
Exploring Micro-Services for Enhancing Internet QoS 

Deval Bhamare 

Qatar University, 

Doha, Qatar 

devalb@qu.edu.qa 

Mohammed Samaka 

Qatar University, 

Doha, Qatar 

samaka.m@qu.edu.qa 

Aiman Erbad 

Qatar University, 

Doha, Qatar 

aerbad@qu.edu.qa 

Raj Jain

Washington Univ., 

St. Louis, USA 

jain@wustl.edu 

Lav Gupta

Washington Univ.,  

St. Louis, USA 

lavgupta@wustl.edu 

Abstract: With the enhancements in the field of software-defined 

networking and virtualization technologies, novel networking 

paradigms such as network function virtualization (NFV) and the 

Internet of things (IoT) are rapidly gaining ground. Development of 

IoT as well as 5G networks and explosion in online services has 

resulted in an exponential growth of devices connected to the 

network. As a result, application service providers (ASPs) and 

Internet service providers (ISPs) are being confronted with the 

unprecedented challenge of accommodating increasing service and 

traffic demands from the geographically distributed users. To tackle 

this problem, many ASPs and ISPs, such as Netflix, Facebook, 

AT&T and others are increasingly adopting micro-services (MS) 

application architecture. Despite the success of MS in the industry, 

there is no specific standard or research work for service providers 

as guidelines, especially from the perspective of basic micro-service 

operations. In this work, we aim to bridge this gap between industry 

and academia and discuss different micro-service deployment, 

discovery and communication options for service providers as a 

means to forming complete service chains. In addition, we address 

the problem of scheduling micro-services across multiple clouds, 

including micro-clouds. We consider different user-level SLAs, such 

as latency and cost, while scheduling such services. We aim to 

reduce overall turnaround time as well as costs for the deployment 

of complete end-to-end service. In this work, we present a novel 

affinity-based fair weighted scheduling heuristic to solve this 

problem. We also compare the results of proposed solution with 

standard greedy scheduling algorithms presented in the literature 

and observe significant improvements.1 

Keywords — edge-computing; fog-computing; micro-services; 

scheduling; NFV; SDN. 

I. Introduction 

With the explosion of online services as well as mobile and 

sensory devices, demand for new services and consequently 

data traffic is growing rapidly. The popularity of Internet of 

Things (IoT) and 5G networks have contributed significantly 

to this trend, with millions of new sensing devices and online 

services exchanging data. According to Wireless World 

Research Forum (WWRF), the number of connected wireless 

devices is expected to be 100 billion by 2025 [1]. Cloud 

computing has been considered as a major enabler for such 

novel networking paradigms [2]. The online services, sensing 

devices, as well as end-users, are generally spread across 

geographically distributed areas. This motivates the ASPs and 

ISPs to deploy the services over multiple clouds for scalability, 

1
 This is an extended version of a paper presented at IEEE ICC 2017. We have 

extended the work significantly (50% changes) for submission to Journal of 

Transactions on Emerging Telecommunications Technologies (ETT). 

redundancy and quicker response to the users [1, 3, 4]. 

Increasing use of virtualization technologies also helps ASPs 

and ISPs to deploy their services over standard high-volume 

infrastructures to accommodate such high volume of user 

demands. 

Large services, which were monolithic software in the 

past, are being replaced by a set of lightweight services called 

micro-services [5, 6], which are being deployed in distributed 

virtualized environments. Monolithic applications are 

complex, hard to scale, difficult to upgrade and innovate. On 

the contrary, micro-services, where the functionalities of the 

application are segregated, are lightweight, easy to deploy and 

scale. Instead of building a single, monolithic application, the 

idea is to split the application into a set of smaller, 

interconnected services, called micro-services (or simply 

services) [7]. Such services are lightweight and perform 

distinct tasks independent of each other. Hence, they can be 

deployed quickly and independently as user demands vary. 

The micro-services can be easily upgraded or scaled without 

affecting much of the other functionality. Spreading micro-

services across multiple clouds allows having ASP’s points-of-

presence close to the distributed mobile users. The services are 

then chained through a process called service function chaining 

(SFC) [8] to create a complete end-to-end service. The goal is 

to enable the traffic to flow smoothly through the network, 

resulting in an optimal quality of experience to the users. 

