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Abstract  

Nowadays, the bulk of Internet traffic uses TCP protocol for reliable 

transmission. But the standard TCP’s performance is very poor in 

High Speed Networks (HSN) and hence the core gigabytes links are 

usually underutilization. This problem has roots in conservative nature 

of TCP, especially in its Additive Increase Multiplicative Decrease 

(AIMD) phase. In other words, since TCP can’t figure out precisely 

the congestion status of the network, it follows a conservative strategy 

to keep the network from overwhelming. We believe that precisely 

congestion estimation in the network can solve this problem by 

avoiding unnecessary conservation. To this end, this paper proposes an 

algorithm which considers packet loss and delay information jointly 

and employs a probabilistic approach to accurately estimation of 

congestion status in the network. To examine the proposed scheme 

performance, extensive simulations have been performed in the NS-2 

environment. Simulation results reveal that the proposed algorithm has 

better performance than existing algorithms in terms of bottleneck 

utilization, stability, throughput and fairness. 
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1     INTRODUCTION 
TCP (Transmission Control Protocol) is normally utilized in current networks providing reliable 

end-to-end data communication. Evolving the web to contain several long distances and high-speed 

network routes challenged the TCP protocol behaviour. Massive bandwidth and delay product 

(BDP) are characteristics of these networks that provide the total number of packets required in 

flight though maintaining the band width absolutely utilised [1-5]. In standard TCP like TCP-New 

Reno TCP-Reno, and TCP- SACK, TCP extends its window one per roundtrip time (RTT). 

Although the standard  TCP  was  considerably  effective  to perform  congestion  avoidance  and  

control in  preventing  severe congestion in the low-speed networks, the  standard  TCP  is  not 

suitable  for networks with highspeed where  the additional  increment  multiplicative decrement 
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(AIMD) algorithm is too cautious for obtaining full  bandwidth  use rapidly while is  too extreme for 

recovering  from  per packet  loss case. To overcome the low-performance problem, the standard 

TCP’s AIMD algorithm needs to be improved for high-speed networks. Many high-speed end-to-end 

congestion management Schemes have been provided, so far. These approaches are classified into 

three groups of delay-based, loss-based, and their hybrid (combine loss-delay-based). 
 

Within loss-based protocol, an Additive Increase Multiplicative Decrease (AIMD) mechanism of 

TCP congestion prevention phase is modified to rapidly increment and gradually reduce the 

congestion window compared to TCP-Reno, to obtain high throughput in high-speed networks 

adjusting the size of congestion window through resulting in intentional packet losses. The examples 

include Scalable TCP, High-speed TCP (HSTCP, for short), BIC, early version of TCP-Westwood 

(TCPW), CUBIC. RTT is used in delay-based outlines for predicting network congestion prior to 

packet losses indicating superior behaviour in fairness and efficiency.  

FAST-TCP [6] and TCP-Vegas [7] are examples in this regard. Nevertheless, it is indicated that 

they have strictly corrupted behaviours when competing with loss-based TCP protocols. Hybrid 

approaches combining loss-based and delay-based properties were recently proposed including TCP-

Illinois, Hybrid Congestion Control TCP (HCC TCP) [8], and Compound TCP (CTCP) [9]. Based 

on the RTT-estimated congestion level measurement, they adaptively change their congestion 

control modes (delay-based and loss-based). Although these approaches achieve delay-based 

schemes’ high throughput efficiency in case of non-congested network, and offer friendliness to 

loss-based schemes in case of congested network, there some deficiencies in most of them in 

different aspects including responsiveness, TCP-friendly, and fairness. Since there are no proposed 

approaches mainly better than the other approaches and other effective methods should be studied, it 

is still required to develop novel high-speed TCP variants. 
 

Here, we propose yet another variant of TCP, called probability hybrid congestion control TCP 

(PHCC TCP), for networks with high speed that relies on predictions based on probabilities. In other 

words, we use the conditional probability and Bayes theory [10] is utilized for estimating the 

congestion window. Furthermore, unlike other proposed hybrid methods that, two indicators used 

separately delay and packet loss. The protocol utilizes the delay and loss information as the 

simultaneously congestion indicator to cooperatively set the window size in order to meet the design 

needs on efficiency, TCP-friendliness, fairness, and overtakes the loss/delay-based TCP and hybrid 

TCP protocols in high-speed networks. 

