

Congestion Control in High-speed Networks Using the

Probabilistic Estimation Approach

Shahram Jamali1 . Mir Mahmoud Talebi2 . Reza Fotohi32

Abstract

Nowadays, the bulk of Internet traffic uses TCP protocol for reliable

transmission. But the standard TCP’s performance is very poor in

High Speed Networks (HSN) and hence the core gigabytes links are

usually underutilization. This problem has roots in conservative nature

of TCP, especially in its Additive Increase Multiplicative Decrease

(AIMD) phase. In other words, since TCP can’t figure out precisely

the congestion status of the network, it follows a conservative strategy

to keep the network from overwhelming. We believe that precisely

congestion estimation in the network can solve this problem by

avoiding unnecessary conservation. To this end, this paper proposes an

algorithm which considers packet loss and delay information jointly

and employs a probabilistic approach to accurately estimation of

congestion status in the network. To examine the proposed scheme

performance, extensive simulations have been performed in the NS-2

environment. Simulation results reveal that the proposed algorithm has

better performance than existing algorithms in terms of bottleneck

utilization, stability, throughput and fairness.

KEYWORDS

High-speed Networks (HSN), Probabilistic, Estimation, Bayes

theorem, Congestion Control

1 INTRODUCTION
TCP (Transmission Control Protocol) is normally utilized in current networks providing reliable

end-to-end data communication. Evolving the web to contain several long distances and high-speed

network routes challenged the TCP protocol behaviour. Massive bandwidth and delay product

(BDP) are characteristics of these networks that provide the total number of packets required in

flight though maintaining the band width absolutely utilised [1-5]. In standard TCP like TCP-New

Reno TCP-Reno, and TCP- SACK, TCP extends its window one per roundtrip time (RTT).

Although the standard TCP was considerably effective to perform congestion avoidance and

control in preventing severe congestion in the low-speed networks, the standard TCP is not

suitable for networks with highspeed where the additional increment multiplicative decrement

1Computer Engineering Department,

University of Mohaghegh Ardabili,

Ardabil, Iran

2Department of Computer Engineering

Germi Branch, Islamic Azad University

Germi, Iran

3Faculty of Computer Science and

Engineering, Shahid Beheshti University,

Tehran, 1983969411, Iran

Correspondence

Faculty of Computer Science and

Engineering, Shahid Beheshti University,

Tehran, 1983969411, Iran

Email: Fotohi.reza@gmail.com;

R_fotohi@sbu.ac.ir

http://orcid.org/0000-0002-1848-0220
https://orcid.org/0000-0003-2764-6373
mailto:Fotohi.reza@gmail.com

(AIMD) algorithm is too cautious for obtaining full bandwidth use rapidly while is too extreme for

recovering from per packet loss case. To overcome the low-performance problem, the standard

TCP’s AIMD algorithm needs to be improved for high-speed networks. Many high-speed end-to-end

congestion management Schemes have been provided, so far. These approaches are classified into

three groups of delay-based, loss-based, and their hybrid (combine loss-delay-based).

Within loss-based protocol, an Additive Increase Multiplicative Decrease (AIMD) mechanism of

TCP congestion prevention phase is modified to rapidly increment and gradually reduce the

congestion window compared to TCP-Reno, to obtain high throughput in high-speed networks

adjusting the size of congestion window through resulting in intentional packet losses. The examples

include Scalable TCP, High-speed TCP (HSTCP, for short), BIC, early version of TCP-Westwood

(TCPW), CUBIC. RTT is used in delay-based outlines for predicting network congestion prior to

packet losses indicating superior behaviour in fairness and efficiency.

FAST-TCP [6] and TCP-Vegas [7] are examples in this regard. Nevertheless, it is indicated that

they have strictly corrupted behaviours when competing with loss-based TCP protocols. Hybrid

approaches combining loss-based and delay-based properties were recently proposed including TCP-

Illinois, Hybrid Congestion Control TCP (HCC TCP) [8], and Compound TCP (CTCP) [9]. Based

on the RTT-estimated congestion level measurement, they adaptively change their congestion

control modes (delay-based and loss-based). Although these approaches achieve delay-based

schemes’ high throughput efficiency in case of non-congested network, and offer friendliness to

loss-based schemes in case of congested network, there some deficiencies in most of them in

different aspects including responsiveness, TCP-friendly, and fairness. Since there are no proposed

approaches mainly better than the other approaches and other effective methods should be studied, it

is still required to develop novel high-speed TCP variants.

Here, we propose yet another variant of TCP, called probability hybrid congestion control TCP

(PHCC TCP), for networks with high speed that relies on predictions based on probabilities. In other

words, we use the conditional probability and Bayes theory [10] is utilized for estimating the

congestion window. Furthermore, unlike other proposed hybrid methods that, two indicators used

separately delay and packet loss. The protocol utilizes the delay and loss information as the

simultaneously congestion indicator to cooperatively set the window size in order to meet the design

needs on efficiency, TCP-friendliness, fairness, and overtakes the loss/delay-based TCP and hybrid

TCP protocols in high-speed networks.