Micro-services can be easily deployed over physical 

machines (PMs) or virtual machines (VMs) using novel 

techniques such as containers, allowing service providers to 

easily deploy, scale and load balance their applications [5, 6, 

9]. Micro-services deployed using containers benefit from 

lower maintenance, lower costs and more scalability as 

compared to directly deploying the virtual machines. The 

ASPs such as Google, Netflix, and others, are already using 

containers extensively. ISPs like AT&T and international 

communities like IETF are actively proposing the use of 

micro-services to bolster SDN and NFV efficiency [12, 13, 

14]. For example, AT&T has started an “open container 

initiative” [13]. The users benefit from the quick response and 

lower costs, while ASPs and ISPs benefit from quicker and 

cheaper deployment options. Micro-services are usually scaled 

dynamically depending on the user demands. Many service 

providers are opting for micro-services to deploy their 

services. With the advancements in the virtualization 

technology, the micro-services are being deployed over virtual 

machines (VMs) as well. ASPs and ISPs send requests to cloud 

service providers (CSPs) and obtain the resources to deploy the 
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micro-services as per their requirements at the time [3]. We 

discuss more about micro-services in Section III. 

 Another recent trend is the movement of micro-services 

from host-centric to data-centric model in which the 

computational resources move closer to the end users. This 

results in further reduction in response time to the end-users 

and lower costs to ASPs and ISPs because of shorter access 

links. This has led service providers to the concept of micro-

clouds at the cellular base stations [3, 13]. The technology is 

called as Micro Edge Computing or MEC. A sample scenario 

is demonstrated in Fig. 1. We consider the example of Netflix, 

a multinational entertainment content provider, which 

specializes in streaming media and video on demand. As a 

result, of an explosion in mobile devices [1], Netflix would 

benefit from locally relevant content cached at micro-clouds 

served to users through a micro-service. This will reduce the 

user-latencies and result in better user experience. In addition, 

it may result in lower operational expense (OpEx) to Netflix by 

reducing the usage of expensive wide area network (WAN) 

bandwidth. 

 
Fig. 1. Micro-Clouds at the base station for quicker response. 

Due to the nature of the contemporary telecommunications 

applications, the services need to be highly available, almost as 

much as 99.999% [13]. Additionally, most of the 

contemporary applications are sensitive to the delays, jitter, 

and packet-loss (such as online games, healthcare applications, 

video streaming and others). Many of these services are 

required to support millions of subscribers and meet the 

rigorous performance standards [13, 16]. Proper scheduling of 

these services is important for reducing total delays, total 

required resources, and overall deployment costs [14]. These 

requirements mandate the optimal placement and scheduling of 

the service instances and proper interconnection among them. 

 Although virtual machine placement problem has already 

been studied in the literature [9-11, 44-48], micro-service 

architecture and its scheduling is a relatively novel problem. 

The instances of the micro-services are generally short-lived 

and dynamic in nature. Researchers are working on innovative 

schemes to design efficient algorithms for appropriately 

placing as well as scheduling the services [8, 13], splitting the 

load across instances on multiple clouds, and chaining them to 

improve performance parameters. However, we argue that 

there is a lack of research work in the domain of micro-service 

scheduling across multiple clouds for optimal service function 

chains (SFCs), for both ASPs and ISPs [6].  

Despite the widespread acceptance of the micro-services 

in the industry, there is a huge gap between industry and 

academia in this field [25-28]. Hence, in this work, we aim to 

bridge this gap by discussing the micro-services and some of 

the options for deployment and discovery of micro-services as 

well communication among different instances of micro-

service. In addition, we formally discuss the problem of 

scheduling micro-services. The service providers may benefit 

from such work to understand the limitations, challenges, and 

advantages of this novel networking architecture. Such work 

may motivate ASPs and ISPs to leverage advantages of micro-

service and multi-cloud platforms. 

The rest of the paper is organized as follows. In the next 

section, we discuss the state-of-the-art of micro-services and 

the scheduling problem in the SFC context to show the 

limitations of existing approaches. In Section III, we discuss 

the options for deployment and discovery of micro-services as 

well as communication among different instances of the micro-

services to form end-to-end service chains. Section IV 

formalizes the micro-service scheduling problem. In Section 

V, we propose a novel FWS algorithm for micro-service 

scheduling and explain the experimental setup, and in Section 

VI, we present the comparison results. Finally, Section VII 

concludes the paper. A list of the acronyms used throughout 

this paper is given in Table 1. 

Table I. List Of Acronyms 

Acronym Description 

API Application program interface 

ASP Application service provider 

CAPEX Capital expenditures 

CSP Cloud service providers 

DB Database 

DPI Deep packet inspector 

EC2 Elastic Compute 2 

ESB Enterprise service bus 

FWS Fair weighted affinity-based scheduling 

IaaS Infrastructure as a service 

IoT Internet of Things 

ISP Internet service provider 

IT Information Technology 

LFDT Least-full first with decreasing time  

LFFF Least-full first with first finish  

MFDT Most-full first with decreasing finish  

MFFF Most-full first with first time  

MORSA Multi-objective resource scheduling 

MS Micro-service 

NFV Network function virtualization 

OF OpenFlow 

OPEX Operational expenses 

OSGi Open Service Gateway Initiative 



PM Physical machine 

REST Representational State Transfer 

SDN  Software-defined networking 

SLA Service level agreement 

SFC Service function chaining 

SOA Service-oriented architecture 

VF Virtual function 

VM Virtual machine 

VNF Virtual network function 

WAN Wide area network 

WWRF Wireless World Research Forum 

 

II. Related Work 

 

Micro-services are being extensively used in the industry. 