     The rest of this study is adjusted as: Section 2 explains the relevant studies. In Section 3, we 

explain the proposed method the PHCC TCP algorithm. Section 4 includes evaluations of simulation 

experiment results. Ultimately, we provide the conclusion and talk about the future work in Section 

5. 

 

2     Related works 
This section lists the methods that have addressed the issue of congestion control so far. Each 

method is briefly reviewed. 

    In [11], the hybrid optimization algorithm for sensor networks is used in a closed experimental 

experiment based on a rapid congestion control scheme. First, using the waiting delay, received 

signal strength and mobility as multiple inputs of this algorithm, we select the best intermediate node 

in the optimization algorithm, which increases the life of the network to reduce congestion. Then, 

using the modified gravitational search algorithm, we calculate the path for the node to sink, which 



provides better routing. The simulation results show that the proposed method can control 

congestion by reducing energy consumption, missing packets and number of steps and increasing 

network life compared to the current methods. 

     Increasing the throughput and reducing the latency of very fast and variable network connections 

is targeted in the method proposed in this paper and we classify them based on the way they control 

congestion. This article also discusses the application of algorithms. In addition, this paper discusses 

future research that could help develop and deploy better-performing algorithms. They also offered 

future research pathways, such as dealing with a higher degree of diversity, the interaction of CCAs 

in a common bottleneck, and ways for synchronous research, such as CCAs defined by software 

networks and virtualization of network performance [12]. 

     A hybrid congestion control-based approach that uses latency information as the main congestion 

indicator and loss information as the second congestion indicator to jointly adjust window size to 

meet design needs for TCP justice and performance. Better than other standards such as TCP and 

other types of TCP in high speed networks. Due to the synergy of delay-based strategy and loss-

based strategy, HCC TCP is a hybrid congestion control scheme. The proposed mechanism is very 

practical for high-speed networks and has performed better than the methods compared to them in 

the paper [13]. 

    Inspired by traction-passing algorithms in other fields, we proposed a methodology for active 

congestion control in this paper, which explicitly calculates rates independently of congestion 

signals. For example, modern low-density parity decoding algorithms improve the convergence time 

by a factor of 7 compared to explicit reactive speed control protocols such as RCP. This rapid 

convergence significantly reduces the tail end current in high-speed networks. We also show that in 

such cases, the active algorithms obtain far fewer tail FCTs due to their rapid convergence than the 

reaction algorithms. For example, realistic load simulations in a 100 Gbps network show that PERC 

achieves better efficiency than RCP [14]. 

    For deployment in high-speed and long-distance networks as well as conventional networks, we 

have introduced a new AIMD congestion control algorithm, H-TCP, which works much better than 

other existing methods. H-TCP extends the AIMD strategy to significantly improve response and 

scale product performance with latency in bandwidth and queue supply level in the network. Also in 

this paper, we consider the problem of congestion control protocol design for deployment in high-

speed and long-distance networks, which results in better performance of the proposed protocol 

through simulation measurements in a wide range of network conditions [15]. 

    A hybrid method using bottleneck bandwidth and distance propagation time (RCP-BBR) is 

proposed as an alternative to UDP for congestion control. The proposed method achieved efficient 

control of congestion, low latency, high throughput and efficient contact personalization ratio with 

efficient use of bandwidth as bottleneck bandwidth and back-and-forth release time. According to 

the simulation results, the proposed protocol achieves better throughput through UDP in stable 

networks. In addition, in unstable and remote networks, the introduced method achieved smaller 

queues in deep buffers and less delays compared to UDP, which performs poorly by keeping the 

delays above the contact drop threshold [16]. 

      End-to-end algorithms propose an attractive approach to Internet congestion control, both in 

simplicity and scalability. In this section, we present some of the most relevant work on TCP end-to-



end congestion control. Recall that the only signals of network congestion available to an end-to-end 

algorithm are packet losses and latency variations. Therefore, research has been focused on three 

types of algorithms [17]: 

• Loss-based algorithms rely on packet losses alone to react to network congestion; 

• Delay-based algorithms use delay measurements alone to infer router queue occupancy and 

act before heavy congestion occurs; 

• Hybrid-based algorithms use techniques from both loss-based and delay-based algorithms; 

their rationale is that with more information, an end-to-end algorithm can infer the state of the 

network more accurately and make better decisions. 

