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Abstract—The emerging non-wearable fall detection systems
rely on processing radio waves reflected off the body of the home
user who has no active interaction with the system, increasing
the user privacy and acceptability. This paper proposes a non-
stationary channel model that is important for the development of
such systems. A three-dimensional stochastic trajectory model is
designed to capture targeted mobility patterns of the home user.
The model is featured with a forward fall mechanism, which is
actuated at a random point along the path. A transmitter emits
radio waves throughout an indoor propagation environment,
while a receiver collects fingerprints of the scattering objects on
the emitted waves. The corresponding radio channel is modelled
by a process capturing the time-variant Doppler effect caused
by the home occupant. The time-frequency behaviour of the
non-stationary channel is studied by computing the Doppler
power spectral density and by performing spectrogram analysis.
The instantaneous mean Doppler shift and Doppler spread are
derived and simulated. The model is confirmed with experimental
results performed at 5.9 GHz. The results are insightful for
developing reliable fall detection algorithms, while the model
is useful for studying the impact of different walking/falling
patterns on the overall fall detection system performance.

Index Terms — Non-stationary radio channels, random trajec-
tory model, power spectral density, spectrogram, instantaneous
mean Doppler shift

I. INTRODUCTION

The world population is growing older and older, as fertility
rates are low in most world regions. From 2025 to 2050,
the 65+ year old population is projected to almost double to
1.6 billion globally, while the total population will grow by
just 34 percent over the same period [1]. According to the
World Health Organization [2], around one-third of people
aged 65+ years fall at least twice a year. One of the main
challenges within eldercare is thus detecting fall incidents for
those who live independently. Such incidents may result in
serious physical and psychological consequences, if not in
Kodokushi1 cases. To avoid such consequences, there is a need
to design elderly-friendly activity monitoring technologies and
services that can reliably and immediately detect in-home
incidents, allowing for timely emergency actions that save both
health and wealth.
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Existing fall detection systems are categorized into two
major classes [3]: wearable systems and context-aware sys-
tems. Wearable systems such as smartphones, waist belts,
bracelets, pendants (e.g., Lifeline by Philips2 and Angel4
by SENSE4CARE3) are equipped with diverse sensors,
but mostly accelerometers. Context-aware systems are non-
wearable devices and facilities, such as vision sensors [4],
video cameras [5], and smart floors [6]. Informative surveys
on fall detection systems and approaches can be found, e.g.,
in [7]–[9]. The wearable systems bring about several user-
end concerns, such as privacy, acceptability, and user training
needs, yet the most important one is the need for direct
involvement of the user in the solution. This solution simply
fails if the user forgets/ignores to wear the device. The context-
aware systems are often expensive, while their functionality is
restricted to those areas in which sensors have been previously
deployed. Video surveillance systems compromise the user
privacy, while vision sensors have short proximity ranges [10].

Motivated by the aforementioned restrictions, a new gener-
ation of context-aware fall detection systems is emerging. In
the new approach, a transmitter emits radio waves in the home
environment, while a receiver collects the waves carrying
fingerprints of user activities at home. Indeed, the radio waves
are modulated by the scattering effects of not only fixed
objects in the environment, but also the mobile home user.
The challenge of the new approach is to perform sophisticated
signal processing techniques to extract those fingerprints and
to distinguish irregular activities, such as a fall, from other
daily life activities of the user. In this context, a fall detection
system based on the principles of Doppler radars was proposed
in [11] and [12]. The authors of [3] exploited combined range-
Doppler features to propose a more reliable fall detection
system. The use of a multiple range-Doppler radar for increas-
ing the reliability of the fall detection system was proposed
very recently in [13]. In order to monitor the daily behaviour
of individuals at risk of deteriorating physical or cognitive
health, analysis of radar signatures for fall detection and
classification of human indoor activities has been presented
in [14]. The system proposed in [15] applies the frequency
distribution trajectories corresponding to the velocities of the
movements while falling to a hidden Markov model. In [16],
the signal strength data collected from an RFID sensor was
used for activity recognition purposes. In [17], an ultra-wide

2see https://www.lifeline.philips.com/safety-solutions.html
3see http://www.sense4care.com/en/products/angel4-whiteblack



band (UWB) radar was used to detect the fall incident based
on the temporal characteristics of the channel. The authors
of [18] studied the radio characteristics of a measured channel
at 5.9 GHz to detect in-home fall incidents. A theoretical study
on the influence of walking people on the Doppler spectral
characteristics of indoor channels can also be found in [19].
The WiFall system [20] analyzes the channel state information
(CSI) of an off-the-shelf WiFi access point to detect irregular
activities at home. In this approach, the CSI tool released
by Halperin et al. is very beneficial, allowing for detailed
measurements of the wireless channel along with received
802.11 packet traces [21]. Different from the received signal
strength indicator (RSSI), capturing merely the total received
power, the CSI contains detailed information about of each
subcarrier and the corresponding power delay profile [22]–
[25]. A comprehensive survey of activity recognition systems
based on the aforementioned approaches can be found in [26].
The radio tomographic imaging approach has also been used
for fall detection purposes. In this approach a radio sensor
network is employed to measure the link attenuation caused by
moving objects, followed by applying a hidden Markov model
to detect irregular variations caused by the fall incident [27].
A hidden Markov model-based detection approach has also
been applied to RSSI collected from a dense network of WiFi
compliant radio devices (operating at 2.4GHz) installed in a
shared workspace [28]. More recently, Kianoush et al. has
proposed a real-time system that leverages RSSI for human
body motion sensing with focus on joint body localization
and fall detection [29].

The new fall detection approach is still in its early stages
of development and requires fundamental research studies to
become mature enough before entering the production phase.
One of the key existing gaps in the literature is a sound
analytical channel model and the corresponding simulation
model that can accurately capture the non-stationarity of the
underlying real-world radio channel. The majority of the
existing literature build directly on empirical data collected
from very site-specific and scenario-dependent measurement
campaigns. Nonetheless, theoretical and simulation models
allow us to study the underlying radio channel under a variety
of propagation conditions, operating frequencies, transmit-
ter/receiver locations, and user mobility patterns just to name a
few. In addition, they enable us to study and compare different
metrics (channel characteristics) for developing reliable fall
detection algorithms. They also give us the opportunity to
conduct more insightful measurement campaigns and field
trials.

