

Cockshott, P., Gdura, Y., and Keir, P. (2013) Array languages and the N-
body problem. Concurrency and Computation: Practice and Experience, 26
(4). pp. 935-951. ISSN 1532-0626

 Copyright © 2013 John Wiley and Sons, Ltd.

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

Content must not be changed in any way or reproduced in any
format or medium without the formal permission of the copyright
holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/81520/

 Deposited on: 23 May 2014

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/12625.html
http://eprints.gla.ac.uk/view/author/28259.html
http://eprints.gla.ac.uk/view/journal_volume/Concurrency_and_Computation=3A_Practice_and_Experience.html
http://eprints.gla.ac.uk/81520/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1�17
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Array Languages and the N-body problem

P. Cockshott, Y. Gdura, P. Keir

SUMMARY

This paper is a description of the contributions to the SICSA multicore challenge on many body
planetary simulation made by a compiler group at the University of Glasgow. Our group is part of
the Computer Vision and Graphics research group and we have for some years been developing array
compilers because we think these are a good tool both for expressing graphics algorithms and for
exploiting the parallelism that computer vision applications require.
We shall describe experiments using two languages on two di�erent platforms and we shall compare
the performance of these with reference C implementations running on the same platforms. Finally
we shall draw conclusions both about the viability of the array language approach as compared to
other approaches used in the challenge and also about the strengths and weaknesses of the two, very
di�erent, processor architectures we used. Copyright © 0000 John Wiley & Sons, Ltd.

Received . . .

1. ARRAY LANGUAGES

By the term array language, we mean a programming language that allows array values to be
operated on as a whole: passed to functions as a whole, returned from functions as a whole,
subjected to arithmetic operations as a whole, and, in the case of an imperative language,
assigned as a whole.
Array languages arose out of Iverson's attempt in the 1950s to rationalise mathematical

matrix notations into a from suitable for computer interpretation. As a PhD student of
Leontief working on the preparation of Input Output matrices for the US economy he �rst
developed Iverson Notation as a means of specifying algorithms that would then be hand coded
in assembler. The notation was later developed into the language APL [1].
This language had the key concepts of mapping operators and functions over arrays and

introduced generalised reduction and scan functionals. These functional forms: map, scan, and
reduce have been in�uential in the subsequent development of functional parallel programming
[2, 3, 4].
Not only were functional languages in�uenced by APL. It also shaped the development of

imperative languages such as ZPL [5], MATLAB [6], versions of Fortran [7, 8, 9] and Pascal
[10, 11, 12, 13]. Both of the compilers used in the experiments reported here borrow concepts
for expressing data parallelism that have a long history, dating back to APL in the early '60s.
The key concept is that if we de�ne a vector of type T as having type T []. Then if we have

a binary operator X:(T,T)→ T , in languages derived from APL we automatically have an
operator X:(T[],T[])→ T[]. Thus if x, y are arrays of integers k = x + y is the array of integers
where ki = xi + yi.
The basic concept is simple, there are complications to do with the semantics of operations

between arrays of di�erent lengths and di�erent dimensions, but APL provides a consistent
treatment of these. The recent languages built around this model include J, an interpretive

Copyright© 0000 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2

var v1, v2, v3: array[0..1023] of integer;

begin

v1 := v2 + v3 ;

end;

Figure 1.1. Operation on Arrays of the Same Rank (Pascal Code)

language [14], and F [15] a modernised Fortran. In principle though any language with array
types can be extended in a similar way.
Vector Pascal (VP) and F incorporate Iverson's approach to data parallelism. They aim to

provide a notation that allows the natural and elegant expression of data parallel algorithms
within a base language that is already well established (Pascal and Fortran) and combine this
with modern compilation techniques.
By an elegant algorithm we mean one which is expressed as concisely as possible. Elegance

is a goal that one approaches asymptotically, approaching but never attaining [16]. APL and
J allow the construction of very elegant programs, but at a cost. An inevitable consequence
of elegance is the loss of redundancy. APL programs are as concise, or even more concise
than conventional mathematical notation and use a special character-set. This makes them
hard for the uninitiated to understand. J attempts to remedy this by restricting itself to the
ASCII character-set, but still looks dauntingly unfamiliar to programmers brought up on more
conventional languages. Both APL and J are interpretive which makes them ill suited to many
of the applications for which SIMD speed is required. The aim of our compilers is to provide
the conceptual gains of Iverson's notation within a framework more familiar to imperative
programmers.
Iverson's approach to data parallelism was machine independent. It can be implemented

using scalar code or using combinations of scalar SIMD and multi-core code.
The following Pascal code segment illustrates how operations can be applied to arrays in

the same way that could have been applied to scalars:
In Figure 1.1, the �rst line declares v1,v2 and v3 as arrays of size 1024 of type integer.

The third line is an additional operation that involves all the elements of v1 and v2. This
statement results in adding each element in vector v1 to the corresponding element of vector
v2 and storing the sum in the corresponding element in vector v3. Figure 1.1 shows a simple
example of an array expression that a compiler can safely chop into blocks and then process
in parallel.

2. PROBLEM TESTED

2.1. N-body Benchmark

The N-body problem is a scienti�c simulation that involves computing the motion of a number
of planets (bodies) under physical forces such as gravity. The gravitational force between each
pair of bodies is de�ned by their position and mass. The algorithm 1 presents the main steps
of this problem.
Because N-body simulations require signi�cant computing power, a number of experiments

have used this problem for evaluating machine performance. The N-body problem has been
also used recently for comparing the performance of modern parallel technology such as GPUs
[17] and other parallel architectures such as the new SIMD extension supported by the Sandy
Bridge processor [18]. This problem was also selected by the Scottish Informatics and Computer
Science Alliance (SICSA) research body as a challenge problem in Phase II of the SICSA
Multicore Challenge [19].