 The rest of this study is adjusted as: Section 2 explains the relevant studies. In Section 3, we

explain the proposed method the PHCC TCP algorithm. Section 4 includes evaluations of simulation

experiment results. Ultimately, we provide the conclusion and talk about the future work in Section

5.

2 Related works
This section lists the methods that have addressed the issue of congestion control so far. Each

method is briefly reviewed.

 In [11], the hybrid optimization algorithm for sensor networks is used in a closed experimental

experiment based on a rapid congestion control scheme. First, using the waiting delay, received

signal strength and mobility as multiple inputs of this algorithm, we select the best intermediate node

in the optimization algorithm, which increases the life of the network to reduce congestion. Then,

using the modified gravitational search algorithm, we calculate the path for the node to sink, which

provides better routing. The simulation results show that the proposed method can control

congestion by reducing energy consumption, missing packets and number of steps and increasing

network life compared to the current methods.

 Increasing the throughput and reducing the latency of very fast and variable network connections

is targeted in the method proposed in this paper and we classify them based on the way they control

congestion. This article also discusses the application of algorithms. In addition, this paper discusses

future research that could help develop and deploy better-performing algorithms. They also offered

future research pathways, such as dealing with a higher degree of diversity, the interaction of CCAs

in a common bottleneck, and ways for synchronous research, such as CCAs defined by software

networks and virtualization of network performance [12].

 A hybrid congestion control-based approach that uses latency information as the main congestion

indicator and loss information as the second congestion indicator to jointly adjust window size to

meet design needs for TCP justice and performance. Better than other standards such as TCP and

other types of TCP in high speed networks. Due to the synergy of delay-based strategy and loss-

based strategy, HCC TCP is a hybrid congestion control scheme. The proposed mechanism is very

practical for high-speed networks and has performed better than the methods compared to them in

the paper [13].

 Inspired by traction-passing algorithms in other fields, we proposed a methodology for active

congestion control in this paper, which explicitly calculates rates independently of congestion

signals. For example, modern low-density parity decoding algorithms improve the convergence time

by a factor of 7 compared to explicit reactive speed control protocols such as RCP. This rapid

convergence significantly reduces the tail end current in high-speed networks. We also show that in

such cases, the active algorithms obtain far fewer tail FCTs due to their rapid convergence than the

reaction algorithms. For example, realistic load simulations in a 100 Gbps network show that PERC

achieves better efficiency than RCP [14].

 For deployment in high-speed and long-distance networks as well as conventional networks, we

have introduced a new AIMD congestion control algorithm, H-TCP, which works much better than

other existing methods. H-TCP extends the AIMD strategy to significantly improve response and

scale product performance with latency in bandwidth and queue supply level in the network. Also in

this paper, we consider the problem of congestion control protocol design for deployment in high-

speed and long-distance networks, which results in better performance of the proposed protocol

through simulation measurements in a wide range of network conditions [15].

 A hybrid method using bottleneck bandwidth and distance propagation time (RCP-BBR) is

proposed as an alternative to UDP for congestion control. The proposed method achieved efficient

control of congestion, low latency, high throughput and efficient contact personalization ratio with

efficient use of bandwidth as bottleneck bandwidth and back-and-forth release time. According to

the simulation results, the proposed protocol achieves better throughput through UDP in stable

networks. In addition, in unstable and remote networks, the introduced method achieved smaller

queues in deep buffers and less delays compared to UDP, which performs poorly by keeping the

delays above the contact drop threshold [16].

 End-to-end algorithms propose an attractive approach to Internet congestion control, both in

simplicity and scalability. In this section, we present some of the most relevant work on TCP end-to-

end congestion control. Recall that the only signals of network congestion available to an end-to-end

algorithm are packet losses and latency variations. Therefore, research has been focused on three

types of algorithms [17]:

• Loss-based algorithms rely on packet losses alone to react to network congestion;

• Delay-based algorithms use delay measurements alone to infer router queue occupancy and

act before heavy congestion occurs;

• Hybrid-based algorithms use techniques from both loss-based and delay-based algorithms;

their rationale is that with more information, an end-to-end algorithm can infer the state of the

network more accurately and make better decisions.

 Kelly proposed Scalable TCP (STCP). Scalable TCP modifies the congestion control algorithm.

The congestion window is reduced by this algorithm for each packet loss by a factor of 1/8 instead

of Standard TCP's 1/2, till stopping the packet loss. This reduces the recovery time on 10 Gbit/s

links from 4 h and more (utilizing Standard TCP) to less than 15 s for the round-trip time of 200

ms. High-speed TCP (HSTCP) uses an adjusted AIMD by a convex function of the current

congestion window size in case the multiplicative decrease factor and linear increase factor are

modified. HSTCP has a behaviour similar to standard TCP, in case of the congestion window less

than some cut-off value. This window size-based TCP compatibility is supported by most of high-

speed TCP variants. Several of these protocols in competition with shares of the bottleneck link

possess various RTT delays, use of bandwidth efficiency cannot be fair [18].