      Kelly proposed Scalable TCP (STCP). Scalable TCP modifies the congestion control algorithm. 

The congestion window is reduced by this algorithm for each packet loss by a factor of 1/8 instead 

of Standard TCP's 1/2, till stopping the packet loss. This reduces the recovery time on 10 Gbit/s 

links from 4 h and more (utilizing Standard TCP) to less than 15 s for the round-trip time of 200 

ms. High-speed TCP (HSTCP) uses an adjusted AIMD by a convex function of the current 

congestion window size in case the multiplicative decrease factor and linear increase factor are 

modified. HSTCP has a behaviour similar to standard TCP, in case of the congestion window less 

than some cut-off value. This window size-based TCP compatibility is supported by most of high-

speed TCP variants. Several of these protocols in competition with shares of the bottleneck link 

possess various RTT delays, use of bandwidth efficiency cannot be fair [18]. 

     A binary search algorithm is used by BIC TCP for growing window to the mid-point within the 

last window size (namely max). Here, TCP contains the last window size (namely min) and a 

packet loss and there is no loss over a RTT period. BIC TCP adjusts the mid-point as the new min 

and accomplishes another “binary-search” possessing the max and min windows. It affects the 

window growth really fast if the current window size is far from the accessible capacity of the path. 

Hence, its window increase is gradually reduced when it is close to the existing capacity (the former 

loss). This concave function makes BIC TCP very stable and simultaneously highly scalable. 

Although the performance of BIC TCP is better than old presented protocols. However, also the 

problem of RTT unfairness in this protocol remains. Afterwards, an improved form of BIC TCP 

called CUBIC TCP is established to enhance the RTT-fairness of its performance. In fact, CUBIC 

TCP is a kind of more structured and less aggressive BIC TCP where the window size is 

determined as a cubic function of time from the last congestion event. HTCP like CUBIC TCP for 

calculation of the current congestion window size utilizes the elapsed time (∆) from the final 

congestion. The HTCP’s window growth function is a quadratic function of ∆ where HTCP is 

unique and sets the reduction fact or by a function of RTTs planned for estimating the queue size in 

the current flow’s network path. The increment of window size for HTCP, HSTCP and STCP 

protocols, is still fast even the close network to the congestion. The more flows competition and 

reduced throughput are obtained by the congestion in network [19]. 

    TCP Vegas determines the difference (δ) between the actual throughput and estimated throughput 

in terms of round-trip delays. In case, δ is less than a low threshold α, TCP Vegas trusts the route as 

the non-congested, therefore, it increments the sending rate. In case of δ higher than an upper 

threshold β as a robust evidence of congestion, TCP Vegas decreases the window size of sending. 

Then, TCP Vegas keeps the current directing window size. The estimated throughput is determined 

by division of the current congestion window by the least RTT normally containing the delay, till 



finding the congested path. TCP Vegas calculates the actual throughput for each RTT by division of 

the number of packets directed by the tested RTT.  FAST TCP is a Vegas’s high-speed descendant. 

Even though FAST TCP builds upon the principles of Vegas, it increments the congestion window 

more violently to achieve good efficiency in high-speed networks. This protocol keeps queue 

occupying at paths for a small value to direct the network around full bandwidth use and obtain a 

greater average throughput. Furthermore, FAST TCP can converge to the equilibrium mode rapidly 

while not suffering the RTT unfairness problem. FAST TCP splits the congestion window and 

enters loss recovery similar to TCP for packet losses. However, it also includes some weaknesses. 

Given that FAST TCP is a delay-based method, it utilizes the RTTs for congestion and its 

throughput behaviour is considerably influenced by the traffic of reverse path, and its throughput 

decreases as the queuing delay increases on the reverse path [20]. 