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

3

Algorithm 1 N-body Problem Pseudocode.
For N bodies

Each time step

For each body B in N

Compute force on it from each other body

From these derive partial acceleration

Sum the partial accelerations

Compute new velocity of B

For each body B in N

Compute new position

2.2. N-Body Algorithms

The N-body simulation is required to compute the force between each pair of bodies. In reality,
the number N of bodies or particles is often very large, and thus a number of algorithms and
methods have been developed to optimise the simulation. The two common algorithms for
computing the total force on each body are the All-Pairs method and Barnes-Hut Treecode
[17]. The total number of interactions needed to be computed using an ordinary approach, such
as All-Pairs algorithm, is N2 while the Barnes-Hut method is an O(NlogN) algorithm [17].
This benchmark drawn from the Great Computer Language Shootout which was originally
contributed by Christoph Bauer [19]. The implementation of the problem in VP made explicit
use of operations on whole arrays. However, to express the problem in parallel style using
arrays, the full N2 forces have to be computed. The VP parallel algorithm is similar to the
All-Pair method as it also goes over each body in N , say B, and computes the forces of all
other bodies N − 1 on the body B. This additional computation associated with the parallel
solution ensures that the calculations are independent and can be safely carried out on multiple
processors in parallel. The main part core of the algorithm is a procedure, called advance, whose
main loop uses a position matrix to compute a matrix of acceleration components for each
body in N . These components are summed along the rows to yield a �nal velocity increment.

3. LANGUAGES USED

We used two languages in our team's entry to the challenge: F and VP. These have in common
that both are derived from mature sequential programming languages, and both have been
extended to use implicit parallelism by the use of APL-inspired constructs.

3.1. Fortran and F

Fortran was originally developed by John Backus and others at IBM in the 1950s. Like
C, Fortran is a statically typed, imperative language. Fortran has historically di�erentiated
itself from C by its absent pointer arithmetic; longstanding support for complex numbers;
argument passing by reference; and with Fortran 90, �rst class array types. This allowed whole
array operations to be expressed as a single assignment statement. The Fortran language is
ISO standardised, and Fortran 2008 was approved in September 2010. Of the mainstream
programming languages, Fortran has distinguished itself within the �eld of computational
science, due to its relatively high level, and excellent performance pro�le.
In Fortran 9x, each array has a statically declared rank. The lower bound, upper bound,

and extent of each dimension may then be obtained using built-in functions. In contrast to
C, this implies that a single formal array parameter is su�cient for a function de�nition. In
fact a selection of built-in functions are supplied, to query; construct; combine; and, for a �xed
operator set, reduce arrays. Furthermore, a scalar function, quali�ed as elemental, will be lifted
implicitly to a pure, map-like, operation upon application to conforming array arguments.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4

arr : array[0..4, 0..4] of integer ;

vec : array[0..4] of integer ;

begin

vec := iota(0) ;

arr := vec * itoa(0) ;

end;

Figure 3.1. Operations on Arrays of Di�erent Ranks (Vector Pascal Code) . First line initialises vec to
the integers 0..4, the second line forms a matrix such that arr[i,j] = i*j.

program showReduction;

type vec = array[1..8] of real;

const v : vec = (0.0001, 0.001, 0.01,0.1,1.0, 10.0, 100.0, 2000.0);

var x,y : real;

begin

x:= \+ (v+1);

y:= * v;

writeln(x:15:4,y:15:5);

writeln(v+8:11:4);

end.

Figure 3.2. The reduction functional

The �F� programming language is a subset of Fortran 95, designed to provide a lightweight
version of Fortran, free of the requirement to support 40 years of language artifacts. The
primary motivation of the language design was to create a Fortran-based language for
education, however �F� is a perfectly adequate general-purpose language. Furthermore, any
Fortran compiler will compile a program conforming to the �F� language standard.
Unlike Fortran, the �F� language is not ISO standardised. The book, �The F Programming

Language�, by Metcalf and Reid [20], provides the most authoritative language reference. No
standard �F� language test suite exists, though a small set of �F� codes have been developed
for internal use with E]. The outputs of these programs are automatically compared against
those of the GNU Fortran (GFortran) compiler using Ivano Primi's numdi� program.

3.2. Pascal and Vector Pascal

Like Fortran, Pascal [21] is an old programming language whose relative popularity has declined
over the years, but like Fortran and C it lends itself to e�cient code generation. VP was �rst
developed by Turner [11] and Formella [12]. It supports whole array operations in a manner
that is similar to Fortran 9x. In our tests we used the Glasgow vector Pascal Compiler [13]
which supports SIMD instruction sets. The key features already reported in the literature are
the existence of a reduction functional borrowed from APL. In APL for example we can write:
Ö/2 3 4

and the system replies:
24

The reduction functional, / in APL, inserts an operator between every element of an array
so:
Ö/2 3 4 → 2 Ö 3 Ö 4 → 24

Because the forward slash is already used to indicate division in Pascal we use the \ symbol
instead as the reduction functional. Thus given the Pascal example in Figure 3.2 we get the
answer:

2119.1111 0.00020

8.0001 8.0010 8.0100 8.1000 9.0000 18.0000 108.0000 2008.0000

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

5

The write expression v+8:11:4 means compute the sum of the vector v with the number 8
and print in �elds 11 wide and with 4 digits after the decimal place. Note that the reduction
operation \+ (v+1) is equivalent to (v1 + 1) + (v2 + 1) + The other feature in VP is the
overloading of operators and functions to map arrays of any rank. VP extended the Pascal
array assignment operator to handle operations on di�erent rank expressions. The example in
Figure 3.1 shows VP operations involving di�erent rank expressions.
The code given in Figure 3.1 results in assigning iota(0), the index vector of vec to vector

vec, and then forming the values:

0 0 0 0

0 1 2 3

0 2 4 6

0 3 6 9

in array arr. To write the same code segment in Pascal requires several more lines of code
[13]. VP also allows mixed rank expressions by depending on the VP compiler to automatically
generate a loop that can span the ranks of the destination and the source operands, and then
the evaluation is carried out based on the number of dimensions of the array on the left-hand
side.
These features have more recently been extended by the introduction of the pure keyword

that marks a function as being side-e�ect free, and potentially permits mapping of this function
over array arguments to be performed in parallel.
The Glasgow Pascal Compiler also incorporates some of the 'Extended Pascal' features

described in [22], in particular it allows the declaration of dynamically sized arrays on the
heap. For the Intel code generator selected, the Glasgow Pascal Compiler was found to meet
the ISO conformance test suite from 1 to 218. This is a relatively high conformance level. In
comparison the ultimate release of the commercial Turbo Pascal compiler was found to fail 25
of these conformance tests. The main di�erence between the Glasgow compiler and the ISO
standard is that the Glasgow compiler uses the now more common syntax for �le handling
introduced by Turbo Pascal rather than the original Jensen and Wirth �le handling syntax.
The two languages share a number of common features:

� Strict typing.
� Whole array operations.
� Dynamic arrays.
� Pure functions can be mapped in parallel over arrays.

4. HARDWARE USED

4.1. The Cell Architecture

The Cell BE, or Cell, is a heterogeneous multi-core processor. It was designed mainly for
multimedia applications [23], though has been used in other areas such as high performance
computing. The Cell BE has two quite distinct processors: a 64-bit PowerPC Processor Element
(PPE) and eight Synergistic Processor Elements (SPEs) [24]. Both PPE and SPEs support
SIMD operations on 128 bit registers, but they have two di�erent instruction sets; one for
the PPE and one for the SPEs [23]. The PPE has 3 levels of storage (512 MB RAM, 64KB
L1 and 512KB L2 cache) and 32 x 128-bit vector registers. Each SPE has only 256KB Local
Store (LS) and 128 x 128-bit registers. the SPE local store is quite distinct from, and does not
shadow or cache, the main memory. Each SPE has also a Memory Flow Controller (MFC) to
handle communication and data transfers between the PPE and the SPEs. The MFC provides
three means of communications: Mailboxes, Signal Noti�cation Registers and Direct Memory
Access (DMA) mechanisms to exchange messages to move data between the PPE and the

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6

SPEs. The Mailboxes are shallow hardware FIFOs which accept a sequence of 32 bit words for
transmission between processing units. Instructions can write to and read from these FIFOs
with low latency.
The Cell processor potentially o�ers high levels of parallelism, but it is not easy to program

due to its heterogeneity of memory structures and instruction sets. Currently, there is a
number of parallel programming models for Cell such as OpenMP, Sieve C++ and O�oad.
These models o�er semi-automatic parallelisation environments because the user is required
to identify possible parallelism [23, 25, 26]. Recent releases of the GNU tool chain and IBM
XL o�er compilers for C/C++ and Fortran on both architectures and support OpenMP for
Linux platforms.

4.2. The Intel Xeon Nehalem

The hardware for the Intel test used 2 Intel Xeon Nehalem (E5620) each with 4 cores. Each
core was hyperthreaded giving a maximum of 16 simultaneous threads supported in hardware.
There were 24 GB RAM, and the clockspeed was 2.4 GHz. The machine was running Linux
and the C reference tests were compiled with GCC version 4.1.2. The cores contain scalar units
and vector units, with the vector units being able to operate on vectors of 128 or 64 bits made
up of integer or �oating point quantities.

5. COMPILERS USED

5.1. E] compiler

E] is an auto-parallelising compiler targeting the heterogeneous multicore architecture of the
STI Cell processor. A source to source compiler, E] translates from the �F� subset of Fortran 95
to O�oad C++, a C++ language extension [27] utilising pointer locality. Having the requisite
support for arrays, the �F� programming language is a suitable language to research the use
of array expressions as a mechanism to drive implicit parallelism for scienti�c computing. The
language has a large standard library, and this is made available to both the PPU and the SPU
using the GFortran runtime libraries. A C++ array template class has also been developed
which provides both an abstraction over the multifarious internal array representations of
essentially all Fortran compilers; alongside compatibility with the dual memory address space
exposed by O�oad C++. The E] compiler is written in the pure functional programming
language Haskell. Haskell's Parsec [28] parsing library allows the structure of the published
�F� grammar to be followed exactly within the Haskell source code, while the Scrap Your
Boilerplate [29] package is used to perform the crucial auto-parallelisation transformations
upon the abstract syntax trees.
Upon execution by E] of an array expression, a team of threads is launched, each

assigned a statically allocated and contiguous chunk of the outermost array dimension.
The precise number of threads is set on program startup using an environment variable,
ESHARP_NUM_THREADS, and may range from 1 to 128. Each individual thread is given
the full resources of an SPU, and sits in a notional FIFO queue until an SPU is available.
Having six available SPUs, it may be assumed that six threads will maximise resource usage
while minimising thread administration costs. Nevertheless, a program with a large working
set may need to be split into more than six pieces. For example, an array expression with a
6000KB working set, will exceed the 256KiB local store of an SPU if partitioned across only
six threads. With 32 or more threads, such a program should run.
By avoiding language extensions, an �F� program which will run in parallel using E], can also

run in serial using a command-line switch or using another Fortran compiler. This approach
provides code longevity, as well as a familiar deterministic and sequential development
paradigm. Unlike many auto-parallelising compilers, the user also has the certainty that every
array expression will execute in parallel. Consequently, traditional iterative constructs of the
�F� language, such as do or while loops remain useful. Such constructs should be used where

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

7

there is insu�cient work to justify the small cost of thread administration and direct memory
access (DMA) operations.

