqns (76)) on the mutual diffusion

coefficient DAB for different values of the exchange integral: J0 � 1010

(dashed curve), J0 � 1011 (thin solid curve), J0 � 1012 (dotted curve), and

J0 � 1013 [rad sÿ1� (thick solid curve). Calculations are performed for

SA � 1=2,SB � 1, b � 0:5 nm,DAB ranges within 10
ÿ7ÿ10ÿ5 cm2 sÿ1, and

k � 108 cmÿ1.
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equation

W�r�G�r� � �Q0;G�r�
�� L�r�G�r� � 0 ; �83�

where

L�r� � DAB

�
q2

qr 2
� 2

r

q
qr

�
ÿDAB

qAqB
ekBTr 2

��
1� r

rD

�
q
qr
ÿ r

r 2D

�
exp

�
ÿ r

rD

�
:

Accordingly, for charged particles, the boundary condition of
the zero flux of pairs at the collision radius

qG�b�
qr
ÿ qAqB
ekBTb 2

�
1� b

rD

�
exp

�
ÿ b

rD

�
� 0 �84�

is to be used for the operator G�r�. The obtained kinetic
equations were solved numerically and the effective radii of
spin exchange between charged particles of the same sign and
with opposite signs were calculated. As expected, the effective
spin exchange radius for oppositely charged particles is
greater than for neutral particles, while the effective spin
exchange radius for particles of the same sign is smaller than
for neutral particles.

The effective spin exchange radii for oppositely charged
particles, neutral particles, and particles with the same charge
are compared in Fig. 2. The thick curves in Fig. 2 correspond
to oppositely charged particles, thin curves to particles of the
same charge, and dotted curves to neutral particles. We can
see from Fig. 2 that the influence of the charge of particles on
spin exchange is especially strong in the region of weak
exchange interaction J0 < 1011 rad sÿ1. We note that for a
large slope of the exchange integral decay (Fig. 2b), the
effective spin decay radius flattens out upon increasing the
exchange integral J0 at the collision radius (in the chosen

interval of exchange integral values). For more gentle slopes
of the exchange integral decay (Fig. 2a), the effective spin
exchange radius does not flatten out when increasing the
exchange integral J0 but increases logarithmically. The results
of numerical calculations are consistent with experimental
data [21, 22].

3. Paramagnetic relaxation caused
by the spin±spin dipole±dipole interaction
of paramagnetic particles in liquids

The shape of EPR spectra changes with changing the spin
concentration not only due to the exchange interaction. The
dipole±dipole interaction must also be taken into account.
Unlike the exchange interaction, the dipole±dipole interac-
tion has a long-range nature.

As a rule, the exact values of the exchange integral for
colliding particles in solutions and its dependence on the
distance and mutual orientation of particles are unknown,
and they should be calculated or estimated, for example, from
EPR spectra [12, 13]. For the dipole±dipole interaction, the
situation is much better, because the spin Hamiltonian is
known. At distances exceeding van der Waals radii, calcula-
tions can be performed in the point dipole approximation.
The common feature of these interactions is the dependence
of their contribution to the motion of spins on the concentra-
tion of paramagnetic particles. In experiments, the problem
appears of separating the contribution of bimolecular
collisions during which the spin exchange occurs. We note
that along with inducing the mutual spin flip in two colliding
particles, the dipole±dipole interaction can also cause a spin
flip only in one of the colliding particles or the simultaneous
spin flip of two identical polarized spins.

The theory of paramagnetic relaxation caused by the
dipole±dipole interaction of spins in diluted solutions was
considered many times in the literature. It would seem that
there is no need to reproduce it here. However, the derivation
of kinetic equations for the spin density matrix in the first
papers in this field was based on an unjustified approximation
(see, e.g., Eqns (VIII.35) and (VIII.36) in [45]). As a result, no
terms describing the spin coherence transfer between spins
with different resonance frequencies have remained in the
kinetic equation. Correct equations obtained in [53] remained
unnoticed for a long time, but then were confirmed in
experiments [18] and were recently further developed [11, 24,
50, 51]. The state-of-the-art theory is briefly presented in
Section 3.2.

3.1 Spin Hamiltonian of the dipole±dipole interaction
of paramagnetic particles
We consider a system with the spin Hamiltonian

H � �h
X

okSkz � �h
X

Hdÿd�k; n� ; �85�
where ok are the Zeeman frequencies of paramagnetic
particles. We note that the difference between frequencies
can be related not only to the different g-factors of para-
magnetic particles but also to the difference between local
magnetic fields caused by the hyperfine interaction with
magnetic nuclei or between other spin-dependent interac-
tions of individual particles. The second term in the right-
hand side of (85) describes the dipole±dipole spin±spin
interaction between all possible pairs of particles. In the
problem of paramagnetic relaxation in liquids considered
here, the contributions from interactions of all pairs to
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Figure 2. Influence of charges on the effective spin exchange radius.

Calculations are performed for rD � 1 nm, b � 0:6 nm, e � 20, DAB �
10ÿ5 cm2 sÿ1. The exchange integral decay slope is (a) k � 108 cmÿ1 and
(b) k � 3� 108 cmÿ1. The abscissa scale is logarithmic, the exchange

integral value J0 is chosen in the interval from 109 to 1013 rad sÿ1.
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relaxation are additive. Therefore, we can consider the
relaxation for one pair of spins and then sum the contribu-
tions from all pairs.

We consider the spin Hamiltonian for two arbitrarily
chosen spins in the form (see [45])

H � �h�H0 �Hdÿd�; H0 � o1S1z � o2S2z ; �86�
Hdÿd �

X
F q�t�A q ;

where

A 0 � a
�
ÿ 2

3
S1zS2z � 1

6
�S1�S2ÿ � S1ÿS2��

�
;

A 1 � a�S1zS2� � S1�S2z� ; Aÿ1 � a�S1zS2ÿ � S1ÿS2z� ;

A 2 � a�S1�S2��
2

; Aÿ2 � a�S1ÿS2ÿ�
2

; a � ÿ 3

2
g1g2�h ;

�87�
F �0��t� � 1ÿ 3 cos2 y

r 3
; F ��1��t� � sin y cos y

exp �ÿij�
r 3

;

F �ÿ1��t� � sin y cos y
exp �ij�

r 3
;

F �2��t� � sin2 y
exp �ÿi2j�

r 3
; F �ÿ2��t� � sin2 y

exp �i2j�
r 3

:

Here, r is the distance between spins in a pair and y is the angle
between the radius vector r connecting spins in the pair and
the external magnetic field direction (the z axis). Due to
translational diffusion, the relative spatial position of spins
changes. As a result, F q�t� randomly changes with time.