 A binary search algorithm is used by BIC TCP for growing window to the mid-point within the

last window size (namely max). Here, TCP contains the last window size (namely min) and a

packet loss and there is no loss over a RTT period. BIC TCP adjusts the mid-point as the new min

and accomplishes another “binary-search” possessing the max and min windows. It affects the

window growth really fast if the current window size is far from the accessible capacity of the path.

Hence, its window increase is gradually reduced when it is close to the existing capacity (the former

loss). This concave function makes BIC TCP very stable and simultaneously highly scalable.

Although the performance of BIC TCP is better than old presented protocols. However, also the

problem of RTT unfairness in this protocol remains. Afterwards, an improved form of BIC TCP

called CUBIC TCP is established to enhance the RTT-fairness of its performance. In fact, CUBIC

TCP is a kind of more structured and less aggressive BIC TCP where the window size is

determined as a cubic function of time from the last congestion event. HTCP like CUBIC TCP for

calculation of the current congestion window size utilizes the elapsed time (∆) from the final

congestion. The HTCP’s window growth function is a quadratic function of ∆ where HTCP is

unique and sets the reduction fact or by a function of RTTs planned for estimating the queue size in

the current flow’s network path. The increment of window size for HTCP, HSTCP and STCP

protocols, is still fast even the close network to the congestion. The more flows competition and

reduced throughput are obtained by the congestion in network [19].

 TCP Vegas determines the difference (δ) between the actual throughput and estimated throughput

in terms of round-trip delays. In case, δ is less than a low threshold α, TCP Vegas trusts the route as

the non-congested, therefore, it increments the sending rate. In case of δ higher than an upper

threshold β as a robust evidence of congestion, TCP Vegas decreases the window size of sending.

Then, TCP Vegas keeps the current directing window size. The estimated throughput is determined

by division of the current congestion window by the least RTT normally containing the delay, till

finding the congested path. TCP Vegas calculates the actual throughput for each RTT by division of

the number of packets directed by the tested RTT. FAST TCP is a Vegas’s high-speed descendant.

Even though FAST TCP builds upon the principles of Vegas, it increments the congestion window

more violently to achieve good efficiency in high-speed networks. This protocol keeps queue

occupying at paths for a small value to direct the network around full bandwidth use and obtain a

greater average throughput. Furthermore, FAST TCP can converge to the equilibrium mode rapidly

while not suffering the RTT unfairness problem. FAST TCP splits the congestion window and

enters loss recovery similar to TCP for packet losses. However, it also includes some weaknesses.

Given that FAST TCP is a delay-based method, it utilizes the RTTs for congestion and its

throughput behaviour is considerably influenced by the traffic of reverse path, and its throughput

decreases as the queuing delay increases on the reverse path [20].

 TCP-Illinois follows an AIMD algorithm, but uses delay estimates to set the increase and

decrease congestion window parameters. If TCP-Illinois does not detect queuing delay (i.e.,

network congestion), the increase parameter is set to the maximum value, making the congestion

window grow quickly. As the queuing delay starts to build up, the increase parameter is then

gradually decreased, making the congestion window grow more slowly. It utilizes the loss

information to determine the direction of window change and the delay information is used for

adjusting the pace of window size change. Compound TCP (CTCP) is planned to violently set the

congestion window of the sender to enhance TCP for connections with huge bandwidth-delay

products while not harming fairness (since it is able to occur with HSTCP). CTCP regards two

congestion windows: a delay-based window and a normal AIMD window. The sum of these two

windows is used to calculate the actual sliding window size. Thus, these methods use the benefits of

both the delay-based and loss-based approaches. Nevertheless, since RTTs are used in the delay-

based constituents to measure the congestion, similar to FAST TCP, reverse path traffic also affects

their throughput behaviour [21].

 This method is similar to previous methods have shortcomings that they are not paying attention

to the nature of packet loss and of its severity. The main emphasis of this approach is based on the

delay, and packet loss, only to switch to a strict mode is used to reduce the size of the window. This

algorithm will decrease throughput when the packet loss probability increases. It also suffers the

TCP-friendliness problem.

3 The PHCC TCP protocol
Congestion control in High-Speed Networks (HSN) is designed in the following section using the

probabilistic estimation approach (PEA). The PHCC TCP protocol consists of five phases, such as

the overview of the PHCC TCP protocol in the HSN is discussed in Sect. 4.1. Architecture and

Congestion probability model is discussed in Sect. 4.2, Delay and loss probability functions is

discussed in Sect. 4.3; Joint congestion window estimation model is discussed in Sect. 4.4. and

Congestion window algorithm is discussed in Sect. 4.5.

3.1 Phase 1: Overview of the PHCC TCP protocol

The combination methods, with the synergy of delay-based method and loss-based method, can

solve many shortcomings of both the loss-based and delay-based approaches. Therefore, PHCC

TCP also adopted the method that uses the synergy of the loss-based and delay-based approach as

jointly to realize the congestion control for high-speed networks. However recent studies show the

terms of use of delay and loss information has a considerable impact on throughput, fairness,

sensitivity to buffer size, TCP friendliness, and etc. Hence, in the use of indicators and define the

functions must be performed carefully to any factor that greatly affects the network traffic should

not be forgotten. Since the discovery of all the factors involved in congestion, the amount and how

it is virtually impossible, in this paper, instead of using deterministic functions of mathematical,

probability theory is used to estimate the traffic condition. This mechanism fundamentally

differentiates PHCC TCP from others.