    TCP-Illinois follows an AIMD algorithm, but uses delay estimates to set the increase and 

decrease congestion window parameters. If TCP-Illinois does not detect queuing delay (i.e., 

network congestion), the increase parameter is set to the maximum value, making the congestion 

window grow quickly. As the queuing delay starts to build up, the increase parameter is then 

gradually decreased, making the congestion window grow more slowly. It utilizes the loss 

information to determine the direction of window change and the delay information is used for 

adjusting the pace of window size change. Compound TCP (CTCP) is planned to violently set the 

congestion window of the sender to enhance TCP for connections with huge bandwidth-delay 

products while not harming fairness (since it is able to occur with HSTCP). CTCP regards two 

congestion windows: a delay-based window and a normal AIMD window. The sum of these two 

windows is used to calculate the actual sliding window size. Thus, these methods use the benefits of 

both the delay-based and loss-based approaches. Nevertheless, since RTTs are used in the delay-

based constituents to measure the congestion, similar to FAST TCP, reverse path traffic also affects 

their throughput behaviour [21]. 

     This method is similar to previous methods have shortcomings that they are not paying attention 

to the nature of packet loss and of its severity. The main emphasis of this approach is based on the 

delay, and packet loss, only to switch to a strict mode is used to reduce the size of the window. This 

algorithm will decrease throughput when the packet loss probability increases. It also suffers the 

TCP-friendliness problem. 

 

3     The PHCC TCP protocol 
Congestion control in High-Speed Networks (HSN) is designed in the following section using the 

probabilistic estimation approach (PEA). The PHCC TCP protocol consists of five phases, such as 

the overview of the PHCC TCP protocol in the HSN is discussed in Sect. 4.1. Architecture and 

Congestion probability model is discussed in Sect. 4.2, Delay and loss probability functions is 

discussed in Sect. 4.3; Joint congestion window estimation model is discussed in Sect. 4.4. and 

Congestion window algorithm is discussed in Sect. 4.5. 

 

3.1 Phase 1: Overview of the PHCC TCP protocol 

The combination methods, with the synergy of delay-based method and loss-based method, can 

solve many shortcomings of both the loss-based and delay-based approaches. Therefore, PHCC 

TCP also adopted the method that uses the synergy of the loss-based and delay-based approach as 

jointly to realize the congestion control for high-speed networks. However recent studies show the 



terms of use of delay and loss information has a considerable impact on throughput, fairness, 

sensitivity to buffer size, TCP friendliness, and etc. Hence, in the use of indicators and define the 

functions must be performed carefully to any factor that greatly affects the network traffic should 

not be forgotten. Since the discovery of all the factors involved in congestion, the amount and how 

it is virtually impossible, in this paper, instead of using deterministic functions of mathematical, 

probability theory is used to estimate the traffic condition. This mechanism fundamentally 

differentiates PHCC TCP from others. 

 

3.2 Phase 2: Architecture and Congestion probability model 

As shown in Fig. 1, the delay could be two main reasons, congestion control policy applied and 

other problems (such as communication link problems and traffic of other flows). Packet loss in 

addition to other problems (connection failure, etc.) could be due to the inappropriate congestion 

control policy. PHCC in the first step, calculate delay-based probability and loss-based probability 

from delay and loss information, and in the second step, the window control strategy calculate from 

the estimates of the delay and loss probability is realized by the joint congestion control component. 

 

 
FIGURE 1 PHCC TCP architecture. 
 

According to Fig. 1 and using probability theory the probability space of network congestion in Fig. 

2 for a flow could be drawn. In Fig. 2, the congestion probability space is shown with M, that can 

be the value of "zero" (the absence of any congestion), and the "One" (Timeout or loss) or a value 

between "zero" and "one" according to the hardness of congestion. 
 

 
FIGURE 2 Probability space of network congestion. 
 



From fig. 2, Delay D consists of delays caused by congestion window changes
WD and delays 

caused by other factors
OD . Similarly, Loss L consists of losses caused by delay

dL and losses caused 

by other factors
OL . 

 
 

3.3 Phase 3: Delay and loss probability functions 

According to the mechanism shown in Figure 1, the window size is a function of the complement 

probability of delay1 ( )P D−  and packet loss complement probability1 ( )P L− . Window size can be 

written as: 
 

( ) ( )( )( )1 ,1WindowSize f P D P L= − −   
(1) 

 

As illustrated in Fig. 3, using a Bayesian network, we calculate the estimation of delay probability

( )estP D  as follows: 

( ) ( ) ( ) ( )( ) ( ). 1 .est old old old oldP D P D P D D P D P D D= + −   
(2) 

 

The old delay probability ( )oldP D is the mean value of the delay probability is obtained from the 

previous RTT. ( )oldP D D , the conditional probability or likelihood, is the degree of belief in delay 

D, given that the proposition delay of old ( )oldD is true. Likewise, oldD means that the proposition 

"old delay" is false. Similarly, the estimation of packet loss probability ( )estP L  can be written as 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( )

. 1 . .

