Local rings of embedding codepth at most 3 have only trivial semidualizing complexes
Abstract
We prove that a local ring $R$ of embedding codepth at most 3 has at most two semidualizing complexes up to shift-isomorphism, namely, $R$ itself and a dualizing $R$-complex if one exists.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2013
- DOI:
- 10.48550/arXiv.1401.0210
- arXiv:
- arXiv:1401.0210
- Bibcode:
- 2014arXiv1401.0210N
- Keywords:
-
- Mathematics - Commutative Algebra;
- Primary: 13D02;
- 13D09;
- Secondary: 13D05;
- 13E10
- E-Print:
- 9 pages