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Abstract

Different methods are used to determine the scaling exponents associated with a time series

describing a complex dynamical process, such as those observed in geophysical systems. Many of

these methods are based on the numerical evaluation of the variance of a diffusion process whose

step increments are generated by the data. An alternative method focuses on the direct evaluation

of the scaling coefficient of the Shannon entropy of the same diffusion distribution. The combined

use of these methods can efficiently distinguish between fractal Gaussian and Lévy-walk time series

and help to discern between alternative underling complex dynamics.
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The evaluation of the scaling exponents is of fundamental importance to describe a num-

ber of complex systems [1, 2, 3]. The mathematical definition of scaling is as follows [4].

The function Φ(r1, r2, . . .) is termed scaling invariant, if it fulfills the property:

Φ(r1, r2, . . .) = γa Φ(γbr1, γ
cr2, . . .) . (1)

Thus, if we scale all coordinates {ri} by means of an appropriate choice of the exponents

a, b, c...., then we always recover the same function. This scaling invariance is the basic prop-

erty that characterizes fractal functions [1, 2, 3]. The theoretical and experimental search

for the correct scaling exponents is intimately related to the discovery of deviations from

ordinary statistical mechanics. Fractal time series are particularly important in geophysics,

as well as in several other field of research including biophysics and econophysics, where the

phenomena of interest may present specific self-similarity patterns on different time scales.

Two methods of analysis of time series commonly used to determine scaling properties

are autocorrelation analysis and power spectral analysis [5]. The autocorrelation function

of the fractal noise {ξi} results in the relation

C(r) =
< ξi ξi+r >

< ξ2i >
∝ r2H−2 . (2)

The power spectral representation of the same scaling property reads:

S(f) =

∫

∞

−∞

C(r) e−i2πfrdr ∝ f 1−2H . (3)

It is easy to recognize the self-similarity or scaling property of the above two equations in

their power-law form. The scaling exponent H was called the Hurst exponent by Mandelbrot

[1] in honor of the civil engineer Hurst who first understood the importance of scaling laws

to describe the long-range memory in time series. In particular, Hurst was interested in

evaluating the strength of the persistence of the annual level of the floods of the Nile river

and, for such a scope, developed a time series analysis method to determine the scaling

parameter H [6].

A value H = 1 corresponds to 1/f-noise or pink noise. The adoption of a color name

“pink” derives from the fact that a light source characterized by a 1/f spectrum looks pink.

These type of noises are particular important because they represent a kind of perfect balance

between randomness and order, or between unpredictability and predictability. In fact, for

pink noises the autocorrelation function between two events separated by a time interval
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∆τ = r is independent on r, (C(r) ≈ const). Pink noises, H ≈ 1, are found in countless

natural phenomena from heart-beat intervals to music [7]. A value 0 < H < 0.5 corresponds

to antipersistent noise, H = 0.5 corresponding to uncorrelated or random noise, also known

as white noise, and 0.5 < H < 1 corresponds to correlated or persistent noise. It is possible

to extend the definition of H for values larger than 1. So, a value H = 1.5 corresponds to

Brownian motion, which, as it is well known, describes the erratic motion of a particle, such

as a pollen grain, in suspension on a fluid; this erratic motion is cause by random collisions

between the particle and the molecules of the fluid [8]. A value H = 2 corresponds to brown

noise and a value H > 2 is known as black noise. These noises are characterized by a very

smooth shape and may be adopted, for example, to generate artificial mountain landscapes

[7].

It is important to point out that there are two common alternative deviations from

ordinary statistical mechanics: anomalous Gaussian statistics and Lévy statistics [9]. These

two different statistics are indicative, in particular, of two different kind of complex noises:

the monofractal Gaussian noise [1] and the Lévy-walk noise [10]. These two types of noises

present similar long-range correlation patterns, but are generated by quite different complex

dynamics. The monofractal Gaussian noise, in its persistent form, presents long range

memory in the sense that future events are strongly related to the frequency of occurrence

of past events and the waiting time distribution between events has finite variance. The

Lévy-walk intermittent noise, instead, presents long-range correlation patterns which are

generated by random waiting time intervals between events obeying to an inverse power

law distribution with exponents that yield infinite variance, and there is no real correlation

between events [11]. Figs. 1 show examples of these noises.

Herein, we briefly describe two alternative time series scaling analysis methods, whose

combined adoption can be used to distinguish the two above alternative noises. The diffusion

entropy analysis (DEA) and standard deviation analysis (SDA) [12]. Both techniques are

based on the prescription that a time series {ξi} of N elements are the fluctuations of a

diffusion trajectory [12]. Note that there exist several other scaling analysis methods such

as the detrended fluctuation analysis [13] and several wavelet based methods [14, 15, 16],

which are variance based methods and are theoretically equivalent to the SDA.