3.2 Kinetic equations describing
the electron paramagnetic relaxation in liquids
caused by the dipole±dipole interaction
The equation of motion for the density matrix of a separated
spin pair is a differential equation with coefficients that are
random processes:

qr
qt
� ÿ i

�h

�
H�t�; r� : �88�

Solving Eqn (88) up to quadratic terms in the dipole±dipole
interaction Hdÿd and averaging over all possible trajectories
of the relative motion of two spins, we obtain the equation for
the elements of the two-spin density matrix [45, 53]:

qraa 0
qt
� ÿ i

�h

�
H0; r

�
aa 0 �

X
Raa 0; bb 0rbb 0 : �89�

An unjustified approximation that is widely used restricts
summation over bb 0 in the right-hand side of (89) by states
with energies �hb and �hb 0 satisfying the condition
bÿ b 0 � aÿ a 0.

In Eqn (89), a and b are eigenstates of the spin
Hamiltonian H0 of a spin pair, and kinetic coefficients
Raa 0; bb 0 are expressed in terms of Hdÿd�t� as

Raa 0; bb 0 � 1

2

�
Jab; a 0b 0 �a 0 ÿ b 0� � Jab; a 0b 0 �aÿ b�

ÿ da 0b 0
X

Jgbga�gÿ b� ÿ dab
X

Jga 0gb 0 �gÿ b 0�� ;
Jaa 0; bb 0 �o� �

�1
ÿ1

Gaa 0; bb 0 �t� exp �ÿiot� dt ;
�90�

Gaa 0; bb 0 �t� �
D


ajHdÿd�t�ja 0
� 


b 0jHdÿd�t� t�jb�E
t
:

The angular brackets in the right-hand side of the last
equation denote averaging over all the possible trajectories
of the random walk of a pair of particles. Thus, kinetic
parameters Raa 0 ;bb 0 in (90) are expressed in terms of the
spectral densities Jaa 0;bb 0 �o� of correlation functions of the
randomly changing dipole±dipole interaction Hamilto-
nian.

The density matrix of a spin pair in relaxation kinetic
equation (89) can be approximated by the direct product of
one-spin density matrices: r�1; 2� � r�1�r�2�. Relaxation
under conditions close to equilibrium can be considered by
representing one-spin density matrices in the form of the
equilibrium density matrix r0 and an addition s describing
small deviations of the spin ensemble state from equilibrium
(see (21)). Using Eqns (89) and (90) and linearizing the
obtained equation with respect to s, we arrive at linear
kinetic equations for one-spin density matrices, which yield
kinetic equations for the partial magnetizations of sub-
ensembles of isochromatic spins. For example, for solu-
tions of free radicals with EPR spectra consisting of a
number of hyperfine components, we obtain the system of
kinetic equations presented below [11, 21, 22, 24]. We note
that in Eqn (21) in [24], the contribution from the dipole±
dipole interaction between spins with the same frequency is
erroneously absent. The correct equations are presented
in [11, 21, 22]:

qMkÿ
qt
� ÿiokMkÿ ÿMkÿ

T2

ÿMkÿ
X jn

T2�k; n� ÿ jk

X Mnÿ
T 02�k; n�

;

qMkz

qt
� ÿMkz ÿMk0

T1

�91�

ÿMkz

X jn

T1�k; n� ÿ jk

X Mnz

T 01 �k; n�
:

Here, Mkÿ �Mkx ÿ iMky, Mkz are the transverse and long-
itudinal components of the magnetization vector of isochro-
matic spins with the frequency ok, T2 and T1 are the
respective spin decoherence and spin±lattice relaxation
times, jk is the statistical weight of isochromatic spins, and
Mk0 is the equilibrium magnetization of spins with the
frequency ok. Parameters characterizing the contribution of
the dipole±dipole interaction to the paramagnetic relaxation
are described by the expressions

1

T2�k; n� �
1

8
g4�h 2C

�
J �0��0� � 1

4
J �0��ok ÿ on�

� 9

2
J �1��on� � 9J �1��ok� � 9

4
J �2��ok � on�

�
;

1

T 02 �k; n�
� 1

16
g4�h 2C

�
J �0��0� � J �0��ok ÿ on�

� 9J �1��ok� � 9J �1��on�
�
;

�92�
1

T1�k; n� �
1

16
g4�h 2C

�
J �0��ok ÿ on� � 18J �1��ok�

� 9J �2��ok � on�
�
;

1

T 01 �k; n�
� 1

16
g4�h 2C

�ÿJ �0��ok ÿ on� � 9J �2��ok � on�
�
:
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If diffusion is described by the continuous diffusion model,
we obtain (see Eqns (VIII.109)±(VIII.114) in [45])

J�q� � a �q�
1

bD
Re

�
du

ÿ
J3=2�u�

�2
u�u 2 ÿ iotD� ; �93�

where D is the diffusion coefficient of a radical, a�0� �
�48=15�p, a �1� ��8=15�p, a �2� ��32=15�p, tD�b 2=�2D�, and
J3=2 is the Bessel function. The integral in (93) has the
form [54]�

du

ÿ
J3=2�u�

�2
u�u 2 ÿ iotD� �

i

3otD

� p
2otD

J3=2
ÿ�iotD�1=2�H �1�3=2

ÿ�iotD�1=2� ; �94�

where H
�1�
3=2 is the Hankel function of the first kind.

For the closest approach of particles, the distance b
between spins is of the order of a few angstroms. In liquids
with the diffusion coefficient D � 10ÿ5 cm2 sÿ1, the time is
tD � 10ÿ10 s. The splitting ok ÿ on of the components of an
EPR spectrum caused, for example, by the hyperfine
interaction with magnetic nuclei usually does not exceed
109 rad sÿ1. Therefore, spectral densities can be calculated
assuming that ok � on � o because jok ÿ onjtD 5 1 (where
o is themean frequency). This allows significantly simplifying
kinetic equation (91), because kinetic equations can be
assumed independent of subscripts k and n:

qMkÿ
qt
� ÿiokMkÿ ÿMkÿ

T2
ÿ Mkÿ
T2dÿd

ÿ jk

X Mnÿ
T 02dÿd

;

qMkz

qt
� ÿMkz ÿMk0

T1
ÿ Mkz

T1dÿd
ÿ jk

X Mnz

T 01dÿd
;

1

T2dÿd
� 1

8
g4�h 2C

�
5

4
J �0��0� � 27

2
J �1��o� � 9

4
J �2��2o�

�
;

1

T 02dÿd
� 1

8
g4�h 2C

�
J �0��0� � 9J �1��o�� ; �95�

1

T1dÿd
� 1

16
g4�h 2C

�
J �0��0� � 18J �1��o� � 9J �2��2o�� ;

1

T 01dÿd
� 1

16
g4�h 2C

�ÿJ �0��0� � 9J �2��2o�� :
3.3 Kinetic equations for typical EPR experiments
For further applications, we write kinetic equations (95) for
typical frequencies of EPR experiments. From Eqn (94), we
obtain

J �q��o� � a �q�
2tD
b 3

�
2

15
ÿ 1

9
���
2
p �otD�1=2

�
; otD< 1;

J �q��o� � a �q�
1��������
2b 3
p 1

o�otD�1=2
�
1ÿ 1

otD

�
; otD> 1;

�96�
whereo is the mean spin frequency. Resonance frequencies in
EPR experiments are usually o0 1011 rad sÿ1, and therefore
the condition otD > 1 is satisfied.