To fill the aforementioned gap, this paper develops a non-
stationary indoor radio channel model that allows for investi-
gating fingerprints of the home user on the channel characteris-
tics and for studying the responsiveness of those characteristics
to mutli-scale variations of the channel. We design a stochastic
trajectory model to capture both targeted and non-targeted
mobility patterns of the user in the three-dimensional (3D)
space. The model is featured with an optional forward fall
mechanism that can simulate a fall at a random point along
a walking path if actuated. A fixed-to-fixed (F2F) communi-
cations scenario in the presence of some fixed scatterers due

to static objects in the environment and a cluster of moving
scatterers, accounting for the body of home user, is considered.
A stochastic process is proposed for modelling the time-variant
(TV) multipath fading effect caused by both fixed objects and
the cluster of moving objects at home. Analytical expressions
for the spectral properties of the channel are derived and their
responsiveness to variations of the channel is studied. It is
shown that the Doppler power spectral density (PSD) is clearly
fingerprinted by the fall incident. The results are verified by
performing spectrogram analysis as an alternative approach
to study the time-frequency behaviour of the non-stationary
channel. Moreover, it is demonstrated that the instantaneous
mean Doppler shift and the instantaneous Doppler spread
contain very useful information about the mobility pattern of
the home user. A non-falling scenario in which the user walks
safely through the propagation area is also examined, showing
that the spectral properties of the channel change in a much
smaller order, but is still traceable. The model is verified by the
experimental results collected from a measurement campaign
conducted at 5.9 GHz [18].

The novelty of this paper arises not only from the proposed
non-stationary channel model itself, but also from the embed-
ded 3D stochastic trajectory model. This model is an extension
of the highly flexible 2D trajectory model based on the first
primitive of Brownian fields (BFs) [30], to which a third
dimension is added to account for sinusoidal oscillations of a
walking person along the vertical axis. The model captures key
kinematical features of a walking person [31], and gives a fully
time-independent trajectory, to which different speed scenarios
can be applied. In this paper, we focus on a single realization
of the proposed stochastic trajectory model. Nonetheless,
the model proposed in this paper gives the opportunity of
analyzing the statistical properties of the channel under a large
number of trajectories. It is emphasized that this paper does
not aim at designing fall detection algorithms, but introducing
theoretically sound channel characteristics that can be used for
fall detection algorithm design purposes.

The remainder of this paper is organized as follows. Sec-
tion II introduces the 3D stochastic trajectory model, while
Section III employs that model to develop an in-home radio
propagation channel model. The complex channel gain of
the proposed non-stationary channel model is presented in
Section IV, while its spectral properties are investigated in
Section V. Section VI demonstrates the simulation results
and verifies the model. Eventually, Section VIII concludes the
paper and outlines future research lines.

II. HUMAN WALKING TRAJECTORY MODEL

A. Modelling a Random Walk Without a Fall

In [30], a 2D trajectory model based on the primitives of
BFs was developed to capture the trajectory T2D of a mobile
station starting from (xs, ys) and terminating at or in the
vicinity of a predefined destination point (xd, yd). The random
trajectory T2D based on the first primitive of BFs is given by
the following set of pairs

T2D:=

{
(x(l),y(l))

∣∣∣∣ x(l)=xs+kd lδx + σxW x(l, kb)
y(l)=ys+kd lδy + σyW y(l, kb)

}
(1)
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where l = 1, 2, ..., L denotes the position index, and L repre-
sents that of the terminating point. The terms δx = (xd−xs)/L
and δy = (yd − ys)/L stand for the deterministic increments
along the x- and y-axis, respectively. The parameter kd is a
drift switch to control the presence of a predefined drift evolv-
ing the trajectory towards the destination point (xd, yd). The
parameter σx (σy) controls the randomness of the trajectory
process px(l) (py(l)) along the x-axis (y-axis).4 Furthermore,

the partial random bridge W x(l, kb) = 1Bx(l)− kb l
L

1Bx(L)

models the randomness of the trajectory along each axis by
means of the first primitive 1Bx(l) of the standard BF Bx(l)
associated with the x-axis. The bridge parameter kb accounts
for the integration degree of the bridge to the destination point.

It is known from the kinematics of walking (gait cycle) [31]
that the apparent height z(l) of a walking person can be best
modelled by the sinusoidal function

z(l) = zh+αh cos(ωGl + θ0) (2)

where zh is the actual height of the underlying body part, αh is
an experimental parameter proportional to the actual hight H
of the person, θ0 is a uniformly distributed initial phase, and
ωG determines the frequency of oscillations along the z-axis.
Herein, it is assumed that the trajectory of a sample scatterer
(a body part) along the z-axis is also modelled by a similar
sinusoidal function that has been lifted to the corresponding
height (of that body part).

We extend that the two-dimensional (2D) model in (1) by
adding a third dimension according to (2) to account for
vertical oscillations of the walking person along the z-axis.
The resulting extended 3D human walking trajectory T3D can
then be determined by the following set of triples5

T :=

(x(l),y(l), z(l))

∣∣∣∣∣∣
x(l)=xs+kd lδx + σxW x(l, kb)
y(l)=ys+kd lδy + σyW y(l, kb)
z(l)=zh+αh cos(ωGl + θ0)

 .

(3)

The extended trajectory T in (3) allows for different hori-
zontal configurations of the path arriving at: 1) a predefined
destination point (xd, yd) in the horizontal plane if kb = kd =
1; 2) a predefined target zone with a known radius and centre
if 0 < kb < 1; 3) a totally random point if kb = 0; or 4) the
starting point (xs, ys) when modelling a circularly closed loop
path using kb = 1 and kd = 0. Therefore, the model in (3)
is very useful for analyzing the impact of different mobility
patterns of the home user on the underlying radio channel
model.

In this paper, we focus on a special case of the random
trajectory in (3), in which kb = kd = 1 and σx = σy , meaning
that the trajectory is fully targeted towards a predefined des-
tination point, while the variations (controlled by σ(.)) of the
trajectory in the horizontal plane are statistically symmetric.
In this case, the maximum distance σmax from the shortest
trajectory (straight path) equals σx

√
L3/48 [32]. This special

case results in very focused TV angle-of-motions (AOMs) (see

4Note that due to the symmetry of the proposed trajectory model in the
horizontal plan, the statistical characteristics of x(l) and y(l) are the same.

5For the sake of brevity, henceforth we use T in place of T3D .

Fig. 7 in [32]) towards the predefined destination point. This
property of the trajectory will help us to design a forward fall
mechanism.

A single realization of (3) generates a master trajectory T .
It is assumed that this master trajectory explains the spatial
behavior of each body part if it is shifted to the corresponding
starting point (xs, ys, zh) (associated with that body part).
Herein, the number of NM moving scatterers (starting points)
is considered. The corresponding trajectories are then denoted
by T 1, T 2, ..., T NM .