1 .

est old old old old old old

old old

P L P L P L L P L P L L P D P L D

P D P L D

= + − + +

−
  

(3) 

 

 
FIGURE 3 Bayesian model of delay and loss. 

3.4 Phase 4: Joint congestion window estimation model 

Based on the previous sections describes, the estimation of the congestion window according to Fig. 

3 are calculated. In fig. 3 the delay could be two different reasons, inappropriate increase the size of 

the current window and affects the other flows traffic. Packet loss can be due to the delay and other 

factors. In order to overlap of the two indicators delay and packet loss, to determine size of the 

congestion window 𝑊𝑖
𝑒𝑠𝑡 for source of i, Firstly, the appropriate estimation of window size 

( ) ( ),est est

i iW D W L
based on the theory Bayes for both delay and packet loss will be calculated 



separately. The estimation of delay Probability ( )est

iW D and estimation of packet loss probability

( )est

iW L can be also calculated from Eq. (2), (3). 

 

( ) ( )( ) ( )1 .est est tar

i i iW D P D W D= −   
(4) 

 

( ) ( )( ) ( )1 .est est tar

i i iW L P L W L= −   
(5) 

 

Without the effect from the queuing delay on the reverse path, the source i can achieve full 

utilization of available bandwidth on the forward path, let be the current delay, the queuing delay of 

source i is queueD . Each source computes its delay-based target window periodically according to: 

 

( ) *tar i
i i

queue

W D D
D

 
=   
 

  

(6) 

 

Size of the target window for loss-based strategy ( )tar

iW D in fact, the window size is a reference to 

packet loss. In other words, if a packet loss is detected during the growth of the window size, the 

source updates the loss-reference to the current window size. Finally, the congestion window size is 

estimated as 

 

( )
( ) ( )

,
2

est est

i iest

i

W D W L
W D L

 +
=  
 

  

(7) 

 

 

 

 

 

 

 

 

3.5 Phase 5: Congestion window algorithm 

In this subsection, we show how the delay-based strategy and the loss-based strategy are used 

simultaneously in the joint control phase of PHCC TCP. At start-up, PHCC TCP relies on the 

delay-based algorithm to increase the window size [22-25]. Firstly, we set a delay threshold 

minimum value min

trD  to estimate the congestion by use of slow start threshold ssthresh  and 

expected bandwidth value expectbw from of TCP Vegas that can be written as 

min

exp

tr

ect

ssthresh
D

bw

 
=   
 

  

(8) 

 

Figure 4 shows three phase of congestion state, in first phase, if min

trDelay D , it indicates that the 

queuing is light and available bandwidth is not used fully, for rapidly increase the window size, the 

additive multiplicative increase scheme can be used. We set a delay threshold maximum value 

𝐷𝑚𝑎𝑥
𝑡𝑟 = {𝐷𝑑𝑒𝑙𝑎𝑦

𝑡𝑟 ,𝐷𝑙𝑜𝑠𝑠
𝑡𝑟 } for divide the remained state ( min

trDelay D ) in two phase; congestion 

control phase: if min max

tr trD Delay D   and critical phase: when max

trD Delay Timeout  . Delay 

reference 𝐷𝑙𝑜𝑠𝑠
𝑡𝑟  is updated for every loss detect. The delay threshold 𝐷𝑑𝑒𝑙𝑎𝑦

𝑡𝑟  is calculated by using 



the values of sequence number seqno  , last ack number lastack  and buffer size BFS that is obtained 

from expected bandwidth expectbw  and actual bandwidth actualbw functions of TCP Vegas as shown 

below.  

( )( )exp min*ect actualBFS bw bw D= −   
(9) 

 

( ) min*tr

delay

Delay D
D seqno lastack

BFS

 −  
= −   

  
  

(10) 

 

 

FIGURE 4 Three phase of congestion control state. 
 

