We report the first attachment of polymers with pendant vinyl groups to hydrogen-terminated silic... more We report the first attachment of polymers with pendant vinyl groups to hydrogen-terminated silicon(111) (Si(111)-H); 1,2-polybutadiene (M(w) = 3200-3500 g/mol) was attached to Si(111)-H under mild conditions at room temperature with visible light. We also report the partial functionalization, in solution, of 1,2-polybutadiene with various thiols using thiol-ene chemistry and the subsequent attachments of these compounds to Si(111)-H. The partially functionalized or unfunctionalized polybutadienes allow further functionalization at the surface through their unreacted carbon-carbon double bonds. We present this as a useful strategy for silicon surface modification. Surfaces were characterized with contact angle goniometry, spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM).
Polybutadiene-block-poly(L-glutamate) copolymers were made by anionic polymerization and subseque... more Polybutadiene-block-poly(L-glutamate) copolymers were made by anionic polymerization and subsequent ring-opening polymerization of N-carboxyanhydrides and were characterized by NMR, IR, SEC, and circular dichroism. These polymers, when appropriately designed, form so-called "polymersomes" or "peptosomes", vesicles composed of modified protein units. The size and structure of the vesicles are determined by dynamic light scattering, small-angle neutron scattering, and freeze-fracture electron microscopy. It is also shown that the size of the peptosomes does not depend on the pH; that is, the solvating peptide units can perform a helix-coil transition without serious changes of the vesicle morphology.
Co-micellisation of the di-block copolymer polybutadiene-poly(ethylene oxide) (Bb-EO) with the an... more Co-micellisation of the di-block copolymer polybutadiene-poly(ethylene oxide) (Bb-EO) with the anionic surfactant sodium dodecylsulfate (SDS) was investigated in aqueous solution using different scattering methods and cryo-transmission electron microscopy. In dilute aqueous ...
Association of tannic acid (TA) with structurally isomeric poly(N-isopropylacrylamide) (PNIPAM) a... more Association of tannic acid (TA) with structurally isomeric poly(N-isopropylacrylamide) (PNIPAM) and poly(2-isopropyl-2-oxazoline) (PIPOX) has been examined at surfaces to understand the effect of different molecular arrangements in a polymer repeating unit of structural isomers on the construction and pH-stability of hydrogen-bonded multilayers. Films were fabricated using layer-by-layer (LbL) technique through hydrogen-bonding interactions primarily between carbonyl groups of neutral polymers and hydroxyl groups of TA molecules at pH 2. PIPOX and TA formed thinner and more stable films in the pH scale with a critical dissolution pH of 9 when compared to films of PNIPAM and TA with a critical pH of 8. The differences in the thickness and pH-stability were due to different conformational behavior of PNIPAM and PIPOX in water which affects the accessibility of carbonyl groups for participation in the hydrogen bonding and the number of binding sites between the polymer pairs. Addition of electrostatic interactions by introducing amino groups only at the PIPOX chain end shifted the critical dissolution pH to higher values and resulted in gradual dissolution of the films in a wide pH range of 9–12. Such films hold promise for use in biomedical field due to biocompatibility and lower critical solution temperature (LCST) behavior at near physiological temperature of PNIPAM and PIPOX together with the pH-response of the hydrogen-bonded films.LbL films of a polyacid and PIPOX or PNIPAM, two structural isomers, showed difference in pH-stability. Addition of electrostatic interactions only at the chain end shifted the critical dissolution pH to higher values.► Structurally isomeric hydrogen accepting neutral polymers behaved differently within LbL films. ► Different arrangement of atoms in isomeric polymers resulted in different film thickness and pH-stability of multilayers. ► pH-stability of hydrogen-bonded films can be enhanced by functionalizing only the chain end of the hydrogen accepting polymer.
Micelles of the diblock copolymer poly(butadiene)-poly(ethyleneoxide) (B40-b-EO62) and mixed mice... more Micelles of the diblock copolymer poly(butadiene)-poly(ethyleneoxide) (B40-b-EO62) and mixed micelles of this polymer with the cationic surfactant dodecyltrimethylammonium bromide (C12TAB) were investigated using static and dynamic light scattering and small-angle neutron scattering. It is shown that the surfactant induces a major structural change from large mainly rodlike aggregates to smaller spherical mixed micelles. The rodlike assemblies found in the absence of surfactant have a contour length L of ca. 500 nm and a diameter d ≈30 nm. The spherical mixed micelles obtained upon addition of C12TAB possess a hydrodynamic radius of 15 nm and still contain several polymer molecules. The results of the scattering experiments are consistent with observations of the aggregates by cryogenic transmission electron microscopy.
Biomimetic organic-inorganic composite materials were fabricated via one-step self-organization o... more Biomimetic organic-inorganic composite materials were fabricated via one-step self-organization on three hierarchical levels. The organic component was a polyoxazoline with pendent cholesteryl and carboxyl (N-Boc-protected amino acid) side chains that was able to form a chiral nematic lyotropic phase and bind to positively charged inorganic faces of Laponite. The Laponite particles formed a mesocrystalline arrangement within the liquid-crystal (LC) polymer phase upon shearing a viscous dispersion of Laponite nanoparticles and LC polymer in DMF. Complementary analytical and mechanical characterization techniques (AUC, POM, TEM, SEM, SAXS, μCT, and nanoindentation) covering the millimeter, micrometer, and nanometer length scales reveal the hierarchical structures and properties of the composite materials consisting of different ratios of Laponite nanoparticles and liquid-crystalline polymer.
The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-bas... more The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).