5.2. Vector Pascal on Intel Architecture

The Glasgow Vector Pascal compiler is implemented in Java allowing a single executable jar �le
to be distributed for all platforms. The machine code to be output is selected by a command-
line �ag. This �ag selects one of a library of code generator classes included in the jar �le. The
code generators themselves are automatically produced by a code generator generator from
formal speci�cations of the target processor instruction-sets [30]. It is also possible, on Intel
processors to specify whether the Nasm or Gnu assembler syntax is used. Another command-
line �ag speci�es how many cores are available on the target processor.
The compiler will attempt to parallelise array statements across two dimensions. It will

attempt to distribute calculations of the rows of the result across di�erent cores and attempt
to parallelise the column results of each row using SIMD instructions. The degree of parallelism
achieved depends both on the width of the SIMD registers available, and on the number of
cores available.
For the experiments on the Intel processors the target processor selected was the 32-bit P4

instruction set using the gnu assembler syntax. This instruction set includes the SSE and SSE2
instructions along with the legacy integer and �oating point opcodes.

5.3. Vector Pascal on the Cell Processor

We used the recent port of the Glasgow Vector Pascal parallelising compiler to the Cell
processor (CellVP). The CellVP compiler is made of two components: a PowerPC compiler for
the PPE and a virtual machine model to access the SPEs. The compiler works as following:

1. Plants code to create the threads and load the VSM interpreter into the SPE at the
beginning of program execution in order to avoid thread launching overhead.

2. Generates PowerPC assembly instructions that correspond to the sequential source code
excluding array expressions which need to be checked �rst.

3. Examines every array expression in the source code and determines if it is parallelisable:

� the expression must contain no function calls;
� the array expression must not be part of or include a scatter/gather construct, that
is array elements must be selected from consecutive locations;

� arrays or matrices must not be the target of a transpose operator;
� the array size must be bigger than the virtual SIMD register size ;

to be nominated for parallelisation. These are the same rules as the compiler applies
to SIMD parallelisation for the Intel Architecture except in that case real rather than
virtual SIMD registers are used.

4. If it is to be parallelised the nested loops representing the array expression in the
intermediate code tree are rewritten from loops with step 1 to loops with step n where n is
the vector length, and the individual arithmetic operations are replaced with overloaded
arithmetic operations on vectors of length n.

5. Transforms the nominated array expressions into VSM instructions. This is done by
feeding the intermediate code tree to a pattern directed code generator whose library
of patterns includes both the Power PC instructions and the VSM instructions. When
the pattern matcher recognises an operation that corresponds to a VSM instruction,
it outputs a sequence of Power PC codes whose e�ect is to output the VSM binary
instruction to the hardware inter-core Mailbox for the SPE that is going to execute that
operation.

Note that the CellVP compiler was designed for parallelising large arrays, and therefore it is
not expected to perform well on problems of small sizes such as N-body problem of size 1024.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8

struct planet {double x, y, z; double vx, vy, vz;double mass; };

void advance(int nbodies, struct planet * bodies, double dt) {

int i, j;

for (i = 0; i < nbodies; i++) {

struct planet * b = &(bodies[i]);

for (j = i + 1; j < nbodies; j++) {

struct planet * b2 = &(bodies[j]);

double dx = b->x - b2->x;

double dy = b->y - b2->y;

double dz = b->z - b2->z;

double distance = sqrt(dx * dx + dy * dy + dz * dz + EPS);

double mag = dt / (distance * distance * distance);

b->vx -= dx * b2->mass * mag;

b->vy -= dy * b2->mass * mag;

b->vz -= dz * b2->mass * mag;

b2->vx += dx * b->mass * mag;

b2->vy += dy * b->mass * mag;

b2->vz += dz * b->mass * mag;

}

}

for (i = 0; i < nbodies; i++) {

struct planet * b = &(bodies[i]);

b->x += dt * b->vx;

b->y += dt * b->vy;

b->z += dt * b->vz;

}

}

Figure 6.1. The reference version of the advance fuare providednction.

The better performance can be obtained on arrays of size 4P KB where P is the number of
SPEs.

6. THE N-BODY PROGRAMS

The program starts with an initial position, mass and velocity of a group of particles at a
given time. It then uses that data to work out the motions of all particles and to calculate
their positions at later times. The calculation is based on the laws of motion and gravitation.
For each timestep the algorithm has to integrate the forces on each body due to all the other
bodies, compute the resulting acceleration and then calculate the changes in velocity and
position. Initial velocities and positions are speci�ed as 3-element vectors for each body, and
for each body the mass is given. The metric for performance used was the time taken for a
single simulation step which computes forces and updates positions and velocities for all bodies.
We present here this problem in three array programming languages, Fortran, VP and E] and
compare their performance with a C version from the Great Computer Language Shootout at
http://shootout.alioth.debian.org originally contributed by Christoph Bauer. The original C
version had only 5 bodies. In order to provide a more realistic load the problem was scaled up,
to handle an arbitrary number of bodies.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

