Controlling Tc of iridium films using the proximity effect
Abstract
A superconducting Transition-Edge Sensor (TES) with low- T c is essential in high resolution calorimetric detection. With the motivation of developing sensitive calorimeters for applications in cryogenic neutrinoless double beta decay searches, we have been investigating methods to reduce the T c of an Ir film down to 20 mK. Utilizing the proximity effect between a superconductor and a normal metal, we found two room temperature fabrication recipes for making Ir-based low- T c films. In the first approach, an Ir film sandwiched between two Au films, a Au/Ir/Au trilayer, has a tunable T c in the range of 20-100 mK depending on the relative thicknesses. In the second approach, a paramagnetic Pt thin film is used to create the Ir/Pt bilayer with a tunable T c in the same range. We present a detailed study of fabrication and characterization of Ir-based low- T c films and compare the experimental results to the theoretical models. We show that Ir-based films with a predictable and reproducible critical temperature can be consistently fabricated for use in large scale detector applications.
- Publication:
-
Journal of Applied Physics
- Pub Date:
- October 2020
- DOI:
- 10.1063/5.0018564
- arXiv:
- arXiv:2010.00772
- Bibcode:
- 2020JAP...128o4501H
- Keywords:
-
- Condensed Matter - Superconductivity;
- High Energy Physics - Experiment;
- Nuclear Experiment;
- Physics - Instrumentation and Detectors
- E-Print:
- 5 figures, accepted in the Journal of Applied Physics