3.2 Phase 2: Architecture and Congestion probability model

As shown in Fig. 1, the delay could be two main reasons, congestion control policy applied and

other problems (such as communication link problems and traffic of other flows). Packet loss in

addition to other problems (connection failure, etc.) could be due to the inappropriate congestion

control policy. PHCC in the first step, calculate delay-based probability and loss-based probability

from delay and loss information, and in the second step, the window control strategy calculate from

the estimates of the delay and loss probability is realized by the joint congestion control component.

FIGURE 1 PHCC TCP architecture.

According to Fig. 1 and using probability theory the probability space of network congestion in Fig.

2 for a flow could be drawn. In Fig. 2, the congestion probability space is shown with M, that can

be the value of "zero" (the absence of any congestion), and the "One" (Timeout or loss) or a value

between "zero" and "one" according to the hardness of congestion.

FIGURE 2 Probability space of network congestion.

From fig. 2, Delay D consists of delays caused by congestion window changes
WD and delays

caused by other factors
OD . Similarly, Loss L consists of losses caused by delay

dL and losses caused

by other factors
OL .

3.3 Phase 3: Delay and loss probability functions

According to the mechanism shown in Figure 1, the window size is a function of the complement

probability of delay1 ()P D− and packet loss complement probability1 ()P L− . Window size can be

written as:

() ()()()1 ,1WindowSize f P D P L= − −
(1)

As illustrated in Fig. 3, using a Bayesian network, we calculate the estimation of delay probability

()estP D as follows:

() () () ()() (). 1 .est old old old oldP D P D P D D P D P D D= + −
(2)

The old delay probability ()oldP D is the mean value of the delay probability is obtained from the

previous RTT. ()oldP D D , the conditional probability or likelihood, is the degree of belief in delay

D, given that the proposition delay of old ()oldD is true. Likewise, oldD means that the proposition

"old delay" is false. Similarly, the estimation of packet loss probability ()estP L can be written as

() () () ()() () () ()

()() ()

. 1 . .

1 .

est old old old old old old

old old

P L P L P L L P L P L L P D P L D

P D P L D

= + − + +

−

(3)

FIGURE 3 Bayesian model of delay and loss.

3.4 Phase 4: Joint congestion window estimation model

Based on the previous sections describes, the estimation of the congestion window according to Fig.

3 are calculated. In fig. 3 the delay could be two different reasons, inappropriate increase the size of

the current window and affects the other flows traffic. Packet loss can be due to the delay and other

factors. In order to overlap of the two indicators delay and packet loss, to determine size of the

congestion window 𝑊𝑖
𝑒𝑠𝑡 for source of i, Firstly, the appropriate estimation of window size

() (),est est

i iW D W L
based on the theory Bayes for both delay and packet loss will be calculated

separately. The estimation of delay Probability ()est

iW D and estimation of packet loss probability

()est

iW L can be also calculated from Eq. (2), (3).

() ()() ()1 .est est tar

i i iW D P D W D= −
(4)

() ()() ()1 .est est tar

i i iW L P L W L= −
(5)

Without the effect from the queuing delay on the reverse path, the source i can achieve full

utilization of available bandwidth on the forward path, let be the current delay, the queuing delay of

source i is queueD . Each source computes its delay-based target window periodically according to:

() *tar i
i i

queue

W D D
D

 
=   
 

(6)

Size of the target window for loss-based strategy ()tar

iW D in fact, the window size is a reference to

packet loss. In other words, if a packet loss is detected during the growth of the window size, the

source updates the loss-reference to the current window size. Finally, the congestion window size is

estimated as

()
() ()

,
2

est est

i iest

i

W D W L
W D L

 +
=  
 

(7)

3.5 Phase 5: Congestion window algorithm

In this subsection, we show how the delay-based strategy and the loss-based strategy are used

simultaneously in the joint control phase of PHCC TCP. At start-up, PHCC TCP relies on the

delay-based algorithm to increase the window size [22-25]. Firstly, we set a delay threshold

minimum value min

trD to estimate the congestion by use of slow start threshold ssthresh and

expected bandwidth value expectbw from of TCP Vegas that can be written as

min

exp

tr

ect

ssthresh
D

bw

 
=   
 

(8)

Figure 4 shows three phase of congestion state, in first phase, if min

trDelay D , it indicates that the

queuing is light and available bandwidth is not used fully, for rapidly increase the window size, the

additive multiplicative increase scheme can be used. We set a delay threshold maximum value

𝐷𝑚𝑎𝑥
𝑡𝑟 = {𝐷𝑑𝑒𝑙𝑎𝑦

𝑡𝑟 ,𝐷𝑙𝑜𝑠𝑠
𝑡𝑟 } for divide the remained state (min

trDelay D) in two phase; congestion

control phase: if min max

tr trD Delay D  and critical phase: when max

trD Delay Timeout  . Delay

reference 𝐷𝑙𝑜𝑠𝑠
𝑡𝑟 is updated for every loss detect. The delay threshold 𝐷𝑑𝑒𝑙𝑎𝑦

𝑡𝑟 is calculated by using

the values of sequence number seqno , last ack number lastack and buffer size BFS that is obtained

from expected bandwidth expectbw and actual bandwidth actualbw functions of TCP Vegas as shown

below.