Substituting (96) in (95), we can express kinetic equa-
tions (95) in terms of a single independent parameter:

Tdÿd �
�
2p
75

g4�h 2C
tD
b 3

�ÿ1
;

�97�
1

T2dÿd
� 1

Tdÿd sd
� 9

Tdÿd
;

1

T 02dÿd
� 1

Tdÿd sct
� 4

Tdÿd
;

1

T1dÿd
� 1

Tdÿd rp
� 2

Tdÿd
; ÿ 1

T 01dÿd
� 1

Tdÿd pt
� 2

Tdÿd
;

Subscripts indicate processes characterizing the correspond-
ing time. Tdÿd rp characterizes the decrease in the longitudinal
magnetization (the population difference of spin levels) of a
selected particle caused by the dipole±dipole interaction with
all spins in the system. We can say that Tdÿd rp characterizes
the relaxation of the longitudinal spin polarization,Tdÿdpt
characterizes the longitudinal polarization transfer from all
spins of the system to the selected spin,Tdÿd sct corresponds to
the spin coherence transfer from all spins to the selected spin,
and Tdÿd sd is the characteristic decoherence time of the
selected spin induced by the dipole±dipole interaction with
all spins in the system. Kinetic parameters (95) and (97) are
inversely proportional to the diffusion coefficient of spin
probes.

Thus, in the limit case otD 4 1 typical for EPR experi-
ments, kinetic equations (91) reduce to the simpler equations

qMkÿ
qt
� ÿiokMkÿ ÿMkÿ

T2
ÿ 5

Tdÿd
Mkÿ ÿ jk

4

Tdÿd
Mÿ ;

qMkz

qt
� ÿMkz ÿMk0

T1
ÿ 2

Tdÿd
Mkz � jk

2

Tdÿd
Mz ; �98�

Mÿ �
X

Mnÿ ; Mz �
X

Mnz :

The two underlined terms in these equations deserve atten-
tion. First, the underlined term in the equation for the
z component of the magnetization has the same sign as the
corresponding term in the case of spin exchange (see,
e.g., (74)). It is known that the longitudinal polarization
transfer for nuclear spins due to dipole±dipole and scalar
interaction occurs with the opposite sign (see Eqns (VIII.88a),
(VIII.128) in [45]). This is explained by the fact that in the case
of electron spins, the longitudinal polarization transfer is
mainly determined by the contribution from flip-flop transi-
tions, while in the case of nuclear spins, the contributions of
flip-flip or flop-flop transitions dominate. Second, the
equation for the transverse components of the magnetization
contains the added underlined term, which had been
erroneously discarded (see Eqns (VIII, 89) in [45] and (2.19)
in [55]), which resulted in ignoring the spin coherence transfer
caused by the dipole±dipole interaction simultaneously with
its transfer due to the exchange interaction. A comparison of
(98) and (74) shows that contributions from the exchange and
dipole±dipole interactions to the longitudinal spin polariza-
tion transfer are added, whereas their contributions to the
spin coherence transfer are subtracted.

We note that the spin±lattice relaxation rate 1=T1 in
Eqns (98) contains a contribution from the dipole±dipole
interaction, i.e., 1=T1 � 1=T10 � 1=T1d, where 1=T1d �
�9=8�g4�h 2C

�
J �1��o� � J �2��2o�� (see (95)). Here, T10 is the

spin±lattice relaxation time of an isolated paramagnetic
particle.

The correct treatment of the contribution from the
dipole±dipole interaction to the spin coherence transfer is
one of the key features of a new paradigm of spin exchange
between paramagnetic particles in solutions.

October 2019 Current state of the spin exchange theory in dilute solutions of paramagnetic particles 965



4. Manifestation of the spin exchange
and dipole±dipole interaction in the shape
of EPR spectra of free radicals

Taking into account that the most popular spin probes are
nitroxyl radicals, we now consider manifestations of the spin
exchange in EPR spectra using the example of nitroxyl
radicals. Of course, our treatment can also be used to study
bimolecular collisions of other paramagnetic particles.

The hyperfine interaction (HFI) with magnetic nuclei
splits spin energy levels; as a result, the EPR spectra of
radicals have a hyperfine structure (HFS). Each HFS
spectral component corresponds to a certain `configuration'
of magnetic nuclear spins. The EPR spectrum of nitroxyl
radicals has two HFS components for the 15N isotope and
three components for the 14N isotope caused by the HFI with
the nitrogen nucleus, because the nuclear spin projection on
the external constant magnetic field direction can have two
values, �1=2 and ÿ1=2, for the 15N isotope (the nuclear spin
I � 1=2) and three values, 1, 0, and ÿ1, for the 14N isotope
(nuclear spin I � 1). Each nitrogen HFI spectral component
consists of a number of lines caused by the HFI with protons.
EPR experiments are performed in quite strong magnetic
fields, such that the HFI of the electron, spin S, and the
nuclear spin I, can be described by the spin Hamiltonian
HHFI � �haSzIz, where a is the HFI constant.

In the case of nitroxyl radicals at relatively low concentra-
tions, an exchange narrowing of the EPR spectrum compo-
nents corresponding to the different projections of the
nitrogen nuclear spin occurs. This happens when the spin
exchange rateKexC becomes comparable to the broadening of
these components due to the HFI with protons. At higher
radical concentrations, when the spin exchange rate becomes
comparable to the HFI constant with the nitrogen nucleus,
the exchange narrowing of the total EPR spectrum occurs.
This complicates the determination of the spin exchange rate
from the shape of EPR spectra but at the same time creates
additional possibilities (see [11]).

4.1 General solution for the shape
of EPR spectra for radicals in solutions
In EPR experiments, a constant magnetic field B0 is com-
monly used and a linearly polarized alternatingmagnetic field
Bx � 2B1 cos �ot� � B1

�
exp �ÿiot� � exp �iot�� is applied

with a frequency o and amplitude 2B1. The resonance
response produces only one of the rotating components of
this field. Retaining only one component B1 of the field and
passing to a coordinate system rotating with the frequencyo,
we obtain a system of kinetic equations for the partial
magnetizations of spins related to different hyperfine compo-
nents of the EPR spectrum (see (74), (95), (97), (98)):

qMkÿ
qt
� ÿi�ok � dk ÿ o�Mkÿ

ÿMkÿ
T2k
ÿ
�
KexC� 1

Tdÿd sd

�
Mkÿ

� jk

�
KexCÿ 1

Tdÿd sct

�
Mÿ ÿ igB1Mkz ;

qMkz

qt
� ÿgB1Mky ÿMkz ÿMk0

T1
ÿ
�
KexC� 1

Tdÿd rp

�
Mkz

� jk

�
KexC� 1

Tdÿdpt

�
Mz ;

Mÿ �Mx ÿ iMy �
X

Mnÿ ; Mz �
X

Mnz : �99�

It is interesting that the spin coherence transfer rate
Vsct � KexCÿ 1=Tdÿd sct in (99) can vanish for a certain
diffusion coefficient of the spin probe.