B. Modelling a Random Walk with Forward Fall

To this aim, we consider a rounded outcome of the uniform
distribution between 1 and L as the position index lFP of
the fall point. It is assumed that the falling phase happens
within lFP ≤ l ≤ lFP + LF , where LF is the length of
the falling phase. This can be supported by the measurement
studies in [33], showing that both the vertical speed Sv and
the horizontal speed Sh of a walking person starts increasing
some milliseconds before the actual fall and keeps increasing
until the fall is completed.

Let znM (l) denote the time-varying height of the nM th
moving scatterer (body part). Then, running the recursive
equation

znM (l) = znM (l − 1)− znM (lFP )/LF (4)

for lFP + 1 ≤ l ≤ lFP +LF reduces the height to zero within
LF steps.

Accordingly, the height reduction mechanism above is ap-
plied to NM sample trajectories T 1, T 2, ..., T NM associated
with the NM moving scatterers. It is assumed that the fall point
index lFP is the same across all these trajectories. Given the
special case kb = kd = 1 discussed in Sec. II-A, the horizontal
evolvement of the path (the azimuth AOM) is statistically
towards a particular destination point (see Fig. 7 in [32]). Such
a horizontal evolvement combined with the proposed height
reduction mechanism assures the generation of a forward fall
along the intended path.

It is noteworthy that at the end of a real fall, different
body parts (scatterers) will not have a zero-level height. Given
the fact that those scatterers become motionless at the end
of the fall, such detailed consideration does not have any
major impact on the time-frequency behavior of the channel.
With this in mind, we assume that when the falling phase
is completed, the NM scatterers are at the floor level (zero
height). This helps us to reduce the model complexity by
ignoring less important factors (in this particular context).

C. Extension to Arbitrary Speed Profiles

A novel feature of T in (3) is its fully spatial formulation in
position, rather than time. This gives the chance of applying
arbitrary speed scenarios to a particular path configuration.

Let us focus on a non-falling scenario. The 3D trajectory
T (.) of the user is obtained by connecting the L points, i.e.,
(x(l), y(l), z(l)) (l = 1, 2, ..., L) generated by (3). Hence,
there exist L − 1 incremental sub-trajectories that connect
pairs of consecutive points. An arbitrary speed of shnM ,l
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(svnM ,l) can then be considered as the horizontal (vertical)
speed of the nM th body part (moving scatterer) along the
lth sub-trajectory. Accordingly, an arbitrary speed vector of
[shnM ,1, s

h
nM ,2, ..., s

h
nM ,L−1; svnM ,1, s

v
nM ,2, ..., s

v
nM ,L−1] can be

mapped to the whole 3D trajectory T nM , explaining the
temporal behaviour of the nM th moving scatterer (associated
with the walking person) along the path.

For the falling scenario, the whole trajectory is divided
to three phases, namely the walking phase, falling
phase, and the lying-on-the-floor phase. An arbitrary
matrix [shnM ,1, ..., s

h
nM ,lFP−1;

svnM ,1, ..., s
v
nM ,lFP−1] is assigned to the lFP − 1

sub-trajectories, representing the speed characteristic
of the nM th part of the body within the walking
phase (before the fall). A second matrix of
speeds [shnM ,lFP , ..., s

h
nM ,lFP+LF

; svnM ,lFP , ..., s
v
nM ,lFP+LF

]
determines the speed of the nM th moving scatterer within
the falling phase. In Sec. VI, we employ the standard speed
characteristics of a walking/falling person obtained from
video signal processing in [33]. After the fall, it is assumed
that both the horizontal and vertical speeds of the user equal
zero, thus there will be no more evolvement of the path when
the incident is completed.

III. PROPAGATION SCENARIO

An in-home F2F propagation scenario in which the transmit-
ter (Tx) is set on the floor and the receiver (Rx) is mounted on
the ceiling of the room is assumed (see Fig. 2)6. The position
of the Tx (Rx) is denoted by (xT , yT , zT ) ((xR, yR, zR)). The
line-of-sight (LOS) between the Tx and the Rx is blocked
intentionally. A total number of NF + NM scatterers is
assumed to be in the propagation area. The static objects
in the room, including the walls, are modelled by NF fixed
scatterers (black stars in Fig.2) located at (xSnF , y

S
nF , z

S
nF ).

It is assumed that the reverberation effect between the fixed
and moving scatterers does not exist. It follows that fixed
scatterers are not very important, as they do not contribute to
the Doppler effect7. A cluster of NM moving scatterers SMn
accounts for the parts of the body, such as the head, hands,
and the legs, of the home user. We use a single realization of
the random trajectory T in (3) to determine the TV positions
(xSnM (l), ySnM (l), zSnM (l)) of all moving scatterers, but with
slightly different starting points.

It is assumed that a plane wave emitted from the Tx with
an azimuth angle-of-departure (AOD) αTn (l) and an elevation
AOD βTn (l) reaches the Rx with an azimuth angle-of-arrival
(AOA) αRn (l) and an elevation AOA βRn (l) after a single
bounce scattering with the nth scatterer S

(.)
n . If the nth

scatterer SFn is fixed, none of those angles change in time.

6This setting is chosen to be inline with a measurement scenario that we
performed. Otherwise, the model is very general and can capture various
scenarios and settings.

7In practice, zero-Doppler frequencies might not be entirely suppressed if
a frequency offset between the Tx and Rx exists. The quality of suppression
is also determined by the characteristics of the designed filter. In theory, one
can subtract two consecutive power delay profiles in time such that the delay
contribution of the waves arriving from fixed scatterers is removed, while that
of the moving objects remains.

Furthermore, it is assumed that both the Tx and the Rx are
equipped with a single omnidirectional antenna.

In the non-falling scenario, it is assumed that the person
walks according to T and reaches successfully the planned
destination point, whereas in the falling scenario, the forward
fall mechanism is triggered at a random point along the path,
stopping the further evolvement of the trajectory after the
completion of the falling phase (see Sec. II-B).

IV. MODELLING THE COMPLEX CHANNEL GAIN

To model the complex channel gain associated with the
propagation scenario above, the model in [34, pp. 45–48]
is extended by considering the principles of non-stationary
multiple-component signals discussed in [35, pp. 19–21].
This expansion allows the Doppler frequencies fn(t) and the
propagation path gains cn(t) to vary in time t or equivalently
in the position index l. Accordingly, the complex channel gain
µ(t) under the NLOS propagation condition is modelled at
time t by the following process

µ(t) = µF + µM (t) =

NF∑
nF=1

cnF e
jφnF

+

NM∑
nM=1

cnM (t)e
j

(
2π

∫ t

0

fnM (t′)dt′ + φnM

)
(5)

representing the sum µF of scattered components due to the
NF fixed scatterers and the sum µM (t) of TV components
caused by the NM moving scatterers.8 In the equation above,
the propagation path gain cn(.)