()()exp min*ect actualBFS bw bw D= −
(9)

() min*tr

delay

Delay D
D seqno lastack

BFS

 −  
= −   

  

(10)

FIGURE 4 Three phase of congestion control state.

Congestion phase in Fig. 4 is main phase of our algorithm. In this phase we calculate the estimation

window for congestion control by Eq. 7 per RTT. If any loss detects or timeout event in each of

three phases. The algorithm decreases the window size in half and check policy parameter for select

correct phase. Figure 5 shows the PHCC TCP algorithm flowchart.

FIGURE 5 PHCC TCP algorithm flowchart.

4 Evaluating the Performance

This section evaluates the performance of PHCC TCP using the NS 2.35 simulator [26-29]. The TCP

Vegas agent in NS-2 are modified to implement PHCC TCP. We implemented wide simulation

experiments to assess the PHCC TCP and made a comparison between its performance with other old

protocols such as: TCP Vegas, TCP Reno, STCP, HSTCP, HTCP, TCP-Illinois, BIC-TCP, FAST

TCP and HCC TCP, we used a dumb-bell network model with a single bottleneck shared link as

shown in Fig. 6. The sources, routers and destinations links each with 200Mbs bandwidth and 20ms

delay. Router queue discipline is first-in-first-out (FIFO) selected. In all tests, the size of data packets

is 1000 bytes. For other TCP protocol, their default parameter setting is used.

PHCC Behavior as a single traffic flow: As an initial evaluation, performance of the proposed

algorithm for different phases (slow start, congestion avoidance and achieve maximum throughput)

tested. Average throughput of the proposed method is presented in Fig 6. It can be seen that when

the RTT is 2ms, as shown in Fig. 6(a), the algorithm achieves the optimal and maximum use of

available bandwidth and the average throughput increase faster. As shown in Fig. 6(b), when the

RTT is 20ms, the average throughput of PHCC TCP Protocol grow slowly by controlling the

congestion in the network.

a b

FIGURE 6 Throughput of PHCC TCP algorithm as a single traffic, (a) RTT(2ms) and (b) RTT (20ms).

As shown in Fig. 7, the algorithm has a behavior such as other protocols with a difference threshold

in slow start phase, in adapting phase TCP PHCC to achieve an optimum situation of two major

indicator used, In both indicator, the probability theory used to adjust the window. This algorithm in

stability phase is trying to avoid the congestion and use of the maximum available bandwidth. With

this description, the PHCC TCP in contrast to other presented methods, in use of delay index,

except of delay size, the expected based on Bayes' theorem is also used.

FIGURE 7 Three phase of PHCC throughput grow.

Evaluation of throughput: One of the indicators that proposed algorithm is used to congestion

control, is packet loss, in Fig. 8, the range of throughput to compete with the other two protocol (a

normal TCP flow and a fast TCP flow) is shown. According to this algorithm, the packet loss due to

congestion is not considered a hundred percent, has a Better performance than other algorithms and

if recognize that although packet loss, but delay time is low and traffic flow is normal, applying

strict policy is avoided. The above experiments on two scenarios assuming packet loss probability

of 0.01 and 0.00001, we repeat the results of which are shown in Fig. 8. The result shows that the

rival algorithms even when packets are lost is rarely, because packet loss are considered as a binary

indicator, heavily reduces the congestion window size and causing severe fluctuations in

throughput.

a

b

FIGURE 8 Rate dynamics of PHCC TCP throughput with loss probability (a) loss probability is 0.01 and

"(b) loss probability is 0.00001.

To evaluate the throughput and efficiency of the proposed method is to change the buffer size, the

simulation run with different buffer values, simulation time was 300 seconds. Figure 9 represents

the average throughput for different buffer sizes of 100-4000 packets. We can see an increase in the

average throughput of all protocol with buffer size growth, protocols that are planned for high-

speed networks, uniformly better throughput than protocols like TCP Vegas and TCP Reno that are

not planned for high-speed networks. It is observed that throughput of TCP FAST with the buffer

size of less than 400 packages, falls rapidly. The algorithm, except when the buffer size is less than

300, in other cases, as well as the available buffer used and adapted with it. PHCC TCP acts well on

throughput behaviour compared to other high-speed TCP variants nearly in all buffer size cases.

FIGURE 9 Comparison of the buffer size vs throughput.

In further experiments, the throughput of the proposed algorithm with the normal algorithms and

algorithms are presented for high-speed network compared to the probability of packet loss. The

results of which are shown in Fig. 9, although the proposed algorithm has not the best performance

compared to other algorithms, but this algorithm in total in acceptable condition. FAST TCP

algorithm is better in this test due to its delay is based.