EPR spectra measured in experiments are proportional to
the stationary value of the magnetization projection My on
the y axis. It can be found by equating the right-hand sides of
(99) to zero.

We consider the solutions of these equations in the case of
weak fields B1, when saturation effects can be ignored,
assuming that Mkz �Mk0 � jkM0. As a result, we obtain
the transverse magnetization of the system [11, 12]:

Mÿ � igB1M0
G�o�

1� �KexCÿ 1=Tdÿd sct�G�o� ; �100�
G�o��

X
k

jk

ÿi�ok � dk ÿ o� ÿ 1=T2k ÿ �KexC� 1=Tdÿd sd� ;

where the magnetization projection isMy � ÿImMÿ.
The influence of the spin coherence transfer on the shape

of the spectrum is illustrated in Fig. 3, where the EPR spectra
of a model nitroxyl radical calculated using (100) are
presented. It is assumed that an unpaired electron interacts
with one magnetic nucleus 14N with the spin I � 1. This gives
three hyperfine nitrogen components in the EPR spectrum at
low radical concentrations. We also assume that each
hyperfine nitrogen component has the unresolved hyperfine
structure due to interaction with protons, and the inhomoge-
neous broadening of each nitrogen component of the
spectrum can be described by a Gaussian distribution with
dispersion s.

We can see from Fig. 3 that the shape of the spectrum
depends very strongly on the radical concentration. At low
concentrations, all spectral lines broaden and extreme
components shift to the center of the spectrum. At high
radical concentrations, the entire spectrum collapses into
one homogeneously broadened line at the center of gravity
of the spectrum. If the contribution of the dipole±dipole
interaction is negligibly small, at high radical concentra-
tions, the spectrum transforms into one narrow line (see the
behavior of dashed curves with changing concentration). This
effect is called the exchange spectral narrowing. But if, along
with the spin exchange, the quantum coherence kinetics are
also determined by the dipole±dipole interaction, then the
EPR spectrum broadens at high concentrations due to the
dipole±dipole interaction of spins, although the collapse of all
spectral lines into one homogeneously broadened line occurs
(cf. spectral widths in Figs 3e, j at the concentration
C � 500 mM lÿ1). The collapse of the spectrum sets in when
the spin-coherence transfer rate becomes comparable to the
`nitrogen' splitting of the spectrum. In this case, the EPR
spectrum is described by a Lorentzian with the width given
by [11, 22]

1

T2eff
� 1

Tdÿd sd
� 1

Tdÿd sct
� 2a 2

N

3�KexCÿ 1=Tdÿd sct� �
1

T2
:

�101�
Curves in Figs 3b, c, g, h show that in the slow spin

exchange region, the extreme components of the spectrum
are asymmetric and are the sum of a symmetric absorption
line and an antisymmetric dispersion line. This conclusion is
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proved in Section 4.2 (see Eqn (105) and Figs 5 and 6). The
asymmetry of extreme lines can be demonstrated by the fact
that derivatives at the maximum-slope points for extreme
spectral components do not coincide (see curves in Figs 3a±c,
f±h). In fact, the derivatives of spectral components at the
maximum-slope points can also differ because of the overlap
of the wings of extreme spectral components with the central
component. However, the asymmetry of extreme components
is greater than could be expected due to the simple overlap of

the adjacent spectral components. The mixed shape of lines in
the EPR spectrum caused by the spin coherence transfer has
been theoretically predicted for quite a long time [12, 13], but
this was not studied experimentally for a long time. We note
that the deviation of the line shape from a Lorentzian due to
the spin exchange has already been observed for the aqueous
solution of K2�SO3�2NO. The conclusive experimental
demonstration of the mixed shape of lines and analysis of
the dispersion contribution to the shape of the EPR spectrum
in the case of spin exchange are presented in a number of
papers (see, e.g., [11, 15, 16, 57]). When a spectral component
has the mixed shape (absorption + dispersion), the max-
imum-slope points of the component on the left and on the
right are located at different heights. Therefore, the frequency
distance between the maximum-slope points does not directly
specify the width of the spectral component, as in the case of
symmetric absorption lines.

The fact that resonance lines in the region of slow spin-
coherence transfer have a mixed shape (absorption +
dispersion) is the principal difference between the new spin-
exchange paradigm and the existing paradigm.

4.2 New look at the role of spin coherence transfer.
Collective evolution modes of the system spin coherence
Equations (100) are quite convenient for computer studies of
the influence of spin exchange and dipole±dipole interaction
on the shape of the EPR spectrum. However, such an
approach does not allow completely elucidating the physical
nature of the spectral transformations observed (see Fig. 3).

A different approach exists for better understanding the
physics of the relevant processes. This approach is based on
finding the collective independent modes of the quantum
coherence kinetics [10, 12, 13]. For this, we write system of
equations (99) in a different form. We consider the case of a
weak fieldB1, when saturation effects can be disregarded, and
set Mkz �Mk0 � jkM0. We introduce vectors Mÿ and M0

with projections Mkÿ and jkM0. We construct the matrix L
from coefficients of system of equations (99). Equations (99)
can be written in the form

LMÿ ÿ igB1M0 � 0 : �102�
We can find the eigenvalues flkg and eigenvectors of the
evolution operator L by solving the equation

LXk � lkXk : �103�
The eigenvectors of L are superpositions of the transverse
magnetizations Mkÿ of spins belonging to different compo-
nents of the EPR spectrum. In fact, these eigenvectors are
independent collective modes of the evolution of quantum
coherences of the system. Each collective mode can in
principle give a resonance response to the external action.
The observed absorption spectrum is the sum of independent
contributions of the resonance responses of collective modes
to the action of an external alternating field. It has not yet
been found how the external field excites each collective
mode [10]. To do this, it is necessary to find the matrix U
performing a similarity transformation from the matrix L to
the diagonal matrix ULUÿ1 [58]. Therefore, it is necessary to
transform the vector F describing the action of the external
perturbation, F � igB1M0 (see (102)). After the transforma-
tion, this vector becomes F � � igB1UM0. The vector Mÿ is
transformed similarly under the transition to collective
modes, M �

ÿ � UMÿ. As a result, the contribution of
collective modes to the observed spectrum is determined by
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Figure 3. (a±e) EPR spectra calculated by expressions (100) and