(l) is given by a negative path
loss exponent γ applied to the total travelling distance9

Dn(.)
(t) = DT−S

n(.)
(t) +DS−R

n(.)
(t)

=
(

(yT − ySn(.)
(t))2 + (xT − xSn(.)

(t))2

+ (zT − zSn(.)
(t))2

) 1
2

+
(

(ySn(.)
(t)− yR)2

+ (xSn(.)
(t)− xR)2 + (zSn(.)

(t)− zR)2
) 1

2

(6)

of the n(.)th plane wave, i.e., cn(.)
(l) = CD−γn(.)

(t), where the
constant C accounts for the Tx(Rx) antenna gain, transmission
power, and the wave length (see [36], [37]). For the nF th
fixed scatterer, the distance DnF (t) does not change in t, thus
cnF (t) = cnF . The phase shift φn(.)

in (5) is a uniformly
distributed random variable between −π and π, accounting
for the physical interaction of the emitted wave with the n(.)th
fixed/moving scatterer (see [34, p. 47] and [38, p. 59])). It is
assumed that these phase shifts are independent and identically
distributed random variables.

The Doppler shift fnM (t) caused by the nM th moving
scatterer10 is given by

fnM (t) = fnM ,max(t)
[
cos(ΘTS

nM (t)) + cos(ΘSR
nM (t))

]
(7)

8The equivalent notation tl (subscripted by the corresponding position
index) will be used if such a representation helps to the clarity of the subject.

9The dot (.) refers to the applicability of the formula/notation to both fixed
and moving scatterers.

10Moving scatterers contribute to the frequency shift with a so-called double
Doppler effect; once during the reception of the signal and once during its
retransmission. This effect has been studied, e.g., in [39].
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in which Θ
(.)
nM (t) is the TV spatial angle between the arriving

(departing) wave vector at (from) the nM th moving scatterer
and the velocity of that scatterer. Fig. 1 shows the geometry
of the propagation mechanism for the nM th moving scatterer.
The TV maximum Doppler frequency fnM ,max(t) equals

fnM ,max(t) =
f0
c0

√
(shnM ,t)

2 + (svnM ,t)
2 (8)

where f0 denotes the carrier frequency, c0 is the speed of light,
and s(.)nM ,t represents the horizontal/vertical speed of the nM th
moving scatterer (associated with the user body) along the
corresponding sub-trajectory. It is noteworthy that the actual
maximum Doppler frequency is 2fnM ,max(t), which occurs if
ΘTS
nM (t) = ΘSR

nM (t) = 0. Nonetheless, we use the traditional
appearance of the maximum Doppler frequency to stay in line
with the existing literature.

According to the spherical law of cosines [40, pp. 33–40],
the Doppler frequency fn(t) in (7) can be rewritten in the
following form

f nM (t) = fnM ,max(t)

×
[
sin(βTnM (t)) sin(βnM ,v(t)) cos(αTnM (t)−αnM ,v(t))

+sin(βRnM (t)) sin(βnM ,v(l)) cos(αRnM (t)− αnM ,v(t))
+cos(βTnM (t)) cos(βnM ,v(t))+cos(βRnM (t)) cos(βnM ,v(t))

]
(9)

in which

αnM,v(t)=atan2
(
ySnM (tl+1)−ySnM (tl), x

S
nM (tl+1)−xSnM(tl)

)
(10)

and

βnM ,v(t) = atan2
(
zSnM (tl+1)− zSnM (tl), dnM (t)

)
(11)

denote the TV azimuth AOM and the elevation AOM of
the nM th moving scatterer, respectively, and atan2(y, x) is
the four-quadrant inverse tangent function11. In the equation
above, the incremental distance dnM (t) between two consec-
utive points of the trajectory T nM on the horizontal plane is
computed as

dnM (t)=

√(
xSnM (tl+1)−xSnM (tl)

)2
+
(
ySnM (tl+1)−ySnM (tl)

)2
.

(12)

The angles

αTnM (t) = atan2
(
ySnM (t)− yT , xSnM (t)− xT

)
(13)

and

βTnM (t) = atan2
(
zSnM (t)− zT , dSTnM (t)

)
(14)

represent the TV azimuth and elevation AOD from the Tx to
the nth moving scatterer SMn , respectively, where

dSTnM (t) =
√

(xSnM (t)− xT )2 + (ySnM (t)− yT )2. (15)

11Despite the inverse tangent function atan(y/x), whose results are limited
to the interval (−π/2, π/2), the four-quadrant inverse tangent function
atan2(y, x) returns the angle of vector (x, y) with the positive x-axis in the
range (−π, π).
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Fig. 1. The geometry of the propagation mechanism for the nM th moving
scatterer, illustrating the TV spatial angles of arrival ΘTS

nM
(t) and departure

ΘSR
nM

(t) at and from that scatterer.

Finally, the angles αRnM (t) and βRnM (t) stand for the TV
azimuth and elevation AOA at the Rx, which can be formulated
by replacing (xT , yT , zT ) by (xR, yR, zR) in (13) and (15),
respectively.

Given a sample trajectory generated by (3), all the param-
eters of the complex channel gain in (5) are deterministic
values, except the random phases φn(.)

. Nonetheless, one
can step further to investigate the statistical properties of the
channel by running thousands of different, yet statistically
similar, trajectories generated by the same model. A guideline
for studying stochastic non-stationary fading channels under
the assumption of random trajectories can be found in [41].

V. SPECTRAL PROPERTIES OF THE CHANNEL

In this section, the spectral characteristics of the channel,
such as the local Doppler PSD, spectrogram, instantaneous
mean Doppler shift, and the instantaneous Doppler spread are
studied. Further details on the behavior of these properties
and their responsiveness to a fall incident will be discussed
in Sec. VI.

A. Local Doppler Power Spectral Density

The local Doppler PSD explains the time-frequency be-
haviour of the non-stationary channel. It can be shown that
the variations of the gains cnM (t) are much smaller than
those of the phases of µM (t) in (5). This assures the spectral
disjointness of those two TV quantities ruling µM (t) (see [35,
pp. 14-15]). Accordingly, the local Doppler PSD can be con-
sidered as the power-weighted distribution of Doppler shifts
in time. From the deterministic TV Doppler frequency fnM (t)
in (9) and the path gains cnM (t), the local PSD Sf (f, t) of
the Doppler frequencies can be approximated by

Sf (f, t) ≈
NM∑
nM=1

c2nM (t)δ(f − fnM (t)) (16)
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representing the impact of NM moving scatterers on the
channel spectrum. The remaining NF fixed scatterers do not
shift the carrier frequency f0, and thus do not contribute to
the local Doppler PSD.