FIGURE 10 Comparison of the packet loss vs throughput with buffer size (2000 packets).

The average queuing size versus buffer size is shown in Fig. 11. It is seen that the average queuing

size of the protocols based on packet loss, such as TCP Reno, STCP, STCP, BIC TCP, and HTCP

increments quickly with the buffer size growth. Therefore, the delay-based protocols utilizing the

queuing delay as the primary indicator for congestion control, incur less overloads to routers

compared to the loss-based protocols, particularly for the larger buffer size. But some delay-based

or hybrid methods based on the queuing delay with fixed of delay time that may be another reason

other than the queue is formed, not optimized for use of available buffer size. Compared with other

algorithms, the proposed algorithm is optimal, because of both indicators delay and packet loss as

the ratio of the probability to each other and the past are used. Fig. 11 shows the protocols average

queuing size for the different buffer sizes.

FIGURE 11 Average queuing size versus buffer size.

To evaluate the efficiency and the use of available bandwidth by algorithm, is tested with three

homogeneous RTT (120 ms), buffer size: 600 packets on each of the algorithms we've done.

Average throughput obtained for calculating the utilization been used the results in Table 1 is

shown. According to the results, the utilization of the proposed algorithm is 94% which is good.

Although this algorithm in this regard, not above all, but in critical condition has better

performance.

TABLE 1 Comparison of the all method in terms of throughput and utilization with buffer size (600 packets).

Average throughput (kbps) Utilization

STCP 195000 98%

BIC 195000 98%

HSTCP 188000 94%

PHCC 187000 94%

HCC 186000 93%

TCP-Illinois 177000 89%

FAST 166000 83%

HTCP 152000 76%

Fairness: As the first experiment to evaluate the fairness of the proposed algorithm, we use three

homogeneous data flow of the proposed protocol with a buffer size of 200 packets, that at three

different times to send the package. The flow 1 at 0 seconds, the flow 2 at 10 seconds and the flow

3 at 20 seconds, uses of bottleneck link to send packets. Due to the lack of competition, the first

flow was in possession of all the available bandwidth shared connection. With the arrival of the

second flow, available bandwidth is divided between them and also arrival third flow, fair

competition between them was formed. The results shown in Figure 12(a). In Figure 12(b), the

fairness of the proposed method compared to the normal TCP and high-speed TCP protocols is

shown. In Continues for evaluate the fairness performance of PHCC TCP, we consider three

homogeneous RTT with 120 ms and the Jain’s fairness index (FI) is used to quantitatively evaluate

the fairness performance of the protocols [7 and 10]. All sources start sending data at 0 s and

simulation duration is set to 300s.

()

2

1

2

1

*

n

i

i

n

i

i

X

FI

n X

=

=

  
  

  =
  
     





(11)

in which n shows the number of the concurrent flows and x̅i represents the average throughput of

the flow i. The FI value is constantly no more than 1. The higher FI value indicates the better

fairness behavior, and by the value equal to 1, the flows competing in a network obtain definitely

correspondent throughput. As shown in Fig.13, PHCC TCP achieve best fairness and good

utilization as other high-speed protocols in both scenarios. As observed in Fig. 13 (a), (b), all the

other protocols have different behavior for buffer size of 600 and 2000 pkts. It is found that by the

buffer size of 600 pkts, the fairness of FAST TCP, STCP, and TCP-Illinois degrades considerable,

moreover, the utilization of HTCP and FAST TCP is low. On the other hand, by increasing the

buffer size to 2000 pkts, the fairness of HTCP, STCP, FAST TCP and TCP-Illinois is considerably

reduced. Though, PHCC TCP not only reaches fair sharing of link resources amongst the 3

utilization, but also keeps good bandwidth utilization.

(a) 3 PHCC TCP flows.

(b) PHCC, normal TCP and High-speed TCP Flows.

FIGURE 12 Comparison of the PHCC, normal TCP and High-speed TCP flows in terms of dynamic

throughput rates with buffer size (200 packets).

a b

FIGURE 13 Comparison of the 3 homogeneous RTT (120 ms) users in terms of throughput (a) Buffer size

(600 packets) (b) Buffer size (2000 packets).

Fairness index values for three flow with the buffer size of 600 and 2000 pkts are calculated that

results shown in Table 2. We can see that PHCC TCP is able to establish a good fairness for the

three flow, the proof of this claim is the value of 1 for FI.