(f±j) their derivatives with respect to the magnetic field induction for
14N nitroxyl radicals at different radical concentrations. Parameters

used in calculations: HFI constant aN � 16 G, g � 2, s � 0:12 G2,

1=T2 � 0:2 G. Dashed curves are calculated ignoring the dipole±dipole

interaction, Kex � 0:1 G l mMÿ1, 1=Tdÿd sd � 0. Solid curves are calcu-

lated taking the dipole±dipole interaction into account, Kex �
0:05 G l mMÿ1, 1=Tdÿd sd � 0:011 G l mMÿ1, 1=Tdÿd sct �
0:009 G l mMÿ1. Because frequencies in EPR spectroscopy are measured

in gauss, the rates of spin processes are presented in gauss. 1G corresponds

to the circular frequency 1:76� 107 rad sÿ1.
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the quantities

M �
kÿ �

F �k
lk

: �104�

The resonance effect is observed when jlkj takes the minimal
value. We note that lk has the form lk � ÿi�Ok ÿ o� ÿ DOk.
The imaginary part of lk determines the resonance frequency
Ok, and the real part specifies the width of the resonance. The
contribution of collective modes to the spectrum is deter-
mined by the components of the vector F �. It was shown in
[10, 12, 13] that in the general case, F �k � ck � i fk. As a result,
we obtain the contribution of an individual collective mode to
the absorption spectrum in the form

J �k � ÿImM �
kÿ �

fkDOk ÿ ck�Ok ÿ o�
�Ok ÿ o�2 � DO 2

k

: �105�

It hence follows that in general, the resonance of a collective
mode is a mixture of the Lorentzian absorption line and the
Lorentzian dispersion line. The spectrum observed in experi-
ment is

My � ÿImMÿ � ÿIm �UM �
ÿ� �106�

and is a superposition of the J �k lines in (105). Thus, we have
two identical representations of the spectrum observed in
experiment: the first is the sum of independent collective
modes (106), and the second is given by Eqn (100).

In the general case where the EPR spectrum consists of
many components, this problem is solved only for the slow
spin exchange, when the perturbation theory with the
parameter��Kex sctCÿ 1=T2dÿd sct

��
Do

< 1

can be applied (see (99), where Do is the inhomogeneous
width of the spectrum (see [11±13, 21, 22]). From Eqn (99) in
the first-order perturbation theory, we obtain the contribu-
tion of the spin exchange and dipole±dipole interaction to the
additional homogeneous broadening of the kth collective
resonance. For example, in the case of the equivalent spin
exchange, when Dotc < 1, the collective resonance linewidth
is

DOk � 1

T2dÿd sd
� jk

1

T2dÿd sct
� Kex�1ÿ jk�C : �107�

In the same situation in the second-order perturbation theory,
we obtain the frequency shift of the kth collective resonance
due to the spin exchange and dipole±dipole interaction:

dok � jk

�
KexCÿ 1

T2dÿd sct

�2X 0 jn

on ÿ ok
; �108�

where summation ranges n 6� k.
Equations (107) and (108) can be used, in principle, to find

spin exchange rate constants if the broadening and shift of
resonances depending on the spin concentration are known.
However, the realization of this fundamental possibility is
complicated by the fact that the mixed shape of lines and their
overlap in expressions (107) and (108) have been ignored (see
Section 5).

Attempts to describe the spin exchange contribution to
the behavior of individual paramagnetic particles are being

made in the framework of the conventional paradigm. The
new paradigm is based on the collective modes of spin motion
that are formed during the spin coherence transfer from
colliding partners. We can say that the `recoil in collisions'
(reaction in collisions in accordance with Newton's third law)
produces collective motion modes. For example, under
exchange narrowing conditions in EPR experiments, some
collective modes are not in fact excited.

4.3 Collective motion modes
of spin coherence for model systems
4.3.1 Two-frequency model. To illustrate the formation of
collective modes in the spin-coherence evolution in solutions
of paramagnetic particles, we consider a simple system [10]
representing a diluted solution of stable free radicals in which
the unpaired electron interacts only with one magnetic
nucleus 15N. The hyperfine interaction constant is a. The
total ensemble of radicals can be divided into two subensem-
bles with different nuclear spin projections on the direction of
an external constant magnetic field. We assume that the
coherence transfer is induced only by the equivalent spin
exchange. We use this assumption only to simplify analytic
expressions. The final conclusions depend essentially only on
the presence of the spin coherence transfer. To calculate the
shape of the EPR spectrum in the absence of saturation
effects, it is necessary to find a stationary solution of
Eqns (99). For the two-particle model under study, the
coherence of spins belonging to two radical subensembles is
described by the kinetic equations (cf. Eqns (99))

qM1ÿ
qt
�
�
ÿi
�
o0 � a

2
ÿ o

�
ÿ G

�
M1ÿ

ÿ VM1ÿ � VM2ÿ ÿ i

2
o1M0 ;

qM2ÿ
qt
�
�
ÿi
�
o0 ÿ a

2
ÿ o

�
ÿ G

�
M2ÿ

�109�

ÿ VM2ÿ � VM1ÿ ÿ i

2
o1M0 :

Here, o0 is the Zeeman frequency of the electron spins of
radicals, G � 1=T2 is the spin decoherence rate determined
by the interaction of spins with the medium, and o and
o1 � gB1 are the carrier frequency and the Rabi frequency of
the microwave field. We note that Eqns (109) are written in
the coordinate system rotating at the frequency o. In the
situation under study, V � KexC=2, where C is the concen-
tration of all radicals and C=2 is the concentration of
radicals in each of the two subensembles with different
nuclear spin projections. For the model system (109) under
study, we have

L �
��
ÿi
�
o0 � a

2
ÿ o

�
ÿ Gÿ V;V

�
;�

V;ÿi
�
o0 ÿ a

2
ÿ o

�
ÿ Gÿ V

��
: �110�

The eigenvalues of L are

l1 � ÿi�o0 ÿ o� ÿ R

2
ÿ Gÿ V ;

l2 � ÿi�o0 ÿ o� � R

2
ÿ Gÿ V ;

where R � �ÿa 2 � 4V 2�1=2.
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If the coherence transfer rate is negligibly small, V� 0,
then the distance between two lines in the spectrum is equal
to the HFI constant a. In the region 2jVj < jaj, the line
splitting in the spectrum is ImR � �a 2 ÿ 4V 2�1=2 �
aÿ 2V 2=a, which shows that the line splitting decreases
and the lines approach each other with increasing the spin
coherence transfer rate. In this case, both resonances have
the same width, equal to V� G. Two frequencies (the
imaginary parts of l1 and l2) coincide when the critical
coherence transfer rate jVcj � jaj=2 is reached. In the region
jVj5 jaj=2, two resonances also exist. The frequencies of
these resonances coincide, but they have different widths:
DO� � V� G� �1=2�R. When 2jVj4 jaj, the linewidths can
be approximately written as DO� � V� G� �Vÿ a 2=�8V��.
One of the resonances is narrow,DOÿ � G� a 2=�8V�, and its
width decreases with increasing V as the spin concentration
increases. This effect is well known as the exchange spectral
narrowing [12, 13]. The other resonance has a greater width
DO� � 2V� Gÿ a 2=�8V� ! 2V� G.