The drawback of this approach is the need for the direct
access to detailed Doppler frequency values, which are not
necessarily realizable. Nevertheless, the local PSD Sf (f, t)
in (16) provides a very good theoretical benchmark for other
possible approaches. In what follows, a more practical method
of time-frequency analysis of such a non-stationary channel is
introduced.

B. Spectrogram Analysis

A second approach to study the time-frequency distribution
of the channel is to perform spectrogram analysis on the
complex channel gain process µ(t) in (5). This is done by first
multiplying µ(t) with a sliding window function w(t′−t), i.e.,

x(t′, t) = µ(t)w(t′ − t) (17)

where w(t) is a positive even function with normalized energy,
and then applying the Fourier transform to the windowed
signal x(t′, t) with respect to t′. It follows

X(f, t) =

∫ ∞
−∞

x(t′, t)e−j2π ft
′
dt′ (18)

which results in the short-time Fourier transform (STFT) of
the original signal µ(t). The spectrogram Sxx(f, t) is then
defined as the squared magnitude of the STFT X(f, t), i.e.,

Sxx(f, t) = |X(f, t)|2 . (19)

In this paper, we employ the Gaussian window function w(t)
defined as

w(t) =
1

√
σωπ1/4

e
− t2

2σ2ω (20)

where σω is called the window spread parameter. This param-
eter determines the time/frequency resolution of the spectral
components of Sxx(f, t). Further details on adjusting σω can
be found in [42].

In Sec. VI, the local Doppler PSD Sf (f, t) in (16) is
compared with the spectrogram Sxx(f, t) in (19), showing
that both approaches result in very similar time-frequency
observations. Note that the time-frequency analysis of non-
stationary multipath fading channels using the spectrogram
approach is interfered with some artifacts in form of cross-
terms [43]. Accordingly, the results of the two aforementioned
approaches are not identical, but similar.

C. Instantaneous Mean Doppler Frequency

The instantaneous mean Doppler frequency B
(1)
f (t) is the

sum of all power-weighted Doppler shifts normalized by the
total received power associated with the incoming waves. It
follows [44]

B
(1)
f (t) =

NM∑
nM=1

c2nM (t)fnM (t)

NM∑
nM=1

c2nM (t) +
NF∑
nF=1

c2nF

(21)

where fnM (t) is given by (9).
Analogously, a second approach to compute the instanta-

neous mean Doppler shift is to use the spectrogram Sxx(f, t)
of the complex channel gain process µ(t). The instantaneous
mean Doppler shift B(1)

xx (t) can then be formulated as [19]

B(1)
xx (t) =

∫ +∞
−∞ fSxx(f, t) df∫ +∞
−∞ Sxx(f, t) df

(22)

where Sxx(f, t) is given by (19).
In Sec. VI, it is shown that B(1)

f (t) and B
(1)
xx (t) closely

follow each other and that of the empirical results.

D. Instantaneous Doppler Spread

The instantaneous Doppler spread B
(2)
f (t) of the non-

stationary channel can be computed by the following expres-
sion [44]

B
(2)
f (t) =

√√√√√√√√
NM∑
nM=1

c2nM (t)f2nM (t)

NM∑
nM=1

c2nM (t) +
NF∑
nF=1

c2nF

−
(
B

(1)
f (t)

)2
(23)

in which B(1)
f (t) is the mean Doppler shift presented in (21).

With the same token, the instantaneous Doppler spread can
also be derived from the spectrogram Sxx(f, t) in (19). It
follows [19]

B(2)
xx (t) =

√√√√∫ +∞
−∞ f2Sxx(f, t) df∫ +∞
−∞ Sxx(f, t) df

− (B
(1)
xx (t))2 (24)

where B(1)
xx (t) is the mean Doppler shift in (22) obtained from

the spectrogram approach.
The simulation results (see Sec. VI) will show that B(2)

f (t)

and B(2)
xx (t) are in close agreement.

VI. SIMULATION RESULTS

A. Parameter Settings and Procedures

It is assumed that the propagation area consists of a cluster
of NM = 5 moving scatterers, accounting for the head, hands,
and the legs of the home user, as well as the number of
NF = 5 fixed scatterers12. A person with an actual height
H of 178 cm is considered. For such a height, experimental
results [31] show that the parameter αh is about 2.7 cm
and the step length is about 73 cm, allowing for the gait

12The body parts are of course more than those considered in this paper.
The neck, chest, abdomen, elbows, and the feet are examples of other parts
that influence the propagation mechanism. To which extent and which form
(scattering/reflection/diffraction) is a question that can hardly be answered. In
this paper, our aim is to develop a realistic model that can fairly explain the
propagation mechanism in the presence of a human body represented as a
cluster of moving objects. As the paper concludes later, the proposed channel
model is able to deliver verifiable characteristics with the consideration of
only five moving scatterers (representing the five body parts). We remark that
in the context of radio channel modelling, the higher number of scatterers adds
to the complexity of the model due to parametrization tasks and theoretical
analysis artefact (e.g., cross-terms of spectrogram analysis). In this context,
studying the impact of number of scatterers and/or their sizes on the modelling
performance is a topic worth studying, but is not the objective of this paper.
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frequency wG of nearly π. It is assumed that the home user
starts walking from the origin (xs, ys) = (0 m, 0 m) of the
Cartesian coordinates13 to reach the preplanned destination
point (xd, yd) = (3 m, 4 m) via a single realization of the
3D random trajectory T . The trajectory of a normal walk
consists of 1200 points indexed by l = 1 (starting point) until
l = L = 1200 (destination point), allowing for a comparable
resolution with respect to our measurement results. The initial
phase θ0 of the gait cycle is assumed to be zero. The maximum
distance σmax from the shortest trajectory (straight path) is set
to 1 m.

The user starts accelerating from a zero speed to a constant
walking speed within lC steps. The vertical (horizontal) speed
of the person within the walking phase is set to 0.1 m/s (1 m/s),
i.e., shnM ,l = 1 m/s (svnM ,l = 0.1 m/s) for all nM = 1, 2, ..., 5
and l = lC , ..., lFP − 1. These values are in line with those
obtained from video signal processing in [33] and close to
those reported in [45]. If a fall does not happen (lFP does
not exist), the person keeps walking at the same speed.
Otherwise, the whole body starts accelerating to a final speed
of s(.)nM ,lFP+LF

= 2.5 m/s within LF steps. When the falling
phase is completed, the user is assumed to be motionless along
all directions.