Flow1 Flow2 Flow3

A
ve

ra
g

Th
ro

u
gh

p
u

t
(k

b
p

s)

Flow1 Flow2 Flow3

A
ve

ra
g

Th
ro

u
gh

p
u

t
(k

b
p

s)

TABLE 2 Comparison of the 3 homogeneous RTT (120 ms and result of FI in terms of throughput (a) Buffer

size (2000 packets) (b) Buffer size (600 packets).

a b

Protocols Average throughput (kbps) Fairness

Index Flow 1 Flow 2 Flow 3

HSTCP 58000 72000 68000 0.99

STCP 62000 88000 46000 0.93

HTCP 65000 60000 63000 1

BIC 65000 67000 67000 1

TCP-Illinois 77000 60000 61000 0.99

FAST 68000 66000 64000 1

HCC 68000 67000 63000 1

PHCC 65000 62000 66000 1

Protocols Average throughput (kbps) Fairness

Index Flow 1 Flow 2 Flow 3

HSTCP 60000 72000 56000 0.99

STCP 62000 48000 85000 0.99

HTCP 50000 50000 52000 1

BIC 65000 68000 62000 1

TCP-Illinois 50000 45000 82000 0.93

FAST 47000 68000 51000 0.97

HCC 65000 65000 56000 1

PHCC 62000 60000 65000 1

TCP-friendliness: In this subsection, we evaluate the TCP-friendliness performance, the proposed

algorithm with other high-speed algorithms, compete with normal TCP Reno protocol were

evaluated. We implement the simulations with two sources of the TCP Reno and two sources of the

TCP variants with high speed in a homogeneous RTT setup. Figure 14 represents the average

throughput of the 4 flows with various buffer sizes with the separated flow of a protocol with a

definite color range. Based on the findings, it is observed that for both two size of buffers, the loss-

based protocols such as STCP, HSTCP, BIC TCP, and HTCP always act unfairly and considerably

decrease the average throughput of the TCP Reno flows. TCP-Illinois acts well compared to the

loss-based protocols. Nevertheless, the TCP-Illinois flows reach lower throughput compared to the

TCP Reno flows when the buffer size grows, HCC TCP and FAST TCP also have performance

similar TCP-Illinois. In fig. 14, it is observed that with growth of buffer size, PHCC TCP have a

more friendly behavior with TCP Reno flows. Based on the simulation data, it is demonstrated that

PHCC TCP does not always overwhelm the concomitant TCP Reno flows and reaches superior

TCP-friendliness behavior compared to the all high-speed and loss-based TCP variants.

a b

FIGURE 14 Comparison of the TCP Reno, and high-speed TCP in terms of throughput (a) Buffer size (600

packets) (b) Buffer size (2000 packets).

5 Conclusion
This paper presents an effective congestion control approach called PHCC, which uses simultaneous

latency and packet-based strategies to increase data transmission performance in high-speed networks.

The proposed method uses the concept of a probabilistic function and the Bayesian theorem to

estimate the appropriate size of a congestion window to make the most of the available bandwidth.

Because it is difficult to analyze the performance of network traffic, due to the lack of access to the

values of some indicators, such as buffer size, router status and behavior of other data streams, etc. or

due to lack of knowledge of the factors affecting such failures And events that may occur in the

network, some of which are very complex and unpredictable, used in performance analysis. Therefore,

the method used in this paper is based on probability theory, which uses the average value of the

congestion window to estimate the size of the congestion window, which is calculated simultaneously

based on the estimated delay and probability of loss. This feature of PHCC distinguishes it from other

previously proposed algorithms and makes better decisions in acute situations. The simulation results

showed that the performance of the proposed method was much more effective in throughput and

TCP-friendliness criteria.

Conflict of Interest

None.

DATA Availability Statement

The data of this paper is the result of simulation and all the data are presented in the form of graphs inside

the paper. There is no private data in this article.

Funding

None

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Reno2

Reno1

Self2

Self1

A
ve

ra
g

Th
ro

u
gh

p
u

t
(k

b
p

s)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

H
ST

C
P

ST
C

P

H
TC

P

B
IC

TC
P
-…

FA
ST

H
C

C

P
H

C
C

Reno2

Reno1

Self2

Self1

A
ve

ra
g

Th
ro

u
gh

p
u

t
(k

b
p

s)

Reference
[1] Pandey, D., & Kushwaha, V. (2020). An exploratory study of congestion control techniques in Wireless Sensor

Networks. Computer Communications.

[2] Huang, S., Dong, D., & Bai, W. (2018). Congestion control in high-speed lossless data center networks: A survey.

Future Generation Computer Systems, 89, 360-374.

[3] Majumder, T., Mishra, R. K., Singh, S. S., & Sahu, P. K. (2020). Robust congestion control in cognitive radio

network using event-triggered sliding mode based on reaching laws. Journal of the Franklin Institute.

[4] Cui, L., Yuan, Z., Ming, Z., & Yang, S. (2020). Improving the Congestion Control Performance for Mobile

Networks in High-Speed Railway via Deep Reinforcement Learning. IEEE Transactions on Vehicular

Technology.

[5] Kanagarathinam, M. R., Singh, S., Sandeep, I., Kim, H., Maheshwari, M. K., Hwang, J., ... & Saxena, N. (2020).

NexGen D-TCP: Next Generation Dynamic TCP Congestion Control Algorithm. IEEE Access, 8, 164482-

164496.