Thus, in the case of exchange narrowing, the spectrum
consists of two lines with the same resonance frequency,
but one of them is narrow and the other is broad. The
eigenvalues of the operator L give information about the
frequency and width of possible resonance excitations of
the system. However, the shape of the resonance lines and
the integrated strength of the resonance response of
different collective modes depend on how the external
field excites these collective modes, i.e., on the values of
F �k . Calculations performed by the algorithm described
above give the result

F � � io1XMeq � io1

2
M0

�
2Vÿ iaÿ R

2R
;
2Vÿ ia� R

2R

�
:

�111�

Under conditions of exchange narrowing, with the coherence
transfer rate V > a=2,

F � � io1

2
M0

�
ÿ ia

4V
; 1� ia

4V

�
! io1

2
M0f0; 1g : �112�

It hence follows that the external alternatingmagnetic fieldB1

efficiently excites only one of the collective modes of the spin
coherence evolution. The detailed analysis in [10] shows that
the external field excites a collective mode with a narrow
resonance.

The changes in the shape of EPR spectra under
changing the spin exchange rate are illustrated in the

figures. We note that in EPR spectroscopy, hyperfine
interaction constants, spectral line splittings, resonance
frequencies, and line broadenings are measured in gauss.
Therefore, we express the coherence transfer rate V also
in gauss. To obtain the numerical value of V in [rad sÿ1],
it is necessary to multiply the value of V in gauss by
1:76� 107.

Figure 4 shows the dependences of the resonance
frequency and width of collective modes of the quantum
coherence evolution on the spin exchange rate. We can see
that for Vc � a=2, a dramatic change occurs in the
behavior of resonance frequencies and widths for collec-
tive modes.

Figures 5a, d and 6a, d present the shapes of expected
resonance lines J1, J2 for each collective mode. These
resonance lines have a mixed shape, being the sum of a
Lorentzian absorption line and a Lorentzian dispersion line,
Jk � Jk; abs � Jk; dis. Figures 5 and 6 clearly demonstrate the
mixed shape of collective resonances. In the slow spin
exchange region, the dispersion contribution is small (see
Fig. 5); in the case of spectral narrowing, as jVj ! ja=2j, the
absorption and dispersion contributions to the EPR spectrum
equalize (see Fig. 6).

It follows from Fig. 7, that in the exchange narrowing
case, the main contribution to the observed spectrum is
made by one collective mode (the narrow resonance line),
while the contribution of dispersion is absent. It is
interesting that the collective mode with a broad resonance
makes a contribution to the EPR spectrum with the
negative sign (Fig. 7a). However, the integrated intensity
of this line is very small.

4.3.2 Three-particle model. In [10], the transformation of the
spectrumwas also analyzed in detail for a three-particlemodel.
Such a situation is realized in EPR for 14N nitroxyl radicals.
In general terms, the influence of the coherence transfer on
the shape of the spectrum is similar to that in the two-particle
case. However, differences also exist. We assume that in the
absence of spin coherence transfer, resonances at frequencies
o1 � o0 � a, o2 � o0, and o3 � o0 ÿ a are observed. It
could be expected that in the case of rapid coherence transfer
(exchange spectral narrowing), all three collective modes give
a resonance at the mean frequencyo0. But this does not occur
in reality (Fig. 8). We can see from Fig. 8 that in the three-
particle model, the resonance frequencies of three collective
modes do not become identical at any coherence transfer rate.
But in EPR experiments at high spin exchange rates, only one
of the resonances is excited.
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5. How can the spin exchange rate be extracted
from EPR spectra?

5.1 General observations
In EPR spectroscopy, the total contribution of two
relaxation mechanisms dependent on the spin concentra-
tion is manifested. According to (100), concentration
changes in the line shape are determined by the parameters
Wsd � KexC� 1=Tdÿd sd and Vsct � KexCÿ 1=Tdÿd sct. The
transformation of the spectrum is essentially determined by
Vsct. The coherence transfer to a selected spin from colliding
partners produces the mixed shape of lines in the slow-
exchange region, the exchange narrowing effect. In the slow-
exchange region, spectral lines are broadened (see (107)), shift
to the center of gravity of the spectrum (see (108)), and are the
sum of absorption and dispersion lines. In the fast spin
exchange region, all spectral components merge into one
homogeneously broadened line (101). In this case, the
dipole±dipole interaction causes concentration broadening
1=Tdÿd sd � 1=Tdÿd sct � C. This dipole spectral broadening
exceeds the dipole±dipole contribution to the broadening of
individual components of the spectrum in the slow spin
exchange region, which is equal to 1=Tdÿd sd � jk=Tdÿd sct.
This observation correlates well with the known fact that the
second moment of the dipole±dipole interaction between
spins with the same resonance frequency is 9/4 times greater
than in the case of different frequencies. In the exchange
narrowing case, all the spins have the same resonance
frequency. In the slow exchange case, the resonance frequen-
cies are distributed and the spectrum is inhomogeneously
broadened.

We note that for nonequivalent spin exchange during the
collapse of the whole spectrum into one homogeneously
broadened line, concentration broadening can be caused not
only by the dipole±dipole but also by the exchange interaction
because the spin decoherence rate constant Kex; sd exceeds the
spin coherence rate constant Kex; sct.

Manifestations of the spin exchange and dipole±dipole
interaction of spins in the shape of the EPR spectrum
mentioned above in principle allow determining the total
spin decoherence and spin coherence transfer rates due to
the exchange and dipole±dipole interactions. The contribu-
tion of the dipole±dipole interaction can be calculated using
Eqns (97) and (98). The bimolecular spin exchange rates can
be determined by subtracting the contribution of the
dipole±dipole interaction from the total rates of the spin
decoherence and spin coherence transfer found from
experimental data.

Parameters of the spin decoherence and spin coherence
transfer can be determined from the stationary solution of
kinetic equations for spin density matrices (or spin magneti-
zations), the calculation of the spectrum and fitting the
parameters in kinetic equations to obtain the best fit with
experimental EPR spectra. This procedure is considerably
simplified when the spin exchange can be considered
equivalent, as expected for stable nitroxyl radicals. In this
case, the spin exchange between free radicals is specified by a
single rate constant Kex, and the spectrum shape is described
by compact expression (100). In the general case, the rate
constants of the spin decoherence and spin coherence transfer
due to the exchange interactionmay not coincide, i.e., the spin
exchange is not equivalent.Moreover, the spin exchange rates
can be different for different components. The number of
fitting parameters then increases, which, of course, compli-
cates fitting (see, e.g., kinetic equation (91)).