The operating frequency of f0 = 5.9 GHz is considered
in our simulations. The same frequency was used before to
collect empirical results from an indoor radio measurement
campaign [18]. As shown in Fig. 2, Tx and Rx are assumed to
be placed on the floor and the ceiling of the room, respectively.
The free-space path loss exponent is set to γ = 2, which suits
best to our lossless single-bounce scattering scenario, while
the constant C is set to 1.

Given the settings above, the simulation results have been
produced by taking the following steps: 1) The number of
5 trajectories have been generated according to a single
realization of (3), but placed at different starting points (of
the motion) (xs, ys, zh). For instance, we have considered
a sample scatterer at (0, 0, 1.78) m to account for the head,
while the right leg is represented by a sample scatterer
with initial coordinates of (0.2,0.2,0.4) m. The forward fall
mechanism (see Sec. II-B) has been applied if needed; 2)
When the trajectories are generated, the 3D coordinate of each
point scatterer is fully known all along the path. Given two
consecutive points, the elevation (azimuth) angle of motion is
computed using simple tangent relationships. The positions of
the Tx and Rx are also know. Then, the elevation (azimuth)
angle of arrival (departure) at (from) each point is computed.
From the calculated quantities, 3) the Doppler shifts fnM (l)
have been computed (see (9)); 4) The spectral characteristics,
including the local Doppler PSD, spectrogram, instantaneous
mean Doppler shift, and the instantaneous Doppler spread have
been computed according to their equations derived in Sec.V;
5) The results have been demonstrated and interpreted.

13The x−y plane (home floor) is sufficient for addressing the starting and
the terminating point of the walking user at home.
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Fig. 2. An in-home propagation area, illustrating the trajectory of the home
user in a non-falling scenario.

B. Results

Figs. 2 and 3 illustrate the trajectories of the cluster of
5 moving scatterers (representing the home user) for the
non-falling and falling scenarios, respectively. The user starts
walking from the origin and aims at reaching the shown
destination point. In the non-falling scenario, the user arrives
successfully at the destination point after about t = 10 s,
whereas in the falling scenario, the user fails to do so because
of a random fall incident happened at t = 6.3 s (or equivalently
lFP = 780). The falling phase is completed within LF = 100
steps, allowing for a forward fall of about 1 m length in the x−y
plane and along the planned trajectory. For given sv and sh

vectors (of length 100) associated with the increasing vertical
and horizontal speed profiles of the user within the falling
phase (see Secs. II-C and VI-A), the acceleration vectors av

and ah can be obtained. It follows that the falling phase is
completed within 0.8 s, indicating a normal fall. With reference
to both figures, the proposed trajectory model can capture
sinusoidal oscillations of the body seen in actual human walks.
Ignoring these small-scale vertical oscillations, it can be seen
that the large-scale distance between the cluster of moving
scatterers (mobile user) and the transceiver first decreases and
then increases. This increase is followed by the continuation
of the normal walk towards the destination point (see Fig.2)
or by the occurrence of the fall (see Fig.3).

The signal envelope |µ(t)| (see (5)) corresponding to both
falling and non-falling scenarios is shown in Fig. 4. Both
curves show the fading behavior of the indoor channel within
the observation time. Within the falling phase, i.e., 6.3 ≤ t ≤
7.1 s, the curves associated with the falling scenario shows
more fluctuations, but still cannot be readily distinguished
from that of the non-falling scenario. This indicates the
difficulty of recognizing rapid variations of the channel in the
time domain, thus motivating us to investigate the spectral
properties of the channel. After completion of the fall, the
complex channel gain µ(t) in (5) becomes time-invariant,
resulting in a constant signal envelope for t ≥ 6 s, wherefrom
the two curves become discernible. It is, however, noteworthy
that in real-world indoor channels, where moving scatterers
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Fig. 3. An in-home propagation area, illustrating the trajectory of the home
user in a falling scenario.
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Fig. 4. The signal envelope |µ(t)| (see (5)) associated with the falling and
the non-falling scenarios.

are inherent elements of the propagation area, such a time-
invariant signal envelop can hardly be measured. Developing
more advanced channel models capturing permanent moving
scatterers is therefore a topic for our future studies.

Fig. 5 demonstrates the local Doppler PSD Sf (f, t)
(see (16)) of the channel for the non-falling scenario. At
each time instant (position index l), there exist 5 Dirac delta
functions associated with the Doppler shifts of the plane waves
arriving from the five moving scatterers. As time passes and
the path evolves (see 2), the position of these delta functions
and their magnitude experience some small-scale fluctuations
due to the vertical oscillations of the scatterers, and some
large-scale changes caused by the main mobility pattern of
those scatterers in the horizontal plane. For the first three
seconds, the Doppler shifts fnM (t) increase from zero (initial
stop) to about 15 Hz, confirming the initial acceleration of the
user for a normal walk. As the user approaches the vicinity
of the RX/TX, the Doppler shifts fnM (t) decrease and the
magnitudes c2nM (t) increase. The decrease in the Doppler
shifts is due to the fact that the AOAs (AODs) at(from) the
scatterers approach the right angle (90◦), while the increase

in the magnitudes can be attributed to the path loss effect
captured by cnM (t) = CD−γnM (t) (see Sec. IV). This trend
holds until almost the middle of the path, wherefrom the user
starts distancing from the transceiver, explaining the reduction
of the received power and the enlargement of the Doppler
frequency shifts towards negative values. For t > 7, the
Doppler components vanish, as the person start decelerating
to a zero speed. The small-scale fluctuations of the PSD in
time (position) originate from the sinusoidal movements of
the scatterers along the z-axis. Other settings of Tx/Rx can
magnify such variations.

Fig. 6 exhibits the spectrogram Sxx(f, t) (see (19)) of the
process µ(t) associated with the non-falling scenario using
a Gaussian window of size σω = 50 ms. The figure shows
the time-frequency distribution of µ(t) as the person walks in
the room. The illustrated spectrogram Sxx(f, t) provides an
estimation of the local Doppler PSD Sf (f, t) of the process
µ(t) shown in Fig. 5. In line with our previous observations,
Sxx(f, t) shows an S-shape within ±15 Hz, demonstrating
oscillatory frequency components that change in time. These
frequency components are positive within almost the first
4 seconds, as the user approaches the Tx/Rx, then become
negative as the user leaves the transceiver. The higher values
of Sxx(f, t) around t = 4 s and/or f = 0 Hz are due to the
shorter travelling distances of radio waves at the vicinity of
Tx/Rx. The oscillatory behavior of the frequency components
is caused by the height variations of the user within a normal
walk process. The time-invariant zero frequency component
is due to the presence of fixed scatterers in the propagation
environment, while the time-invariant spread around f = 0 Hz
is an artifact caused by the spectrogram analysis. Note that
the spectrogram analysis suffers from physically unexplainable
artifacts in form of interfering cross-terms [43]. The zero
frequency (and the corresponding spread) cannot be observed
in Fig. 5, as Sf (f, t) in (16) models only non-zero Doppler
frequencies caused by moving scatterers.