According to the prescription of Scafetta and Grigolini [12], we shift our attention from

the time series {ξi} to the probability distribution function (pdf) p(x, t) of the corresponding
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FIG. 1: [A] Fractional Gaussian noise with H = 0.8; [B] Two forms of Lévy-walk intermittent

noise with ψ(τ) ∝ τ−µ and µ = 2.5. B2 gives the frequency of impulses every 300 units of B1.

diffusion process, that is, the pdf of the diffusion process, p(x, t), is evaluated by means of

the N − t sub-trajectories

xn(t) =
t

∑

i=0

ξi+n (4)

with n = 0, 1, . . . Therefore, x denotes the variable collecting the fluctuations and is referred

to as the diffusion variable. The scaling property of the diffusion process, if it exists, takes

the form

p(x, t) =
1

tδ
F
( x

tδ

)

, (5)

where δ is the scaling exponent. The DEA [12] is based on the evaluation of the Shannon

entropy S(t) using the pdf (5). If the scaling condition of Eq. (5) holds true, it is easy to

prove that

S(t) = −

∫

p(x, t) ln[p(x, t)]dx = A+ δ ln(t) , (6)

where, A is a constant. Numerically, we first evaluate the pdf with histogram of size-bin

equal to the standard deviation of the data, and then use a discrete form of Eq. (6).

The SDA [12] is based on the evaluation of the standard deviation D(t) of the same

variable x, and yields

D(t) =

√

∑N−t
n=0

[xn(t)− 〈x; t〉]2

N − t− 1
∝ tH , (7)

where 〈x; t〉 = 1

N−t

∑N−t
n=0

xn(t) is the mean value of {xn(t)}, and H is the Hurst exponent.

If the data are fractal Gaussian noise the two scaling exponents are related to each other

via the fractal Gaussian relation

H = δ . (8)
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FIG. 2: DEA end SDA of: [A] a fractal Gaussian intermittent noise with ψ(τ) ∝ exp(−τ/γ) with

γ = 25 and H = δ = 0.75; the fractal Gaussian relation (8) of equal exponents is fulfilled; [B] a

Lévy-walk intermittent noise with ψ(τ) ∝ τ−µ and µ = 2.5; note the bifurcation between H = 0.75

and δ = 0.67 in accordance with the Lévy-walk relation (10).

If the data are generated by a Lévy-walk they are characterized by an inverse power law

waiting time distribution of the type

ψ(τ) ∝
1

(1 + τ)µ
, (9)

where 2 < µ < 3, which ensures that although the first moment of τ is finite, the second

moment diverges. The scaling exponents are related to each other via the Lévy-walk relation

(LWR) [11]

0.5 < δ =
1

3− 2H
=

1

µ− 1
< H < 1. (10)

There are several complex ways to generate a Lévy-walk sequence, see Ref. [11, 12, 17, 19].

Some of these noises involve mixed Lévy-Gaussian properties. The simplest Lévy-walk

sequence is a dichotomous signal made by a series of zeros and ones, where ξ = 1 represents

the occurrence of an event and ξ = 0 represents no event. The time intervals {τi} obeying

to Eq. (9) give the intervals between events.

Thus, by evaluating δ and H and using Eq. (8) and (10) it is possible to distinguish

the two kinds of time series [12], while the adoption of only one of the two techniques can

lead to a misinterpretation of the characteristics of a phenomenon. Figs. 2A and 2B show

DEA and SDA applied to a fractal Gaussian intermittent noise with δ = H = 0.75 and to

a Lévy walk intermittent noise with µ = 2.5, which correspond to δ = 0.67 and H = 0.75,

respectively [11, 12].
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FIG. 3: [A] Waiting time distribution of flares. The distribution is fit with an inverse power law

Eq. (9) with exponent µ = 2.12 ± 0.05 [Grigolini et al. 2002]. [B] SDA applied to the ACRIM

composite TSI time series, sunspot number and cover sequence and global temperature anomalies.

The uppermost line represents the theoretical Lévy-walk scaling of the solar flare intermittency,

HT = 0.94± 0.02, obtained via Eq. (10) with µ = 2.12 ± 0.05. The bottom line shows the scaling

for random noise, H = 0.5, for comparison.

Particularly interesting applications of the above scaling analysis techniques are found in

geophysical phenomena such as earthquakes, solar flares and global temperature patterns,

where long time series of data are available [11, 17, 18]. Herein, we briefly summarize some

of our findings.

