The pronounced and elaborate displays that often differ between closely related animal species ha... more The pronounced and elaborate displays that often differ between closely related animal species have led to the common assumption that sexual selection is important in speciation, especially in geographically separated populations. We use population genetic models to examine the ability of Fisherian sexual selection to contribute to lasting species differentiation by isolating its effect after the onset of gene flow between allopatric populations. We show that when sexually selected traits are under ecologically divergent selection, the situation most favorable to speciation, mating preferences tend to introgress faster than trait alleles, causing sexual selection to counter the effects of local adaptation. As a consequence, the net amount of trait divergence often drops with stronger Fisherian sexual selection. Furthermore, alleles for progressively weaker preferences spread in this context until sexual selection is removed. The effects of pure Fisherian sexual selection on species maintenance are thus much more inhibitory than previously assumed
Recombination often concentrates in small regions called recombination hotspots where recombinati... more Recombination often concentrates in small regions called recombination hotspots where recombination is much higher than the genome’s average. In many vertebrates, including humans, gene PRDM9 specifies which DNA motifs will be the target for breaks that initiate recombination ultimately determining the location of recombination hotspots. Because the sequence that breaks (allowing recombination) is converted into the sequence that does not break (preventing recombination), the latter sequence is over-transmitted to future generations and recombination hotspots are self-destructive. Given their self-destructive nature, recombination hotspots should eventually become extinct in genomes they are observed. While empirical evidence shows that individual hotspots do become inactive over time (die), hotspots are abundant in many vertebrates: a contradiction called the Recombination Hotspot Paradox. What saves recombination hotspots from their foretold extinction? Here we formulate a co-evol...
We study local adaptation of a peripheral population by investigating the fate of new mutations u... more We study local adaptation of a peripheral population by investigating the fate of new mutations using a haploid two-locus two-allele continent-island migration model. We explore how linkage, epistasis, and maladaptive gene flow affect the invasion probability of weakly beneficial de-novo mutations that arise on the island at an arbitrary physical distance to a locus that already maintains a stable migration-selection polymorphism. By assuming a slightly supercritical branching process, we deduce explicit conditions on the parameters that permit a positive invasion probability and we derive approximations for it. They show how the invasion probability depends on the additive and epistatic effects of the mutant, on its linkage to the polymorphism, and on the migration rate. We use these approximations together with empirically motivated distributions of epistatic effects to analyze the influence of epistasis on the expected invasion probability if mutants are drawn randomly from such ...
Genomic islands are clusters of loci with elevated divergence that are commonly found in populati... more Genomic islands are clusters of loci with elevated divergence that are commonly found in population genomic studies of local adaptation and speciation. One explanation for their evolution is that linkage between selected alleles confers a benefit, which increases the establishment probability of new mutations that are linked to existing locally adapted polymorphisms. Previous theory suggested there is only limited potential for the evolution of islands via this mechanism, but involved some simplifying assumptions that may limit the accuracy of this inference. Here, we extend previous analytical approaches to study the effect of linkage on the establishment probability of new mutations and identify parameter regimes that are most likely to lead to evolution of islands via this mechanism. We show how the interplay between migration and selection affects the establishment probability of linked vs. unlinked alleles, the expected maximum size of genomic islands, and the expected time req...
Analyses of the evolution of preference strength under a continent-island phenotype matching mode... more Analyses of the evolution of preference strength under a continent-island phenotype matching model. Accompanies Appendix S6
The pronounced and elaborate displays that often differ between closely related animal species ha... more The pronounced and elaborate displays that often differ between closely related animal species have led to the common assumption that sexual selection is important in speciation, especially in geographically separated populations. We use population genetic models to examine the ability of Fisherian sexual selection to contribute to lasting species differentiation by isolating its effect after the onset of gene flow between allopatric populations. We show that when sexually selected traits are under ecologically divergent selection, the situation most favorable to speciation, mating preferences tend to introgress faster than trait alleles, causing sexual selection to counter the effects of local adaptation. As a consequence, the net amount of trait divergence often drops with stronger Fisherian sexual selection. Furthermore, alleles for progressively weaker preferences spread in this context until sexual selection is removed. The effects of pure Fisherian sexual selection on species maintenance are thus much more inhibitory than previously assumed
Recombination often concentrates in small regions called recombination hotspots where recombinati... more Recombination often concentrates in small regions called recombination hotspots where recombination is much higher than the genome’s average. In many vertebrates, including humans, gene PRDM9 specifies which DNA motifs will be the target for breaks that initiate recombination ultimately determining the location of recombination hotspots. Because the sequence that breaks (allowing recombination) is converted into the sequence that does not break (preventing recombination), the latter sequence is over-transmitted to future generations and recombination hotspots are self-destructive. Given their self-destructive nature, recombination hotspots should eventually become extinct in genomes they are observed. While empirical evidence shows that individual hotspots do become inactive over time (die), hotspots are abundant in many vertebrates: a contradiction called the Recombination Hotspot Paradox. What saves recombination hotspots from their foretold extinction? Here we formulate a co-evol...
We study local adaptation of a peripheral population by investigating the fate of new mutations u... more We study local adaptation of a peripheral population by investigating the fate of new mutations using a haploid two-locus two-allele continent-island migration model. We explore how linkage, epistasis, and maladaptive gene flow affect the invasion probability of weakly beneficial de-novo mutations that arise on the island at an arbitrary physical distance to a locus that already maintains a stable migration-selection polymorphism. By assuming a slightly supercritical branching process, we deduce explicit conditions on the parameters that permit a positive invasion probability and we derive approximations for it. They show how the invasion probability depends on the additive and epistatic effects of the mutant, on its linkage to the polymorphism, and on the migration rate. We use these approximations together with empirically motivated distributions of epistatic effects to analyze the influence of epistasis on the expected invasion probability if mutants are drawn randomly from such ...
Genomic islands are clusters of loci with elevated divergence that are commonly found in populati... more Genomic islands are clusters of loci with elevated divergence that are commonly found in population genomic studies of local adaptation and speciation. One explanation for their evolution is that linkage between selected alleles confers a benefit, which increases the establishment probability of new mutations that are linked to existing locally adapted polymorphisms. Previous theory suggested there is only limited potential for the evolution of islands via this mechanism, but involved some simplifying assumptions that may limit the accuracy of this inference. Here, we extend previous analytical approaches to study the effect of linkage on the establishment probability of new mutations and identify parameter regimes that are most likely to lead to evolution of islands via this mechanism. We show how the interplay between migration and selection affects the establishment probability of linked vs. unlinked alleles, the expected maximum size of genomic islands, and the expected time req...
Analyses of the evolution of preference strength under a continent-island phenotype matching mode... more Analyses of the evolution of preference strength under a continent-island phenotype matching model. Accompanies Appendix S6
Uploads
Papers by Reinhard Bürger