Fig. 7 shows the Doppler PSD Sf (f, t) of the falling
scenario. Before occurring the fall at t = 6.3 s, the curve
behaves very similar to that of the non-falling scenario.
The minor differences are due to the randomness of the
proposed trajectory model, which has resulted in 2 different,
yet statistically similar, trajectories. When the fall incident
occurs, the PSD tends sharply towards negative Doppler shifts.
This is because of the rapid departure (falling down) of the
cluster of moving scatterers from the receiver (mounted on
the ceiling) towards the floor. The considerable growth of the
vertical/horizontal speed within the falling phase results in the
remarkable rise of the Doppler shifts from about -10 Hz to -
50 Hz within just 0.8 s. A second large variation of the PSD is
observed at t = 7.1 s, when the falling phase is completed and
the user becomes motionless. This results in a zero Doppler
shift for t > 7.1 s. It is also worth-mentioning that when
the fall occurs, the trajectory of the user along the z-axis is
determined by the height reduction mechanism in (4), thus no
more oscillatory variations of the PSD can be seen.

Fig. 8 represents the results of the spectrogram Sxx(f, t)
(see (19)) analysis associated with the falling scenario using
a Gaussian window with the spread parameter σω = 0.03 s.
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Fig. 5. The PSD Sf (f, t) (see (16)) of the Doppler frequencies fnM (t) for
the non-falling scenario.

Fig. 6. The spectrogram Sxx(f, t) (see (19)) of the complex channel gain
process µ(t) for the non-falling scenario.

Similar to the observations in Fig. 7, Sxx(f, t) contains fre-
quency components that changes in time, confirming the non-
stationarity of the proposed channel model. These frequency
components are oscillatory within the first 6.3 seconds, as
the user is walking normally towards the Tx/Rx. Upon the
occurrence of the fall, the Doppler frequency components rise
significantly to -50 Hz within just 0.8 s. When the fall is com-
pleted, those negative frequency components turn suddenly
into near-zero frequency components, as the user become
static, adding to the impact of static objects in the room.
For t ≥ 7.1 s, the time-invariant frequency spread around
f = 0 Hz is generated by the interfering cross-terms caused
by spectrogram analysis. Comparing Figs. 6 and 8, one can
observe the major difference between the order of the Doppler
shifts appearing as a result of a fall incident and/or a normal
walk. This major difference can assist system designers in the
development of robust detection algorithms based on the time-
frequency behavior of the channel.

Fig. 9 demonstrates the instantaneous Doppler spread
B

(2)
f (t) and B(2)

xx (t) obtained from (23) and (24), respectively.
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Fig. 7. The PSD Sf (f, t) (see (16)) of the Doppler frequencies fnM (t) for
the falling scenario.

Fig. 8. The spectrogram Sxx(f, t) (see (19)) of the complex channel gain
process µ(t) for the falling scenario.
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Fig. 9. The instantaneous Doppler spread B
(2)
f (t) and B

(2)
xx (t) obtained

from two different approaches (see (23) and (24)) and associated with the
falling and the non-falling scenarios.
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Before t = 6.3 s, both pair of curves show similar fluctuating
behaviour. The difference between the curves of each pair
is due to the cross-term interference (as discussed before),
while the difference between the two pairs is caused by the
employed random trajectories generated by (3). The general
reduction of the Doppler spread at around t = 4 s, when the
AOM is almost perpendicular to the AOA, is because of the
convergence of all TV Doppler shifts to zero. When the the
fall occurs, the Doppler spread increases significantly. This is
due to the major and diverse contribution of the AOMs (of
the body parts) to the Doppler shift. After the falling phase,
B

(2)
f (t) vanishes because all Doppler shifts converge to zero.

However, B(2)
xx (t) reduces to a non-zero value, which remains

constant over time. This non-zero Doppler spread is attributed
to the frequency components of cross-terms interfering the
spectrogram analysis. A similar observation can be made
in Fig. 8, where some time-invariant frequency components
remain even after the completion of the fall at t = 7.1 s. The
sharp peak of the Doppler spread within the falling phase is
about 3 times larger than the average Doppler spread within
the walking phase, also differs significantly from the near-zero
Doppler spread after the completion of the fall. Accordingly,
the instantaneous Doppler spread can be considered as an
indication of a fall incident, thus can be used for the design
of fall detection algorithms.

C. Verification with Empirical Results

In this section, the mean Doppler shift obtained from the
spectrogram approach and the PSD approach are validated
by the empirical results collected from a radio measurement
campaign performed at 5.9 GHz [18]. In the experiment,
the performer is asked to walk at an elderly speed, while
approaching the Tx/Rx at the first couple of seconds and then
leaving the Tx/Rx along the predefined path. To match the
simulation model against the empirical data, we have chosen
similar values for the length of the trajectory, its direction,
position of the Tx/Rx, position of the fall, and the speed of the
user as briefed in VI-A. The empirical mean Doppler shift has
been computed by applying the principle of the spectrogram
analysis (see V) to the measured complex channel gain.

Fig. 10 displays the instantaneous mean Doppler shift
B

(1)
xx (t) obtained from the spectrogram approach, B(1)

f (t)
obtained from the PSD approach, and the empirical results
collected from the indoor measurement campaign. The curves
have been obtained after filtering time-invariant near-zero
frequencies (see, e.g., those in Fig. 6) due to the fixed
objects. The three curves are in a good agreement with
each other and with our previous observations (the S-shape).
The difference between B

(1)
xx (t) and B

(1)
f (t) is expectable,

as it is caused by the fundamental difference between the
two employed approaches. The spectrogram approach comes
with cross-terms (computational interference) that affect the
instantaneous mean Doppler shift B(1)

xx (t), whereas B(1)
f (t) is

obtained from the interference-free Doppler PSD (see (16)).
In the normal walking phase, both curves show a fluctuating
increase as the person moves towards the transceiver. At the
first glance, this is in contract with our previous observations
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Fig. 10. The instantaneous mean Doppler shift B(1)
f (t) and B(1)

xx (t) obtained
from two different approaches (see (21) and (22)) in comparison with the
measured mean Doppler shift of the non-falling scenario.
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Fig. 11. The instantaneous mean Doppler shift B(1)
f (t) and B(1)

xx (t) obtained
from two different approaches (see (21) and (22)) in comparison with the
measured mean Doppler shift of the falling scenario.

and heuristic expectations, where the Doppler shifts should
decrease when moving towards the transceiver. However, this
can be explained by the increase in the path gains (shorter
wave travelling distance) as the weighting factors of the mean
Doppler shift. At almost t = 4 s, the perpendicularity of the
radio waves to the direction of motion dominates over the
increasing path gains and reduces the mean Doppler shift to
the zero level. Hereafter, the waves arrive (depart) at (from)
the back of the walking person, which results in negative mean
Doppler shifts. This trend holds as long as the person walks
along the path. When the person decelerate to come to a full
stop at the end of the trajectory, the Doppler shifts vanish,
allowing for a zero mean Doppler shift at around t = 10 s. The
behavior of the mean Doppler shift explained above complies
with the mobility pattern of the user, who was asked to first
approaches the Tx/Rx and then to leave the Tx/Rx in the
corresponding experiment (see Sec. II-B and Fig. 2 in [18]).