9

6.1. E] version

From earlier work [31] we were aware that an O(n2) �all-pairs� n-body simulation on the Cell
BE can exhibit good scaling at the expense of wall clock time, and so a tiled decomposition
of the problem, inspired by research at Nvidia [32], was developed. Though the complexity of
this �all-pairs� algorithm remains O(n2), the use of computational tiles maximises the ratio of
computation to data transfer.
The kernel of our n-body algorithm performs the O(n2) force calculation in parallel using

the SPUs, while the remaining leapfrog-Verlet integration updates the positions and velocities,
and is run in serial by the host PPU processor. This balance of loads seems a reasonable choice
as, having only linear complexity, the percentage of runtime expended on the integration stage
becomes insigni�cant with larger body counts. A square shaped tile of the pairwise body
interactions, maximises the number of calculations that can be performed per body. That is
to say, a DMA transfer of 2p body positions and masses, will provide p2 components of force
for the integrator.
The E] compiler parallelises only the outermost of the generated loops. To fully exploit the

two-dimensional decomposition already outlined, a ��attened�, one-dimensional, array is used
to feed the requisite driving scalar elemental function. User-de�ned scalar types are required
for the input and output elements. For input and output respectively the two types pchunk2d
and accel_chunk are shown below:

type, public :: pchunk2d

type(vec4), pointer, dimension(:) :: ivec4, jvec4

end type pchunk2d

type, public :: accel_chunk

type(vec3), dimension(CHUNK_SIZE) :: avec3

end type accel_chunk

The use of array pointers for the ivec4 and jvec4 �elds of the pchunk2d input scalar type
avoids the need for an n2 host memory footprint. The kernel may then be concisely expressed
as follows, �rst by multiple calls to the scalar function advance_p_1d:

do i=1,NSTEPS

call advance_p_1d(TSTEP,pchunks_1d,pos_masses,vel)

end do

Within advance_p_1d, a call to the elemental function, calc_accel_p, shown below, is
provided a one-dimensional array of pchunk2d values, pchunks_1d, as a �rst argument; a real-
valued scalar as the second; and will execute in parallel across all SPUs. The one-dimensional
array returned has equal shape to pchunks_1d, and accel_chunk element type.

accels = calc_accel_p(pchunks_1d,tstep)

6.2. Pascal versions

6.2.1. Array of structs The reference C version is shown in Figure 6.1. This is not
suitable for parallelisation because of side e�ects. Each iteration updates the acceleration
data for two planets. To parallelise the algorithm side e�ects were removed. The �rst
Pascal version without side e�ects, shown in Figure 6.2, used the same array of structs
data organisation. Parallelisation is achieved by the italicised line which maps the function
computevelocitychange over the index set of the column vector of velocity changes dv.

6.2.2. Struct of arrays An array of structs representation prevents SIMD paralellisation of
the code. The alternative struct of array representation shown in Figure 6.3, stores the planet
positions and relative displacements as 3×N matrices and represents the distance from the ith
planet to each other one as an N element vector. Thus the line

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10

type planet= record x, y, z, vx, vy, vz, mass:real; end;

coord = record pos:array[1..3] of real; end;

procedure advance(dt:real);

var dv:array[1..n,1..1] of coord;

i,j:integer;

pure function computevelocitychange(i:integer;dt:real):coord;

var row:array[1..3]of real;

pos:coord;

j:integer;

dx,dy,dz,distance,mag,t:real;

b,b2:pplanet;

begin

row:=0; b := planets[i];

for j := 1 to n do begin

b2 := planets[j];

dx := b^.x - b2^.x;

dy := b^.y - b2^.y;

dz := b^.z - b2^.z;

distance := sqrt(dx * dx + dy * dy + dz * dz);

mag := dt*b2^.mass / (distance * distance * distance+epsilon);

row[1] :=row[1]- dx* mag;

row[2] :=row[2] -dy* mag;

row[3] :=row[3] -dz* mag;

end;

pos.pos:=row;

computevelocitychange:=pos;

end;

begin

dv :=computevelocitychange(iota[0],dt);

for i:= 1 to N do

for j:= 1 to 3 do

v^[j,i]:=v^[j,i]+ dv[i,1].pos[j];

x^ := x^ + v^ *dt;

end;

Figure 6.2. The array of records Pascal version showing data type and advance function.

distance:= sqrt(xp^*xp^+ yp^*yp^+ zp^*zp^)+epsilon;

computes the distance of the ith planet to all other planets potentially in parallel since xp,

yp, zp refer to vectors of relative displacements in the x, y, z directions. This can be done to
the maximum parallelism supported by the SIMD instructions.
\+ is the summation operator, so line

changes.pos:= \+(M^*mag*di);

means changes.posi ←
∑

j Mj ·magj · dii,j .
This is a direct borrowing from APL
The struct of arrays approach improves use of the SIMD machine registers, and as an added

advantage it may improve cache line utilisation. In the inner loop of Figure 6.2, the velocity
vectors of each planet will be loaded into the cache every time its position vector is accessed,
but for the algorithm as a whole, the velocity vectors only have to be updated at the end of
each phase of the advance function. The array of struct organisation thus wastes cache space
during the inner loop, which could impact performance.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

11

type vect=array[1..n] of realt; pvect=^vect;

matr=array[1..3,1..N] of realt; pmatr=^matr;

pure function computevelocitychange(i:integer):coord;

var row:array[1..3] of real;

tm:real;

distance,mag :vect;

xp,yp,zp:^vect;

di:matr;

changes:coord;

begin

row:=x^[iota [0],i];

{Compute the displacement vector between each planet and planet i.}

di:= row[iota[0]]- x^;

{Next compute the euclidean distances }

xp:=@ di[1,1];yp:=@di[2,1];zp:=@di[3,1];

distance:= sqrt(xp^*xp^+ yp^*yp^+ zp^*zp^)+epsilon;

mag:=dt/(distance *distance*distance);

changes.pos:= \+(M^*mag*di);

computevelocitychange:=changes;

end;

Figure 6.3. The struct of array version.