Congestion phase in Fig. 4 is main phase of our algorithm. In this phase we calculate the estimation 

window for congestion control by Eq. 7 per RTT. If any loss detects or timeout event in each of 

three phases. The algorithm decreases the window size in half and check policy parameter for select 

correct phase. Figure 5 shows the PHCC TCP algorithm flowchart. 

 

FIGURE 5 PHCC TCP algorithm flowchart. 

 

 
 



4   Evaluating the Performance 

This section evaluates the performance of PHCC TCP using the NS 2.35 simulator [26-29]. The TCP 

Vegas agent in NS-2 are modified to implement PHCC TCP. We implemented wide simulation 

experiments to assess the PHCC TCP and made a comparison between its performance with other old 

protocols such as: TCP Vegas, TCP Reno, STCP, HSTCP, HTCP, TCP-Illinois, BIC-TCP, FAST 

TCP and HCC TCP, we used a dumb-bell network model with a single bottleneck shared link as 

shown in Fig. 6. The sources, routers and destinations links each with 200Mbs bandwidth and 20ms 

delay. Router queue discipline is first-in-first-out (FIFO) selected. In all tests, the size of data packets 

is 1000 bytes. For other TCP protocol, their default parameter setting is used. 

 

PHCC Behavior as a single traffic flow: As an initial evaluation, performance of the proposed 

algorithm for different phases (slow start, congestion avoidance and achieve maximum throughput) 

tested.  Average throughput of the proposed method is presented in Fig 6. It can be seen that when 

the RTT is 2ms, as shown in Fig. 6(a), the algorithm achieves the optimal and maximum use of 

available bandwidth and the average throughput increase faster. As shown in Fig. 6(b), when the 

RTT is 20ms, the average throughput of PHCC TCP Protocol grow slowly by controlling the 

congestion in the network.  

a b 

 
 

FIGURE 6 Throughput of PHCC TCP algorithm as a single traffic, (a) RTT(2ms) and (b) RTT (20ms). 

 

As shown in Fig. 7, the algorithm has a behavior such as other protocols with a difference threshold 

in slow start phase, in adapting phase TCP PHCC to achieve an optimum situation of two major 

indicator used, In both indicator, the probability theory used to adjust the window. This algorithm in 

stability phase  is trying to avoid the congestion and use of the maximum available bandwidth. With 

this description, the PHCC TCP in contrast to other presented methods, in use of delay index, 

except of delay size, the expected based on Bayes' theorem is also used. 



 
FIGURE 7 Three phase of PHCC throughput grow. 

 

Evaluation of throughput: One of the indicators that proposed algorithm is used to congestion 

control, is packet loss, in Fig. 8, the range of throughput to compete with the other two protocol (a 

normal TCP flow and a fast TCP flow) is shown. According to this algorithm, the packet loss due to 

congestion is not considered a hundred percent, has a Better performance than other algorithms and 

if recognize that although packet loss, but delay time is low and traffic flow is normal, applying 

strict policy is avoided. The above experiments on two scenarios assuming packet loss probability 

of 0.01 and 0.00001, we repeat the results of which are shown in Fig. 8. The result shows that the 

rival algorithms even when packets are lost is rarely, because packet loss are considered as a binary 

indicator, heavily reduces the congestion window size and causing severe fluctuations in 

throughput. 

a 

b 

 
 

FIGURE 8 Rate dynamics of PHCC TCP throughput with loss probability (a) loss probability is 0.01 and 

"(b) loss probability is 0.00001. 



 

To evaluate the throughput and efficiency of the proposed method is to change the buffer size, the 

simulation run with different buffer values, simulation time was 300 seconds. Figure 9 represents 

the average throughput for different buffer sizes of 100-4000 packets. We can see an increase in the 

average throughput of all protocol with buffer size growth, protocols that are planned for high-

speed networks, uniformly better throughput than protocols like TCP Vegas and TCP Reno that are 

not planned for high-speed networks. It is observed that throughput of TCP FAST with the buffer 

size of less than 400 packages, falls rapidly. The algorithm, except when the buffer size is less than 

300, in other cases, as well as the available buffer used and adapted with it. PHCC TCP acts well on 

throughput behaviour compared to other high-speed TCP variants nearly in all buffer size cases. 

 
FIGURE 9 Comparison of the buffer size vs throughput. 
 