[6] Patil, J., Tokekar, V., Rajan, A., & Rawat, A. (2020, July). SMDMTS–Scalable Model to Detect and Mitigate

Slow/Fast TCP-SYN Flood Attack in Software Defined Network. In 2020 International Conference on

Computational Performance Evaluation (ComPE) (pp. 290-295). IEEE.

[7] Guan, S., Jiang, Y., & Guan, Q. (2020). Improvement of TCP Vegas algorithm based on forward direction delay.

International Journal of Web Engineering and Technology, 15(1), 81-95.

[8] Ahmad, M., Ahmad, U., Ngadi, M. A., Habib, M. A., Khalid, S., & Ashraf, R. (2020). Loss Based Congestion

Control Module for Health Centers Deployed by Using Advanced IoT Based SDN Communication Networks.

International Journal of Parallel Programming, 48(2), 213-243.

[9] Zhu, J., Jiang, X., Jin, G., & Li, P. (2020, October). CaaS: Enabling Congestion Control as a Service to Optimize

WAN Data Transfer. In International Conference on Security and Privacy in Digital Economy (pp. 79-90).

Springer, Singapore.

[10] Li, Y., Cao, G., Wang, T., Cui, Q., & Wang, B. (2020). A novel local region-based active contour model for

image segmentation using Bayes theorem. Information Sciences, 506, 443-456.

[11] Raman, C. J., & James, V. (2019). FCC: Fast congestion control scheme for wireless sensor networks using

hybrid optimal routing algorithm. Cluster Computing, 22(5), 12701-12711.

[12] H. Haile, K.-J. Grinnemo, S. Ferlin et al., End-to-end congestion control approaches for high throughput and low

delay in 4G/5G cellular networks, Computer Networks (2020), doi: https://doi.org/10.1016/j.comnet.2020.107692.

[13] Xu, W., Zhou, Z., Pham, D. T., Ji, C., Yang, M., & Liu, Q. (2011). Hybrid congestion control for high-speed

networks. Journal of Network and Computer Applications, 34(4), 1416-1428.

[14] Jose, L., Yan, L., Alizadeh, M., Varghese, G., McKeown, N., & Katti, S. (2015, November). High speed networks

need proactive congestion control. In Proceedings of the 14th acm workshop on hot topics in networks (pp. 1-7).

[15] Leith, D., Shorten, R., & Lee, Y. (2005, August). H-TCP: A framework for congestion control in high-speed and

long-distance networks. In PFLDnet Workshop.

[16] Najmuddin, S., Asim, M., Munir, K., Baker, T., Guo, Z., & Ranjan, R. (2020). A BBR-based congestion control

for delay-sensitive real-time applications. Computing, 102(12), 2541-2563.

[17] Huang, H., Sun, Z., & Wang, X. (2020). End-to-End TCP Congestion Control for Mobile Applications. IEEE

Access, 8, 171628-171642.

[18] Mohammed, Y. A. (2006). Evaluation of TCP Based Congestion Control Algorithms Over High-Speed Networks.

[19] Xu, L., Harfoush, K., & Rhee, I. (2004, March). Binary increase congestion control (BIC) for fast long-distance

networks. In IEEE INFOCOM 2004 (Vol. 4, pp. 2514-2524). IEEE.

[20] Bonald, T. (1998). Comparison of TCP Reno and TCP Vegas via fluid approximation.

[21] Liu, S., Başar, T., & Srikant, R. (2008). TCP-Illinois: A loss-and delay-based congestion control algorithm for

high-speed networks. Performance Evaluation, 65(6-7), 417-440.

[22] Jamali, S., & Fotohi, R. (2017). DAWA: Defending against wormhole attack in MANETs by using fuzzy logic

and artificial immune system. the Journal of Supercomputing, 73(12), 5173-5196.

[23] Singh, K., Singh, K., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective

optimization algorithm. Computer Networks, 138, 90-107.

[24] Fotohi, R., & Bari, S. F. (2020). A novel countermeasure technique to protect WSN against denial-of-sleep attacks

using firefly and Hopfield neural network (HNN) algorithms. The Journal of Supercomputing, 1-27.

https://doi.org/10.1016/j.comnet.2020.107692

[25] Li, W., Zhou, F., Chowdhury, K. R., & Meleis, W. (2018). QTCP: Adaptive congestion control with

reinforcement learning. IEEE Transactions on Network Science and Engineering, 6(3), 445-458.

[26] Pakdel, H., & Fotohi, R. (2021). A firefly algorithm for power management in wireless sensor networks (WSNs).

The Journal of Supercomputing, 1-22.

[27] Turkovic, B., Kuipers, F. A., & Uhlig, S. (2019, June). Interactions between congestion control algorithms. In

2019 Network Traffic Measurement and Analysis Conference (TMA) (pp. 161-168). IEEE.

[28] Zaminkar, M., Sarkohaki, F., & Fotohi, R. (2021). A method based on encryption and node rating for securing the

RPL protocol communications in the IoT ecosystem. International Journal of Communication Systems, 34(3),

e4693.

[29] Quwaider, M., & Shatnawi, Y. (2020). Congestion control model for securing internet of things data flow. Ad Hoc

Networks, 106, 102160.