7. RESULTS

7.1. E] versus Fortran and C

E] targets the Cell BE of the PlayStation 3 (PS3), which hosts the Fedora Core 7 (Moonshine)
Linux distribution; facilitated by the OtherOS feature of the PS3's Game OS. In this setup,
only six of the eight SPEs are available: one SPE runs a mandatory Sony hypervisor; while
another is lost to low semiconductor fabrication yields for PS3. The SPUs of the PS3's Cell
BE have hardware support only for single-precision �oating-point calculations, and hence the
N-Body problem is examined in this form only.
Our �rst performance evaluation of E] and the N-Body problem is through the relative

speedup obtained by compiling the same F source code using both the E] compiler and
another Fortran compiler. The fastest alternative Fortran compiler available to us is version
4.1.1 of GFortran, selected in preference to the more recent GFortran 4.6.0 as it provides better
performance for the N-Body application; on the Cell BE at least. The GFortran mcpu �ag was
set to cell, and the optimisation �ag to O3.
As described in Section 6.1, a tiled decomposition of the N-Body problem maximises the

ratio of SPU computation per byte of data transfered from main memory; into SPU local
store. A 16x16 tile size was then chosen∗ in preference to 8x8 as the latter resulted in an SPU
memory footprint too large to permit a problem size of 16K. As Table I shows, 16K bodies
provides an important data point as we observe a direct correlation between problem size and
speedup continue to a peak of 4.91 here.
The absolute speedup obtained from the E] compiler is now considered. Figure 7.1 shows

the performance scaling relationship between the N-Body problem written in F, and compiled
with E]; against the fastest available sequential version, written in C, and compiled using
version 4.1.1 of the GCC compiler, again in preference to version 4.6.0. Speedup is observed

∗16x16 tiles were thus also used for the serial reference version compiled by GFortran.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12

Figure 7.1. Performance scaling wrt. data size of F against C.

Table I. N-Body timings, in seconds per timestep, with E] and GFortran on Cell, against relative
speedup on E], using the same F source code.

Problem Size E] GFortran E] Speedup

1024 0.025 0.087 3.46
2048 0.083 0.34 4.13
4096 0.34 1.37 4.00
8192 1.24 5.47 4.42
16384 4.86 23.9 4.91

Table II. Performance of Vector Pascal and C on Cell. The 1024 row is using 4KB Virtual Register

N-body Problem Size
Performance (sec per iteration)

Vector Pascal C
PPE 1 SPE 2 SPEs 4 SPEs O3

1024 0.38 0.10 0.065 0.048 0.045
4096 4.85 1.38 0.78 0.47 0.77
8192 20.4 5.71 3.33 2.05 3.23
16384 100.2 22.3 13.2 8.09 16.5

to increase in proportion with data size. Results are surprisingly similar between the 2048 and
4096 body counts; while the �nal speedup value, at 16386 bodies, is relatively high.

7.2. VP cell versus C cell

We compare here the performances of VP and C code on the Cell processor. The VP code
was compiled by the CellVP compiler which parallelises array expressions on the SPEs
automatically. For divisibility reasons we only used 1,2 and 4 SPEs. The C version was compiled
and optimized at level 3 using GNU C compiler version 4.6 and run only on the PPE. We shall
�rst look at the VP performance on both the PPE and the SPEs, then expand our discussion
to consider the performance of the two languages on the Cell processor.
Table II shows the performance of VP and C code on the Cell processor using di�erent sizes

of the n-body problem. Notice here that on 1024 bodies, as commented in Table II, we had to
use a virtual SIMD registers (VSR) of length 4KB due to the small problem size but elsewhere
we used a VSR of size 16KB to get better performance.
The VP performance on the PPE, as shown in Table II, is much slower than using a single

SPE. This is partially due to the fact that the PPE compiler is not vectorised. The speedup
gained by using one SPE against using the PPE is shown in Figure 7.2(a). The SPE performs
3.6x as fast as the PPE on problems that are less than 16K and 4.5x as fast as the PPE when
the size is 16K. The performance improvement on 16K (16384 bodies) is a result of the PPE
relatively poor performance which is due to issues related to caching.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

13

0

0.5

1

1.5

2

2.5

3

3.5

1024 4096 8192 16384

S
p

e
e

d
u

p
 M

u
lt

ip
le

 S
P

e
s

/
 1

 S
P

E

Problem Size

1SPE

2 SPEs

4 SPEs

(a) Performance of 1 SPE vs PPE, normalised to PPE. (b) SPEs Scalability

Figure 7.2.

(a) VP vs C on Cell normalised to C. (b) Performance as function of degree of FPU Parallelism

Figure 7.3.

The scalability achieved by running the VP code on the SPEs is shown in Figure 7.2(b).
This �gure shows a near-linear speedup but not fully scalable.
Figure (7.3)(a) shows a comparison between the VP code performance using 4 SPEs against

the C optimized code running on the PPE. The e�ect of the problem size can be clearly seen
again on 1024 bodies in which the VP code performed relatively slower than the C code. On
bigger problem sizes, however, such as 4096 bodies and up, the VP performance was improving
as the number of cores increases. Though the VP performance on 4096 bodies is slightly better
than the achieved performance on 8192 bodies, VP was roughly 1.5x as fast as C. On the
16384 bodies, VP was 2.1x as fast as C.
Figure (7.3)(b) shows the consistent behavior of the CellVP compiler on large arrays. The

diagram is a log log plot of parallelism against time in seconds. Parallelism is measured in
terms of the number of e�ective �oating point channels with the PPE counting as 1 and each
additional SPE as 4. The regression lines are the best �tting power law regressions. Note that
for large numbers of bodies the power law function is almost linear with performance being
≈ p0.9 for number of processing channels p.

7.3. VP versus C Xeon and Sandbridge

The C and Pascal versions were both compiled at optimisation level 3. The Pascal versions
were then compiled for between 1 and 16 cores. For each version of the programme timings
were averaged over 50 iterations per run, and each compiled version was run 16 times to allow
for variations in the background loading of the test machine.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14

Table III. C versus Pascal on Cell, times for each call of the advance function, 1024 planets. GFLOPS
calculates on the basis that each call of the C code requires 15728640 �oating point operations and

each call of the Pascal code 20971520 �oating point operations.