In further experiments, the throughput of the proposed algorithm with the normal algorithms and 

algorithms are presented for high-speed network compared to the probability of packet loss. The 

results of which are shown in Fig. 9, although the proposed algorithm has not the best performance 

compared to other algorithms, but this algorithm in total in acceptable condition. FAST TCP 

algorithm is better in this test due to its delay is based. 

 
FIGURE 10 Comparison of the packet loss vs throughput with buffer size (2000 packets). 
 

The average queuing size versus buffer size is shown in Fig. 11. It is seen that the average queuing 

size of the protocols based on packet loss, such as TCP Reno, STCP, STCP, BIC TCP, and HTCP 



increments quickly with the buffer size growth. Therefore, the delay-based protocols utilizing the 

queuing delay as the primary indicator for congestion control, incur less overloads to routers 

compared to the loss-based protocols, particularly for the larger buffer size. But some delay-based 

or hybrid methods based on the queuing delay with fixed of delay time that may be another reason 

other than the queue is formed, not optimized for use of available buffer size. Compared with other 

algorithms, the proposed algorithm is optimal, because of both indicators delay and packet loss as 

the ratio of the probability to each other and the past are used. Fig. 11 shows the protocols average 

queuing size for the different buffer sizes.  

 
FIGURE 11 Average queuing size versus buffer size. 

To evaluate the efficiency and the use of available bandwidth by algorithm, is tested with three 

homogeneous RTT (120 ms), buffer size: 600 packets on each of the algorithms we've done. 

Average throughput obtained for calculating the utilization been used the results in Table 1 is 

shown. According to the results, the utilization of the proposed algorithm is 94% which is good. 

Although this algorithm in this regard, not above all, but in critical condition has better 

performance. 

TABLE 1 Comparison of the all method in terms of throughput and utilization with buffer size (600 packets). 
  

Average throughput (kbps) Utilization 

STCP 195000 98% 

BIC 195000 98% 

HSTCP 188000 94% 

PHCC 187000 94% 

HCC 186000 93% 

TCP-Illinois 177000 89% 

FAST 166000 83% 

HTCP 152000 76% 
 

Fairness: As the first experiment to evaluate the fairness of the proposed algorithm, we use three 

homogeneous data flow of the proposed protocol with a buffer size of 200 packets, that at three 

different times to send the package. The flow 1 at 0 seconds, the flow 2 at 10 seconds and the flow 

3 at 20 seconds, uses of bottleneck link to send packets. Due to the lack of competition, the first 

flow was in possession of all the available bandwidth shared connection. With the arrival of the 



second flow, available bandwidth is divided between them and also arrival third flow, fair 

competition between them was formed. The results shown in Figure 12(a). In Figure 12(b), the 

fairness of the proposed method compared to the normal TCP and high-speed TCP protocols is 

shown. In Continues for evaluate the fairness performance of PHCC TCP, we consider three 

homogeneous RTT with 120 ms and the Jain’s fairness index (FI) is used to quantitatively evaluate 

the fairness performance of the protocols [7 and 10]. All sources start sending data at 0 s and 

simulation duration is set to 300s. 
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in which n shows the number of the concurrent flows and x̅i represents the average throughput of 

the flow i. The FI value is constantly no more than 1. The higher FI value indicates the better 

fairness behavior, and by the value equal to 1, the flows competing in a network obtain definitely 

correspondent throughput. As shown in Fig.13, PHCC TCP achieve best fairness and good 

utilization as other high-speed protocols in both scenarios. As observed in Fig. 13 (a), (b), all the 

other protocols have different behavior for buffer size of 600 and 2000 pkts. It is found that by the 

buffer size of 600 pkts, the fairness of FAST TCP, STCP, and TCP-Illinois degrades considerable, 

moreover, the utilization of HTCP and FAST TCP is low. On the other hand, by increasing the 

buffer size to 2000 pkts, the fairness of HTCP, STCP, FAST TCP and TCP-Illinois is considerably 

reduced. Though, PHCC TCP not only reaches fair sharing of link resources amongst the 3 

utilization, but also keeps good bandwidth utilization.  

 
(a) 3 PHCC TCP flows. 



 
(b) PHCC, normal TCP and High-speed TCP Flows. 

