Computer Science > Machine Learning
[Submitted on 13 Nov 2018]
Title:Modelling the Dynamic Joint Policy of Teammates with Attention Multi-agent DDPG
View PDFAbstract:Modelling and exploiting teammates' policies in cooperative multi-agent systems have long been an interest and also a big challenge for the reinforcement learning (RL) community. The interest lies in the fact that if the agent knows the teammates' policies, it can adjust its own policy accordingly to arrive at proper cooperations; while the challenge is that the agents' policies are changing continuously due to they are learning concurrently, which imposes difficulty to model the dynamic policies of teammates accurately. In this paper, we present \emph{ATTention Multi-Agent Deep Deterministic Policy Gradient} (ATT-MADDPG) to address this challenge. ATT-MADDPG extends DDPG, a single-agent actor-critic RL method, with two special designs. First, in order to model the teammates' policies, the agent should get access to the observations and actions of teammates. ATT-MADDPG adopts a centralized critic to collect such information. Second, to model the teammates' policies using the collected information in an effective way, ATT-MADDPG enhances the centralized critic with an attention mechanism. This attention mechanism introduces a special structure to explicitly model the dynamic joint policy of teammates, making sure that the collected information can be processed efficiently. We evaluate ATT-MADDPG on both benchmark tasks and the real-world packet routing tasks. Experimental results show that it not only outperforms the state-of-the-art RL-based methods and rule-based methods by a large margin, but also achieves better performance in terms of scalability and robustness.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.