In Ref. [17] it was shown that the waiting time interval distribution ψ(τ) between solar

flares [20] is an inverse power law of the type (9) with exponent µ = 2.12±0.05. According to

the LWR (10) this would induce a Levy-walk with theoretical exponents H = 0.94±0.04 and

δ = 0.89±0.04. Fig. 3A shows the waiting time distribution of flares. Fig. 3B shows the SDA

applied to several solar data such as ACRIM TSI [21], sunspot cover [23] , sunspot number

[22], global surface temperature anomalies (1856-2003) [24] and the theoretical prediction

derived from the solar flare intermittency. The curves are quite parallel and suggest that a

Lévy like process regulate the dynamics of the solar activity and that the Earth climate seems

to contain the same statistics. The latter statement seems further confirmed by Figs. 4A and

4B that show DEA and SDA applied to the ACRIM TSI and the global temperature record

showing the typical LWR bifurcation. We observe that if these findings are not accidental,

they might imply the existence of a non-negligible complex Sun-Climate nonlinear coupling

on a short time-scale as some studies seem to confirm [25, 26].
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FIG. 4: [A] DEA and SDA applied to the ACRIM composite TSI time series. The two straight

lines correspond to the scaling coefficients δ = 0.88 ± 0.02 and H = 0.94 ± 0.02. [B] DEA and

SDA applied to the global temperature anomalies (1856-2003) time series. The two straight lines

correspond to the scaling coefficients δ = 0.89 ± 0.02 and H = 0.95 ± 0.02.

The above techniques can be applied also to earthquake concurrence [11]. An issue about

seismic phenomena is whether: (1) they obey a statistics according to which the waiting

times between Omori’s earthquake clusters [29] are uncorrelated from one another, as the

traditional Generalized Poisson model [27, 28], the “ETAS” model [30]; (2) the Omori’s

earthquake clusters obey to some knind of Lévy-walk statistics [28]; (3) or whether the

data may also be characterized by intercluster 1/f long-range correlations between Omori’s

clusters that may disclose the earthquake conversations recently suggested by Stein [27].

Understanding the nature of the long-range correlation is fundamental for building reliable

earthquake models.

Fig. 5A shows the waiting time PDFs between earthquakes in California [31] using four

earthquake magnitude thresholds Mt = 1, 2, 3 and 4. The PDFs show an initial Omori’s law

[29] (P (τ) ∝ 1/τ), but the pdf tails present a large inverse power law exponent µ > 4 and

may even approach an exponential (or Poisson) distribution asymptotically. The Omori’s

law is determined by the short-range correlated aftershocks [29] and lasts for a time that

increases with the magnitude threshold. Fig. 5B shows the DEA and SDA applied to the

intermittent time signal ξ(t), where t is the physical time, obtained by assigning a value

equal to 1 at the occurrence of an event, and a value equal to 0 when no event occurred.

The latter figure suggests that the data fulfill FGR (8). Thus, beyond the Omori’s law, the

earthquake clusters might be uncorrelated if the observed super-diffusion δ = H = 0.94 is
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FIG. 5: [A] pdf of the waiting times τi of earthquakes with a magnitude M ≥Mt = 1, 2, 3 and 4.

The initial P (τ) ∝ 1/τ is the Omori’s law [29]. [B] DEA and SDA of the intermittent time signal

ξ(t) for magnitude M ≥Mt = 1. The data are fitted with scaling exponents δ = 0.944± 0.008 and

H = 0.943 ± 0.004. The uppermost solid line with H = 0.97 corresponds to the expectation of H

if the Levy-walk condition (10) holds true.

generated by a long-tailed Omori’s law involving multiple clusters, or there might be the

possibility that the clusters are correlated as a 1/f Gaussian noise [11]. In the latter case,

traditional earthquake models such as the Generalized Poisson model [27, 28] or the “ETAS”

model [30] should be improved by adding additional correlations between clusters.

In conclusion, we have discussed some properties of complex time series analysis showing

two different types of anomalous statistics: fractal Gaussian noise and Lévy-walk noise.

We have shown how the multiscaling comparative analysis of time series can be used

to distinguish the two types of noises and applied it to study some complex patterns of

geophysical phenomena. Thus, we conclude that there are some difficulties in interpreting

intermittent sequences. Models with alternative statistics can reproduce some patterns of a

time series equally well. This fact suggests the need of an analysis involving complementary

tests for addressing complex systems.

Acknowledgment: N.S. thanks the ARO for support under grant DAAG5598D0002.

[1] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, (1983).

[2] Feders J., Fractals, Plenum Publishers, New York, (1988).

8



[3] Peitgen H.-O., J. Hartmut, D. Saupe, Chaos and Fractals, new frontiers of science, sec. edition,

Springer, New York, (2004).

[4] Goldenfeld N., Lectures on Phase Transitions and the Renormalization Group ( Perseus Book,

Reading, Massachusetts,1985).

[5] R. Badii and A. Politi, Complexity, Hierarchical structures and scaling in physics, Cambrige

University Press, UK, (1997).

[6] Hurst H.E., R. P. Black, Y.M. Simaika, LongTerm Storage: An Experimental Study, Constable,

London, (1965).

[7] Schroeder M.,Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, W.H. Freeman

& Company,(1992).

[8] Gardiner C.W., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sci-

ences, 2nd edition, Springer-Verlag, New York, New York, (1997).

[9] A.I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover Publications, Inc.

New York, (1949).
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