In this connection, of interest are other approaches to
estimating the rate constants of the spin decoherence and spin
coherence transfer due to exchange interaction.

5.2 Method for determining
the spin exchange rate constant from EPR spectra
A widespread method is based on the assumption of
equivalent exchange. The line broadening in the slow
exchange region is determined from the distance between the
extrema of the derivative of the spectrum with respect to the
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field (Fig. 9). As a result, based on experimental data and
calculations of the contribution of the dipole±dipole interac-
tion to the broadening of spectral lines, we can determine
�1ÿ jk�KexC in (107) in the equivalent exchange case or
Kex sdCÿ jkKex sctC in the nonequivalent exchange case. The
resonance frequency and therefore the concentration fre-
quency shift are determined from the constant magnetic
field strength B0 at which the derivative of the spectrum
with respect to the field vanishes (see Fig. 9).

Methods for determining the spin exchange rate constant
are apparently quite reliable and have found wide applica-
tions [12, 13, 59]. However, new theoretical and experimental
results have led to reconsidering these methods, except the
one based on the concentration broadening of the exchange-
narrowed EPR spectrum. In this case of a quite fast spin
exchange, the spectrum transforms into a homogeneous
Lorentzian line with the resonance frequency equal to the
frequency of the center of gravity of the inhomogeneous
spectrum at low spin concentrations. However, unfortu-
nately, the exchange narrowing conditions are often difficult
to achieve. Therefore, methods are needed for estimating
spin-exchange kinetic parameters in the practically important
slow spin exchange situation. The values of spin-exchange
constants can be further refined by simulating spectra with
the help of exact kinetic equations for partial magnetizations.
In this case, the estimates obtained directly from experimental
spectra can be used as good initial parameters for numerical
simulations of spectra.

The above approaches to determining the concentration
broadening of individual EPR lines and their resonance
frequency were formulated by ignoring circumstances dis-
cussed in detail in Sections 2±4.

(1) The additional shift of resonance frequencies (e.g., dk
in Eqn (108)) caused by the exchange interaction in

bimolecular collisions in the slow spin exchange region was
ignored.

(2) The asymmetric shape of individual lines in the slow
spin exchange region, when the concentration broadening of
the lines occurs, was ignored. The lines are the sums of a
symmetric Lorentzian absorption line and an asymmetric
Lorentzian dispersion line with the same resonance fre-
quency. The mixed line shape is given by the sum

j�x0 ÿ x� � t
�

1

1� �x0 ÿ x�2t 2 �
p�x0 ÿ x�t

1� �x0 ÿ x�2t 2
�
; �113�

where x0 is the spin frequency, x is the microwave field
frequency, t is the spin decoherence time determining the
homogeneous width DO of the line under study, and
1=t � DO. The parameter p in Eqn (113) specifies the
dispersion contribution.

(3) The contribution of the dipole±dipole interaction to
the spin coherence transfer from nonresonance spins to the
separated spin was disregarded.

Ignoring the dipole±dipole interaction should system-
atically reduce the rate constant of the spin coherence
transfer due to exchange interaction, because instead of the
correct spin coherence transfer rate Kex sct ÿ 1=T2dÿd sct, the
quantity Kex sct is used, which is assumed equal to Kex.
Disregarding the dispersion contribution to the line shape,
the position of the zero of the spectrum derivative does not
give the correct resonance frequency (or the concentration
frequency shift), and the interval between two external-field
strengths determining the maximum and minimum values of
the spectral line derivative does not coincide with the real
width of the resonance. Therefore, the mixed shape of EPR
lines is one of the most important characteristics of spectral
lines caused by the spin coherence transfer. We let p denote
the fraction of the dispersion contribution (see (113)). If p is
known, the spin coherence transfer rate can be found. For
example, for slow spin exchange in the second-order
perturbation theory for the equivalent spin exchange, the
expression

pk � 2KexC
X jn

on ÿ ok
�114�

is obtained (see Eqns (1.81)±(1.87) in [12, 13] and also [11, 21,
22]). This means that pk > 0 for the low-field spectral
components and pk < 0 for the high-field spectral compo-
nents.

For arbitrary values of the spin coherence transfer rate,
the exact value of the dispersion contribution p to the line
shape was found in the simplest models with two or three
resonance frequencies [10].

In [15], a new approach to determining the spin
exchange rate from the shape of EPR spectra was proposed
based on using the mixed shape of spectral components.
First, the experimental spectrum is represented as the sum
of symmetric absorption lines and antisymmetric dispersion
lines, and the relative dispersion contribution p is found. We
consider one of the approximate methods for estimating p
from spectra [21]. The distance between the positions of the
maximum and minimum of the derivative of a spectral line
is (see Fig. 9) [21]

DB0 � �1:15� 0:17p 2�DO ; �115�
where DO is the real width of the resonance. We note that
expression (115) was derived by ignoring the possible overlap
of adjacent lines.
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Figure 9 presents the derivatives of the mixed line j�x�
in (113) for two values of the dispersion fraction p. The
maximum of j�x� gives the zero of its derivative (see Fig. 9). If
p were zero, the maximum of (113) would be at x0 � x. For
p 6� 0, the maximum of (113) turns out to occur at [21]

x0 � x� �1� p 2�1=2 ÿ 1

pt
: �116�

In Fig. 9, A and B are the minimal and maximal values of the
derivative. In the slow spin exchange region, jpj < 1 and the
expression x0 � x� p=�2t� turns out to be a good approx-
imation [21]. Thus, due to the dispersion contribution, the
maximum of line (113) shifts by p=�2t�.

The derivative of the spectrum observed in experiments
allows finding the dispersion contribution directly from
experiments. It was shown in [21] that the ratio r of the
minimal value of the derivative of the spectrum (A in Fig. 9) to
its maximal value (B in Fig. 9) depends only on p, i.e., is
independent of the resonance frequency and width. The
analytic expression for r � A=B is rather complicated [21],
and therefore we present only the plot of this function in
Fig. 10.

We note that the plot in Fig. 10 gives a one-to-one
correspondence between two quantities. This plot can be
treated as the dependence of the unknown quantity p on the
parameter r, which can be easily found from the measured
derivative of the EPR spectrum.