Algorithm cores used time per advance in ms GFLOPS

Vector Pascal (PPE) 1 381 0.055
Vector Pascal (SPE) 1 105 0.119
Vector Pascal (SPEs) 4 48 0.436
C (PPE, O3) 1 45 0.349

Figure 7.4. Log Log Graph showing Xeon performance for Pascal and C. Note the discontinuity between
the threading and hyperthreading domains.

Table IV shows the performance of the Pascal versions compared to the reference C
algorithm. On a single processor the C code is faster than either Pascal version. This is in part
due to the fact that the paralellisable code performs more operations per call. Normalising by
the number of operations in the last column we see that the G�op performance of the two
Pascal versions straddles that of the C.
Compiled for 7 cores, Figure 6.3 performs 6.1 times as fast as the C version or Figure 6.3 on

one core. This approximates to a linear speedup. Average processor throughput was 9.13 G�ops
under these conditions. Figure 7.4 plots the performance of the di�erent versions as scatters
with superimposed power law regressions. Performance increases almost linearly with threads
until hyperthreading sets in at 8 threads. Up until this point performance scales roughly as
x0.9 where x is the number of threads. Hyperthreading imposes an immediate penalty and the
subsequent power law shows performance increasing roughly as x3/4 with threads used in the
non SIMD case and by about x1/2 for the SIMD case.

7.4. CellVP versus E]

From the perspective of the user, there are two important di�erences between the CellVP and
E] compilers; both of which are relevant to performance:

� CellVP requires that number of SPUs employed is a power of two: 1, 2, or 4. E] is
therefore able to exploit an additional 50% of the capability provided by the SPUs.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

15

Table IV. C versus Pascal on Xeon, times for each call of the advance function, 1024 planets. Giga�ops
calculated on the basis that each call of the C code requires 15728640 �oating point operations and

each call of the Pascal code 20971520 �oating point operations.

Algorithm threads used time per advance in ms G�ops

6.1 1 14 1.12
6.2 1 23 0.91
6.3 1 14.1 1.48
6.2 16 3.37 6.22
6.3 16 1.75 11.98

Table V. Comparison with other approaches at the workshop, all times on 8 core Xeons. The C++
Threading Building Blocks (TBB) example is taken from the run xeon32-O3-sse-v-sq+tbb-bodies20
in Adam Sampson's results. Results ordered by overall performance. The Pascal timing shown in this
table was obtained after the workshop by switching on thread a�nity, which had not been done in

the original tests.

Language threads time per advance clock GHz
Vector Pascal 16 1.75 ms 2.4

C++ Threading Building Blocks 12 2.05 ms 2.27
Go 16 8 ms 2.4

C sequential 1 14 ms 2.4
Eden 8 16.6 ms 2.5
C] 12 18.2 ms 2.33

� The E] compiler is unable to stage the loading of each working set into SPU local stores.
Consequently, only CellVP can run the N-Body problem on less than 6 SPUs.

Nevertheless, when these compiler implementation di�erences are factored out, performance
results per SPU are remarkably similar.

7.5. Comparision with other languages

At the workshop on the second phase of the SICSA challenge implementations were presented
for 8 processor/language combinations. Of these, 6 were run, using di�erent languages on very
similar 8 core Xeon machines allowing meaningful comparison. The fastest implementation
reported was one in C++ using TBB for multi-core parallelism and SIMD intrinsics for vector
parallelism. This achieved peak performance of 2.05 ms per call of advance when using 12
threads. In comparison the VP implementation achieved its best performance of 2.25 ms when
using 7 threads. In the range 1 to 7 threads the Pascal version is faster than the C++ version,
but after 7 threads, in the hyperthreading range, performance slows and then improves only
gradually for the Pascal (Figure 7.4), whereas for the TBB version whilst there is a continuous,
albeit slow, increase in performance as we go through the hyperthreading range, leading to a
faster maximum performance. It appears that Threaded Building Blocks make better use of
hyperthreading than the pthreads parallelism that the Pascal compiler targets.
There is a large gap between the C++ and Pascal versions and all others. 1. B11 Computer

Science and Informatics 3*: Classical Econophysics Remove Add/Edit Info 2. B11 Computer
Science and Informatics 3*: Physical constraints on hypercomputation Also selected by:
Dr Lewis Mackenzie Remove Add/Edit Info 3. B11 Computer Science and Informatics 3*:
Computation and its Limits Remove Add/Edit Info 4. B11 Computer Science and Informatics
Computers and economic democracy Remove Add/Edit Info
Eden and C] failed, even at maximal parallelism, to outperform sequential C.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16

Figure 7.5. Log Log graph for Xeon performance of the C++ Threading Building Blocks code.

7.6. Verbosity

The C reference version, Figure 6.1, contains 21 executable statements, the SIMD Pascal
version, (Figure 6.3 plus its containing function) contains 14 executable statements, so the
parallel code is slightly more concise than the sequential code. On the other hand the C
contains only 1 line of data declarations, with other variables being introduced via initialising
assignments. Pascal does not allow this and contains 8 lines variable declarations. The total
length of the two algorithms including data declarations is thus the same.
In comparison to the C++ with TBB and SIMD intrinsics, the array compilers allowed a

considerable saving in code. To use the SSE instruction set, the C++ version had to add over
80 lines of class de�nition for a short vector class with SIMD arithmetic.

8. CONCLUSIONS

In this experiment the array language implementations show a number of strengths.

� The array languages delegate the mechanics of parallelism entirely to the compiler.
Provided that the array statements are potentially parallelisable, the compiler will
perform the parallelisation automatically. The only other example which allowed this
in the multi-core challenge was the Eden system.

� The up until the hyper-threading region performance achieved was better than the other
approaches. In the hyperthreading region, an implementation based on TBB was slightly
better.

� The array language compilers allowed the same source codes to be compiled to a single
core, a multi-core homogeneous or a multi-core hetrogeneous computer. In contrast, the
low level hand tuning involved in the use of for example Intel TBB, or C++ SIMD
intrinsics, precludes portability to non Intel architectures.

