Generalized equilibria for color-gradient lattice Boltzmann model based on higher-order Hermite polynomials: A simplified implementation with central moments
Abstract
We propose generalized equilibria of a three-dimensional color-gradient lattice Boltzmann model for two-component two-phase flows using higher-order Hermite polynomials. Although the resulting equilibrium distribution function, which includes a sixth-order term on the velocity, is computationally cumbersome, its equilibrium central moments (CMs) are velocity-independent and have a simplified form. Numerical experiments show that our approach, as in Wen et al. [Phys. Rev. E 100, 023301 (2019), 10.1103/PhysRevE.100.023301] who consider terms up to third order, improves the Galilean invariance compared to that of the conventional approach. Dynamic problems can be solved with high accuracy at a density ratio of 10; however, the accuracy is still limited to a density ratio of 1000. For lower density ratios, the generalized equilibria benefit from the CM-based multiple-relaxation-time model, especially at very high Reynolds numbers, significantly improving the numerical stability.
- Publication:
-
Physical Review E
- Pub Date:
- December 2023
- DOI:
- 10.1103/PhysRevE.108.065305
- arXiv:
- arXiv:2309.07801
- Bibcode:
- 2023PhRvE.108f5305S
- Keywords:
-
- Physics - Computational Physics
- E-Print:
- 23 pages, 8 figures