We report the first attachment of polymers with pendant vinyl groups to hydrogen-terminated silic... more We report the first attachment of polymers with pendant vinyl groups to hydrogen-terminated silicon(111) (Si(111)-H); 1,2-polybutadiene (M(w) = 3200-3500 g/mol) was attached to Si(111)-H under mild conditions at room temperature with visible light. We also report the partial functionalization, in solution, of 1,2-polybutadiene with various thiols using thiol-ene chemistry and the subsequent attachments of these compounds to Si(111)-H. The partially functionalized or unfunctionalized polybutadienes allow further functionalization at the surface through their unreacted carbon-carbon double bonds. We present this as a useful strategy for silicon surface modification. Surfaces were characterized with contact angle goniometry, spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM).
Polybutadiene-block-poly(L-glutamate) copolymers were made by anionic polymerization and subseque... more Polybutadiene-block-poly(L-glutamate) copolymers were made by anionic polymerization and subsequent ring-opening polymerization of N-carboxyanhydrides and were characterized by NMR, IR, SEC, and circular dichroism. These polymers, when appropriately designed, form so-called "polymersomes" or "peptosomes", vesicles composed of modified protein units. The size and structure of the vesicles are determined by dynamic light scattering, small-angle neutron scattering, and freeze-fracture electron microscopy. It is also shown that the size of the peptosomes does not depend on the pH; that is, the solvating peptide units can perform a helix-coil transition without serious changes of the vesicle morphology.
Co-micellisation of the di-block copolymer polybutadiene-poly(ethylene oxide) (Bb-EO) with the an... more Co-micellisation of the di-block copolymer polybutadiene-poly(ethylene oxide) (Bb-EO) with the anionic surfactant sodium dodecylsulfate (SDS) was investigated in aqueous solution using different scattering methods and cryo-transmission electron microscopy. In dilute aqueous ...
Association of tannic acid (TA) with structurally isomeric poly(N-isopropylacrylamide) (PNIPAM) a... more Association of tannic acid (TA) with structurally isomeric poly(N-isopropylacrylamide) (PNIPAM) and poly(2-isopropyl-2-oxazoline) (PIPOX) has been examined at surfaces to understand the effect of different molecular arrangements in a polymer repeating unit of structural isomers on the construction and pH-stability of hydrogen-bonded multilayers. Films were fabricated using layer-by-layer (LbL) technique through hydrogen-bonding interactions primarily between carbonyl groups of neutral polymers and hydroxyl groups of TA molecules at pH 2. PIPOX and TA formed thinner and more stable films in the pH scale with a critical dissolution pH of 9 when compared to films of PNIPAM and TA with a critical pH of 8. The differences in the thickness and pH-stability were due to different conformational behavior of PNIPAM and PIPOX in water which affects the accessibility of carbonyl groups for participation in the hydrogen bonding and the number of binding sites between the polymer pairs. Addition of electrostatic interactions by introducing amino groups only at the PIPOX chain end shifted the critical dissolution pH to higher values and resulted in gradual dissolution of the films in a wide pH range of 9–12. Such films hold promise for use in biomedical field due to biocompatibility and lower critical solution temperature (LCST) behavior at near physiological temperature of PNIPAM and PIPOX together with the pH-response of the hydrogen-bonded films.LbL films of a polyacid and PIPOX or PNIPAM, two structural isomers, showed difference in pH-stability. Addition of electrostatic interactions only at the chain end shifted the critical dissolution pH to higher values.► Structurally isomeric hydrogen accepting neutral polymers behaved differently within LbL films. ► Different arrangement of atoms in isomeric polymers resulted in different film thickness and pH-stability of multilayers. ► pH-stability of hydrogen-bonded films can be enhanced by functionalizing only the chain end of the hydrogen accepting polymer.
Micelles of the diblock copolymer poly(butadiene)-poly(ethyleneoxide) (B40-b-EO62) and mixed mice... more Micelles of the diblock copolymer poly(butadiene)-poly(ethyleneoxide) (B40-b-EO62) and mixed micelles of this polymer with the cationic surfactant dodecyltrimethylammonium bromide (C12TAB) were investigated using static and dynamic light scattering and small-angle neutron scattering. It is shown that the surfactant induces a major structural change from large mainly rodlike aggregates to smaller spherical mixed micelles. The rodlike assemblies found in the absence of surfactant have a contour length L of ca. 500 nm and a diameter d ≈30 nm. The spherical mixed micelles obtained upon addition of C12TAB possess a hydrodynamic radius of 15 nm and still contain several polymer molecules. The results of the scattering experiments are consistent with observations of the aggregates by cryogenic transmission electron microscopy.
Biomimetic organic-inorganic composite materials were fabricated via one-step self-organization o... more Biomimetic organic-inorganic composite materials were fabricated via one-step self-organization on three hierarchical levels. The organic component was a polyoxazoline with pendent cholesteryl and carboxyl (N-Boc-protected amino acid) side chains that was able to form a chiral nematic lyotropic phase and bind to positively charged inorganic faces of Laponite. The Laponite particles formed a mesocrystalline arrangement within the liquid-crystal (LC) polymer phase upon shearing a viscous dispersion of Laponite nanoparticles and LC polymer in DMF. Complementary analytical and mechanical characterization techniques (AUC, POM, TEM, SEM, SAXS, μCT, and nanoindentation) covering the millimeter, micrometer, and nanometer length scales reveal the hierarchical structures and properties of the composite materials consisting of different ratios of Laponite nanoparticles and liquid-crystalline polymer.
The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-bas... more The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).
Uploads
Papers by Helmut Schlaad