However, research community lacks the intensity with respect 

to various micro-service aspects. There are only a few works, 

e.g. [31-36], that discuss the micro-services. Most of the works 

on micro-services are available on blogs and online 

communities, mostly in a scattered manner [5, 42]. Johannes et 

al. and Dmitry et al. discuss the micro-service platform 

architectures in brief in [6, 11], respectively. Balalaie et al. 

provide the micro-service architecture for clouds in [14]. 

Newman discusses different options for building micro-

services in [25]. Garderen also discusses micro-service 

architecture in brief [29]. 

Recently researchers have been studying SDN and NFV 

integration with micro-services as well. Authors in [49] 

leverage the NFV and micro-service architectural style to 

propose an architecture for on-the-fly CDN component 

provisioning to tackle issues such as flash crowds. In the 

proposed architecture, CDN components are designed as sets 

of micro-services which interact via RESTFul Web services 

and are provisioned as Virtual Network Functions (VNFs), 

which are deployed and orchestrated on-the-fly. Luong et al. 

[50] present a micro-service platform to target the flexibility of 

telecom networks and the automation of its deployment. Using 

Docker orchestration, this demo paper shows the flexibility 

and the rapid deployment of wireless network infrastructure. In 

[51], authors introduce tunable and scalable mechanisms that 

provide NFV MANO with high availability and fault recovery 

using micro-services. Fazio et al. [52] argue that developers 

can engineer applications that are composed of multiple 

lightweight, self-contained, and portable runtime components 

deployed across a large number of geo-distributed servers and 

discuss open issues in micro-service scheduling. Authors in 

[53] and [54] investigate further into fog-computing to reduce 

the latencies in LTE and 5G networks respectively, where 

micro-services can be a candidate solution for service 

deployment. Yaseen et al. [55] and Brito et al. [56] discuss 

leveraging fog computing and SDN for the security of the 

mobile wireless sensor networks and smart factories. 

Micro-service architecture is being implemented by large 

enterprises such as banks, financial institutions, global retail 

stores and others to build their services in an incremental, 

flexible and cost-effective manner. Recently, there has been a 

trend to use containers to deploy micro-services across 

geographically distributed clouds. Containers are the 

lightweight version of the virtual machines. They are gaining 

significant traction in the industry recently since they are 

lightweight as compared to VMs. They can be easily 

downloaded and quickly deployed [29, 30]. Platforms such as 

Docker, Solaris Zones [33, 41] are available to ASPs for 

deployment of their services using containers [15]. 

Researchers have identified the importance of micro-services 

as an enabler for novel networking paradigms such as IoT and 

5G. They have started identifying and addressing various 

problems in this context [5, 6]. 

One important problem in the context of micro-services is 

their scheduling over the available and scattered resources to 

form complete service function chains. Optimal scheduling of 

micro-services is necessary for faster deployments and 

minimum expenses to the service providers as well the better 

quality of experience to the end-users, such as lower latencies. 

The problem of placing and scheduling the virtual functions 

has been actively pursued in the industry and academia for 

years. However, researchers argue that the problem needs to be 

revisited from the perspective of micro-services over service 

chains, as service function chains (SFCs) has some unique 

features [18]. For example, SFC is an ordered chain of 

services, so the order in which the service instance needs to be 

visited is defined dynamically by the traffic flows [7]. The 

SFC scheduling problem has been in focus recently and works 

such as in [8-12, 16-21] provide a wide range of VM 

scheduling strategies in a single cloud or across multiple 

clouds forming efficient SFCs. 

Due to the time-sensitive nature of contemporary 

applications, VM placement alone is not sufficient to yield 

acceptable performance in the deployment of micro-services 

over micro-clouds. Especially from the perspective of the 

short-lived micro-services, scheduling is more important than 

the placement problem. Also, mobile users have strict SLAs as 

far as tariffs and delays are concerned. This mandates ASPs to 

create points of presence close to the mobile users, reducing 

access latency and the overall cost. Merely efficiently placing 

the micro-services is not sufficient to obtain optimal results. 

Recently, researchers have become aware of the importance of 

scheduling problem for micro-services in SFCs, especially for 

the micro-clouds at the edges to guarantee carrier-grade 

performance [18]. However there is a dearth of research works 

which address the scheduling problem in the context of micro-

services. 