 

FIGURE 12 Comparison of the PHCC, normal TCP and High-speed TCP flows in terms of dynamic 

throughput rates with buffer size (200 packets). 

 

 

 

 

 

a b 

  

FIGURE 13 Comparison of the 3 homogeneous RTT (120 ms) users in terms of throughput (a) Buffer size 

(600 packets) (b) Buffer size (2000 packets). 

 
 

Fairness index values for three flow with the buffer size of 600 and 2000 pkts are calculated that 

results shown in Table 2. We can see that PHCC TCP is able to establish a good fairness for the 

three flow, the proof of this claim is the value of 1 for FI. 
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TABLE 2 Comparison of the 3 homogeneous RTT (120 ms and result of FI in terms of throughput (a) Buffer 

size (2000 packets) (b) Buffer size (600 packets). 
 

a b 
 

Protocols Average throughput (kbps) Fairness 

Index Flow 1 Flow 2 Flow 3 

HSTCP 58000 72000 68000 0.99 

STCP 62000 88000 46000 0.93 

HTCP 65000 60000 63000 1 

BIC 65000 67000 67000 1 

TCP-Illinois 77000 60000 61000 0.99 

FAST 68000 66000 64000 1 

HCC 68000 67000 63000 1 

PHCC 65000 62000 66000 1 

 

Protocols Average throughput (kbps) Fairness 

Index Flow 1 Flow 2 Flow 3 

HSTCP 60000 72000 56000 0.99 

STCP 62000 48000 85000 0.99 

HTCP 50000 50000 52000 1 

BIC 65000 68000 62000 1 

TCP-Illinois 50000 45000 82000 0.93 

FAST 47000 68000 51000 0.97 

HCC 65000 65000 56000 1 

PHCC 62000 60000 65000 1 

 

 

 

 
 

TCP-friendliness: In this subsection, we evaluate the TCP-friendliness performance, the proposed 

algorithm with other high-speed algorithms, compete with normal TCP Reno protocol were 

evaluated. We implement the simulations with two sources of the TCP Reno and two sources of the 

TCP variants with high speed in a homogeneous RTT setup. Figure 14 represents the average 

throughput of the 4 flows with various buffer sizes with the separated flow of a protocol with a 

definite color range. Based on the findings, it is observed that for both two size of buffers, the loss-

based protocols such as STCP, HSTCP, BIC TCP, and HTCP always act unfairly and considerably 

decrease the average throughput of the TCP Reno flows. TCP-Illinois acts well compared to the 

loss-based protocols. Nevertheless, the TCP-Illinois flows reach lower throughput compared to the 

TCP Reno flows when the buffer size grows, HCC TCP and FAST TCP also have performance 

similar TCP-Illinois. In fig. 14, it is observed that with growth of buffer size, PHCC TCP have a 

more friendly behavior with TCP Reno flows. Based on the simulation data, it is demonstrated that 

PHCC TCP does not always overwhelm the concomitant TCP Reno flows and reaches superior 

TCP-friendliness behavior compared to the all high-speed and loss-based TCP variants. 
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FIGURE 14 Comparison of the TCP Reno, and high-speed TCP in terms of throughput (a) Buffer size (600 

packets) (b) Buffer size (2000 packets). 

 

 

5     Conclusion 
This paper presents an effective congestion control approach called PHCC, which uses simultaneous 

latency and packet-based strategies to increase data transmission performance in high-speed networks. 

The proposed method uses the concept of a probabilistic function and the Bayesian theorem to 

estimate the appropriate size of a congestion window to make the most of the available bandwidth. 

Because it is difficult to analyze the performance of network traffic, due to the lack of access to the 

values of some indicators, such as buffer size, router status and behavior of other data streams, etc. or 

due to lack of knowledge of the factors affecting such failures And events that may occur in the 

network, some of which are very complex and unpredictable, used in performance analysis. Therefore, 

the method used in this paper is based on probability theory, which uses the average value of the 

congestion window to estimate the size of the congestion window, which is calculated simultaneously 

based on the estimated delay and probability of loss. This feature of PHCC distinguishes it from other 

previously proposed algorithms and makes better decisions in acute situations. The simulation results 

showed that the performance of the proposed method was much more effective in throughput and 

TCP-friendliness criteria. 
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