� The array algorithms are reasonably concise.

As against these advantages, there are some drawbacks.

� It takes some experience or a certain shift in programmer perspective to express
calculations in terms of mapping operations rather than explicit loops.

� Some thought has to be given to the choice of appropriate array structures over which
the maps are to be performed. This may involve for example transposing arrays from a

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

17

row to a column arrangement to accelerate data access, or de�ning appropriate elemental
data types for the arrays.

It is arguable however, that the added attention that a coder must devote to data structuring
is no more onerous than the explicit attention that they give to process structure in some
alternative approaches.

References

1. Iverson K. A programming language. Wiley: New York, 1966.
2. Blelloch G. Nesl: A Nested Data-Parallel Language, vol. CMU-CS-95-170. Carnegie Mellon University,

1995.
3. Grelck C, Scholz SB. Sac � from high-level programming with arrays to e�cient parallel execution.

Parallel Processing Letters 2003; 13(3):401�412.
4. Scholz SB. �e�cient support for high-level array operations in a functional setting. Journal of Functional

Programming 2003; 13(6):1005�1059.
5. Snyder L. A Programmer's Guide to ZPL. MIT Press: Cambridge, 1999.
6. MathWorks I. MATLAB: The language of technical computing. MathWorks, 1984.
7. Brainerd W, Goldberg C, Adams J. Programmer's guide to Fortran 90. Springer Verlag, 1996.
8. Perrott RH, Zarea-Aliabadi A. Supercomputer languages. ACM Comput. Surv. 1986; 18(1):5�22, doi:

http://doi.acm.org/10.1145/6462.6463.
9. Ewing A, Richardson H, Simpson A, Kulkarni R. Writing Data Parallel Programs with High Performance

Fortran. Edinburgh ParallelComputing Centre, 1998.
10. Perrott R, Crookes D, Milligan P, Purdy W. A compiler for an array and vector processing language.

Software Engineering, IEEE Transactions on 1985; SE-11(5):471�478.
11. Turner T. Vector Pascal: a computer programming language for the FPS-164 array processor. Technical

Report, Iowa State Univ. of Science and Technology, Ames (USA) 1987.
12. Formella A, Obe A, Paul W, Rauber T, Schmidt D. The SPARK 2.0 system-a special purpose vector

processor with a VectorPASCAL compiler. System Sciences, 1992. Proceedings of the Twenty-Fifth Hawaii
International Conference on, vol. 1, IEEE, 1992; 547�558.

13. Cockshott P, Michaelson G. Orthogonal parallel processing in Vector Pascal. Computer Languages,
Systems & Structures 2006; 32(1):2�41.

14. Iverson K. Programming in J. Iverson Software Inc, Toronto 1992.
15. Metcalf M, Reid J. The F Programming Language. Oxford Univesity Press, 1996.
16. Chaitin G. Information, Randomness and Incompleteness. World Scienti�c, 1987.
17. Playne D, Johnson M, Hawick K. Benchmarking gpu devices with n-body simulations. Proc. 2009

International Conference on Computer Design (CDES 09) July, Las Vegas, USA., no. CSTN-077, 2009.
18. Tanikawa A, Yoshikawa K, Okamoto T, Nitadori K. N-body simulation for astronomical collisional systems

with a new simd instruction set extension to the x86 architecture, advanced vector extensions. Arxiv
preprint arXiv:1104.2700 2011; .

19. Challenge phaseii. Http://www.macs.hw.ac.uk/sicsawiki/index.php/Challenge-PhaseII, 2011.
20. Metcalf M, Reid J. The F programming language. Oxford University Press, Inc.: New York, NY, USA,

1996.
21. Jensen K, Wirth N. PASCAL user manual and report: ISO PASCAL standard. Springer, 1991.
22. Hetherington T. An introduction to the extended pascal language. ACM SIGPLAN Notices 1993;

28(11):42�51.
23. Koranne S. Practical Computing on the Cell Broadband Engine. Springer, 2009.
24. Arevalo Ae. Programming the Cell Broadband Engine Architecture. International Technical Support

Organization, 2008.
25. Marowka A. Performance of openmp benchmarks on multicore processors. Architectures for Parallel

Processing (ICA3PP'08) 2008; :208�219.
26. Donaldson A, Riley C, Lokhmotov A, Cook A. Auto-parallelisation of sieve c++ programs. Euro-Par

Workshops 2007. LNCS, vol. 4854 2007; :18�27.
27. Cooper P, Dolinsky U, Donaldson AF, Richards A, Riley C, Russell G. O�oad - automating code migration

to heterogeneous multicore systems. Proceedings of the 5th International Conference on High Performance
and Embedded Architectures and Compilers (HiPEAC'10), Lecture Notes in Computer Science, vol. 5952,
Springer, 2010; 337�352.

28. Leijen D, Meijer E. Parsec: Direct style monadic parser combinators for the real world. Technical Report
2001.

29. Lämmel R, Jones SP. Scrap your boilerplate: A practical design pattern for generic progra mming. Proc.
of the ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI 2003), ACM
Press, 2003; 26�37.

30. Cockshott P, Renfrew K. SIMD programming for Windows and Linux. Springer, 2004.
31. Donaldson AF, Keir P, Lokhmotov A. Compile-time and run-time issues in an auto-parallelisation system

for the Cell BE processor. Proceedings of the 2nd EuroPar Workshop on Highly Parallel Processing on a
Chip (HPPC'08), Lecture Notes in Computer Science, vol. 5415, Springer, 2008; 163�173.

32. Lars Nyland MH, Prins J. Fast n-body simulation with cuda. GPU Gems 3, Nguyen H (ed.). Addison-
Wesley Professional, 2007; 677�694.

Copyright© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