Thus, experimental and theoretical spin-exchange studies
resulted in reconsidering themethods for determining the spin
exchange rate from EPR spectra. The modern method
involves the most important step in determining the disper-
sion fraction in the shape of spectral lines (see, e.g., [11]). To
do this, for example, the ratio r of theminimal value of the line
derivative to its maximal value is determined from experi-
ments. The dispersion contribution p can be estimated from
the plot in Fig. 10. More accurate methods for determining
the parameter p fromEPR spectra were also developed in [11].
Spin coherence transfer rates are then found from expres-
sions (107) and (114). If the components of the EPR spectrum
are resolved in a certain range of spin concentrations, then the
spin exchange rate, i.e., the spin decoherence and spin
coherence transfer due to exchange interaction, can be

found from measurements of the concentration dependence
of the distance (115) between the maximum and minimum of
the derivative of the spectrum with respect to the field. The
spin coherence exchange transfer rate can be estimated from
the concentration dependence of the position of a zero of the
spectrum derivative using (116). These estimates of spin
exchange rates can be used as initial values for simulations
of spectra by solving the corresponding kinetic equations for
particular paramagnetic particles. The state-of-the-art
method for determining spin exchange rate constants in
bimolecular collisions is considered in detail in [11, 16, 18, 57].

6. Prospects for using the spin exchange

The specific rate of bimolecular processes per unit concentra-
tion of particles is given by the rate constant Kex � 4prexD,
where D is the mutual diffusion coefficient of two particles.
The effective radii rex of the cross section of these processes
depend on the exchange interaction parameters and kine-
matics of the relative motion of colliding particles.

The study of bimolecular processes caused by the
exchange interaction of paramagnetic particles is of interest
from several standpoints.

The kinematics of molecular motion in `simple' media can
be simulated sufficiently well. The values of rex found in EPR
experiments in these systems can be used to determine
parameters of the exchange integral: its value, the slope of
its decay with distance between particles, and its anisotropy.
This information about the exchange integral is useful for
understanding the electron transfer reaction between mole-
cules. The electron transfer is determined by the so-called
resonance integral, which is proportional to the overlap
integral of the electron wave functions, while the spin
exchange is determined by the exchange integral, which is
proportional to the square of the overlap integral of the
electronwave functions. Experiments confirm the existence of
a correlation between the radii of the spin exchange cross
section and the intermolecular electron transfer [12, 13].

The spin exchange is also of interest in and of itself. The
example of positronium quenching by paramagnetic particles
due to their exchange interaction in collisions is presented in
Section 2.3.4. A paramagnetic particle accelerates orthoposi-
tronium quenching. This process can be regarded as an
example of the spin catalysis of the ortho±para positronium
conversion. Other examples of spin catalysis can also be
presented. Due to the exchange interaction, paramagnetic
particles can accelerate the recombination of radical pairs in
solutions [5, 6], accelerate the recombination of electron±hole
pairs in semiconductors, and change the photocurrent density
in molecular crystals because the spin exchange with a
paramagnetic addition can change the spin multiplicity of
excitons [60] and the polarization of luminescence from
excited triplet states.

At present, the application of paramagnetic particles as
spin probes is attracting special interest. Spin exchange is used
as a model process for studying bimolecular collisions in
complex biological systems and in polymer matrices (see
reviews [59±61]). The study of spin exchange gives informa-
tion on electrostatic interactions in bimolecular collisions of
charged molecules in electrolytes. Spin exchange is used to
determine the local concentration of paramagnetic particles
in complex systems. For example, radiation therapy requires
information on the concentration of oxygen molecules in
certain parts of the body. Collisions of spin probes with
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Figure 10.Dependence of r � A=B (see Fig. 9) on the dispersion fraction p

on the observed line.
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oxygen broaden the EPR lines of the probe. The concentra-
tion of oxygen molecules can be found from the EPR line
broadening with the help of theoretical calculations of the
effective radius of the spin exchange of the probewith oxygen.
This method for measuring the concentration of paramag-
netic particles is successfully used in oximetry [61±63].

Interest in studies of the spin exchange in solutions
increases with the development of chemical technologies of
attaching spin labels to molecules. Chemists have developed
technologies for site-directed spin labeling. Site-directed spin
labeling is of special interest for applications in biologically
important molecular processes (see, e.g., [64, 65]).

To realize the potential of spin-labeled molecules for
studying the molecular mechanisms of biochemical reac-
tions, it is necessary to have suitable physical methods for
investigations of bimolecular processes. In particular, an
important molecular kinetic parameter is the frequency of
bimolecular collisions. In complex systems, this frequency is
determined by using the bimolecular spin exchange as the
model process. Appropriate spin probes with known char-
acteristics must be selected. For example, the parameters of
the exchange integral must be known. To obtain information
about the exchange integral for two colliding particles, the
spin exchange is studied in `simple' media, for example, in
low-molecular solutions with a well-known viscosity, which
do not exhibit any specific interaction with dissolved
paramagnetic particles. Examples of such systems are stable
nitroxyl radicals [59, 65]. Information about the exchange
integral between specified paramagnetic particles obtained in
this way is used to study bimolecular collisions in `complex'
media.

The analysis performed in this review shows that the state-
of-the-art spin-exchange theory allows calculating the spin
exchange rate and analyzing its dependence on molecular
kinetic parameters of systems under study and the interaction
parameters of spin labels. Methods for determining the spin
exchange frequency from EPR spectra have also been
developed.

Thus, we can assert that the state-of-the-art bimolecular
spin exchange theory for diluted solutions and EPR spectro-
scopy create good foundations for the further development
and application of the spin probe method in molecular
biology and medicine.

7. Conclusions.
Shift in the spin exchange paradigm

During the 50 years of studies of spin exchange in bimolecular
collisions, our concepts have radically changed. The existing,
in fact phenomenological, paradigm has been replaced by a
new one. Its main differences from the previous paradigm can
be summarized as follows.

The new paradigm distinguishes at least three different
spin exchange processes: spin decoherence, spin coherence
transfer, and spin excitation energy transfer. The existing
paradigm assumed that all these elementary processes occur
at the same rate.

The new paradigm distinguishes equivalent and non-
equivalent spin exchanges. The nonequivalent spin exchange
appears due to the presence of spin-dependent interactions in
individual paramagnetic particles. Even if these interactions
are a few orders of magnitude weaker than the exchange
interaction, they can fundamentally change the result of
collisions between paramagnetic particles. The existing

paradigm erroneously neglected the spin coherence transfer
due to the dipole±dipole interaction.

Unlike the earlier paradigm, the new paradigm describes
paramagnetic relaxation with the help of collective modes of
motion of quantum spin coherence in solution. These
collective modes appear exclusively due to the quantum
coherence transfer during spin collisions. The resonance line
of each collective mode has a mixed shape (absorption +
dispersion). There are `selection' rules for exciting collective
modes by an external alternating magnetic field. The new
paradigm gives an entirely new picture of the exchange
narrowing of EPR spectra.

The spin coherence transfer in strong microwave fields,
when the saturation effect is observed, not only causes the line
broadening of the collective mode in the EPR spectrum, as
expected, but also results in a dependence of the resonance
frequency on the field amplitude. In this case, collective
`modes' of the spin system and the microwave fieldÐ
magnetic polaritonsÐare formed [66].
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