The corresponding three curves associated with the falling
scenario are shown in Fig. 11. A very good match between the
simulation results and empirical results can be observed. When
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the fall occurs at t = 6.3 s, the mean Doppler shift reduces
to -20 Hz. After the completion of the fall, i.e., t ≥ 7.1 s, the
theoretical mean returns to absolute zero, while the empirical
mean stays on near-zero values. This can be caused by very
slowly moving objects in the experiment environment. Note
that the obtained instantaneous Doppler frequency components
can reach up to -50 Hz (see Fig.8), but the corresponding
weighted mean is twice of that of a normal walking scenario.
Nonetheless, the difference between the TV mean Doppler
shift in Figs. 10 and 11 is completely visible. Accordingly,
one may consider the instantaneous mean Doppler shift as a
robust fall detection algorithm design metric.

VII. DISCUSSION

It is noteworthy that some daily-life activities can imprint
the time-frequency distribution of the channel with similar
signatures to those of fall incidents. Lying in bed, sitting
on chair or ground, jumping over a couple of stairs, and
chaotic movements of pets are examples of activities that either
have similar trajectory and/or temporal features to that of a
falling incident14. To reduce the number of potential false
alarms caused by such activities, the utilization of machine
learning models has been proposed in the literature (see the
systems based on the learning method in [26]). The application
of deep learning techniques has also been proposed in [46].
Those models can be improved by employing the data obtained
from the spectrogram analysis as an additional training dataset
(feature).

Our recent experimental studies (not presented here) show
that other channel characteristics, such as the level-crossing
rate and the PDP are also influenced by the activities of
the home user. For instance, the channel envelope shows a
higher number of fluctuations within the falling phase and
a relatively stable level after the completion of the falling
phase. Such variations have already been utilized for the
development of RSSI-based activity recognition algorithms
(see Sec. I). Nonetheless, our results confirm that fingerprints
of the human activity are more visible and explainable in the
time-frequency distribution of the channel compared to those
in the time domain. The frequency-domain characteristics of
the channel have also been used for the development of device-
free tracking systems. As an example, the WiTrack system
utilizes a frequency modulated carrier wave (FMCW) radar to
track 3D motions of a user [47]. This technology was then used
to develop a preventative product called Emerald, which allows
for both detecting falls and monitoring its precursors [48].

We remark that the experimental results presented in this
paper were obtained using an advanced radio channel sounder
that allows us to perform very detailed time-frequency anal-
ysis. Such measurement instruments are often very costly,
thus they are not recommended for prototyping purposes.
For developing a system prototype, commercial WiFi network

14As an example, a sitting action is normally performed at a lower speed
than a falling incident, especially if the performer is an elderly. Given the fact
that the speed of a scatterer directly affects the Doppler shift (see (7)), this
activity results in Doppler shifts smaller than those of the falling incident.
Such differences can be utilized to improve the training phase of a machine
learning model.

interference controllers and/or software defined radio units are
recommended.

It is also noteworthy that employing multiple antennas can
improve the performance of recognitions. Indeed, the resultant
spatial diversity allows for receiving multiple fingerprints of
the home occupant on the channel characteristics. These copies
can help us to develop more reliable detection algorithms
that work based on combined metrics rather than a single
one. An example of such a system is PhaseBeat, where CSI
phase difference data was used to monitor breathing and
heartbeat with commodity WiFi devices [49]. More recently,
the multiple antenna approach has also been used in the
development of a non-contact respiratory rhythm-detection
system using S-band sensing techniques [50].

VIII. CONCLUSION

In this paper, we have proposed an indoor non-stationary
channel model that can be used for the development of emerg-
ing non-wearable radio fall detection systems. The model con-
sists of a stochastic 3D trajectory model to capture the mobility
pattern of the user, a cluster of moving scatterers to account
for the body parts of the home user, some fixed scatterers to
consider static objects in the room, and a transmitter/receiver
to rule the radio communications. The proposed trajectory
model has been featured with a height reduction mechanism
along the planned path, permitting for the simulation of a
forward fall incident at a random point. The complex channel
gain has been modelled by a stochastic process, capturing
the TV Doppler effect caused by the mobility pattern of the
home user. It has been shown that the falling phase can hardly
be studied just by focusing on the signal envelope in the
time domain. Accordingly, the time-frequency behavior of the
non-stationary radio channel has been studied through two
different approaches, namely the local PSD approach and the
spectrogram approach. It has been shown that both approaches
result in similar time-frequency observations. Other spectral
properties of the channel, including the instantaneous mean
Doppler shift and the instantaneous Doppler spread have been
derived and studied. The simulation results have been verified
by the empirical ones collected from a radio measurement
campaign performed at 5.9 GHz. Simulation results have been
demonstrated for both a falling scenario and a non-falling
scenario, showing the responsiveness of the spectral properties
to the variations of the channel. It has been shown that both the
Doppler PSD and the spectrogram of the complex channel gain
are fingerprinted by the mobility of the home user, while the
instantaneous mean Doppler shift and and the instantaneous
Doppler spread render visible signs of the fall incident. It is
concluded that the spectrogram analysis is a very sound and
practical approach not only for tracking fingerprints of the fall
incident on the time-frequency distribution of the channel, but
also for studying the mobility characteristics of the home user.

Future studies on the development of fall detection algo-
rithms based on spectral channel properties are needed. The
robustness of those algorithms with respect to false alarms
needs to be examined in real-world settings. To increase the
reliability of the overall system, detection algorithms should
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be designed based on multiple spectral channel characteristics,
rather than one and/or just temporal ones. Conducting detailed
radio measurement campaigns at other frequency bands is
needed for the further development of this research line. Other
characteristics of the channel, such as the PDP and the level-
crossing rate, are expected to contain useful information on
the variations of the propagation environment. The proposed
channel model can also be studied under other configurations
of the trajectory, falling styles, and other speed profiles of the
home user.
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