In this work, we propose a novel fair weighted affinity-

based scheme for scheduling micro-services and compare 

results with four different variants of the greedy strategies, 

which are common in the literature. We show significant 

improvements with the proposed heuristic. In the next section, 

we discuss the options for deployment, the discovery of micro-

services as well communication among the different instances 

of the micro-services. 

 



III. Micro-services and Options 

 

As defined in [25, 47], the micro-service architecture is a 

specialization of an implementation approach for service-

oriented architectures (SOA) used to build flexible, 

independently deployable software systems. Generally, 

software applications become easier to build and maintain 

when they are divided into smaller pieces, which cooperate to 

perform one particular complex task. For this discussion, we 

consider the example of an ASP who provides e-commerce 

based services. This may apply to ASPs such as Netflix, Uber, 

Amazon and many others who provide their services through 

the Internet. A single user request for some online service may 

comprise of a set of functionalities, which are accounting, 

storage, inventory and shipping [5, 42]. Each such 

functionality may be deployed as a micro-service (Fig. 2). The 

point to be noted here is that the scope of micro-service 

architecture is not only limited to the ASPs but also is equally 

important for the transport services, multimedia services as 

well as network services [13]. 

Micro-services communicate with each other to provide 

the desired functionality to end-users. For example, the user 

request for online service or product has to travel through the 

micro-service managing inventory, then accounting, storage 

and finally shipping to complete the order. Micro-services 

perform the allocated task and then exchange the related data 

to update the other micro-services. For example, in this case, 

inventory micro-service will update the accounting micro-

service regarding total quantities ordered of the goods or 

services to prepare the bill. The same task may be performed 

using traditional monolithic services or even virtual machines. 

However, micro-services are more agile, lightweight and easy 

to scale up or down as per the user demands vary. In the 

remaining section, we discuss various ways to deploy different 

ways in which micro-services can be deployed to form 

complete service chains for an ASP’s services. 

1. Micro-service Deployment: With the advent of the 

virtualization technology, many micro-service deployment 

options are becoming available to the service providers. 

Below we discuss these options and the pros and cons 

associated with each one. 

a. Multiple Service Instances per Host: This is the simplest 

way of micro-service deployment, where multiple 

micro-service instances are deployed on a single host. 

Though the host could be a physical machine or a 

virtual machine, physical machines are preferred in this 

simpler way of deployment. This scheme benefits from 

the high resource utilization. However, it suffers from 

some significant drawbacks. The major drawback is that 

there is little isolation for different service instances. A 

single service instance may consume a significant 

amount of resources starving other service instances. In 

addition, security becomes a major threat in such an 

environment. This option is shown in Fig. 2. 

 

Fig. 2. Multiple service instances per host (generally PM). 

b. Single Service Instance per Host: In this approach, a 

separate host is selected for each micro-service. 

Generally, virtual machines (VMs) are selected as hosts. 

VM types are selected as per the system requirements of 

the service. Multiple hosts such VMs are then deployed 

over a single or multiple servers as per the capacity and 

other constraints. Recently, this is the primary approach 

used by a majority of the ASPs. Cloud service providers 

(CSPs), such as Amazon, make the resources available 

through the Infrastructure as a Service (IaaS) model. 

The benefit of this approach is that each service instance 

is executed within a completely isolated environment. It 

has a fixed amount of CPU and memory and does not 

have to share resources with other micro-services. With 

this model, ASPs can leverage mature cloud 

infrastructure. Single service instance per VM 

deployment is shown in Fig. 3 with account service as 

an example. However, since VMs are available in fixed 

sizes, it is possible that some VMs will be underutilized. 

Also, shutting down or restarting a particular VM 

instance, as user demands vary, is time-consuming and 

may affect the user-latencies adversely. 

 

Fig. 3. Single service instance per host (generally VM) 

c. Single Service Instance per Container: Containers are 

the lightweight version of the virtual machines. A 

container is an OS-level virtualization to deploy and run 

applications without launching entire VM and is 

suitable for the deployment of the micro-services. A 



container consists of the libraries required to run the 

entire micro-service. A container may host multiple 

micro-services. More details about the containers may 

be found in the works such as [27, 35, 36] and online 

resources such as [5, 42]. Containers are gaining 

significant traction in the industry recently since they 

are lightweight as compared to VMs. They can be easily 

downloaded and quickly deployed. Containers may be 

deployed over physical machines or virtual machines 

quickly as per the choice of the service providers. The 

platforms such as Docker are generally used for the 

deployment of containers [33]. Micro-service 

deployment option using containers is shown in Fig. 4. 

 

Fig. 4. Single service instance per container. 
 

2. Discovery of Micro-services: Once the micro-services are 

deployed, next important stage is the discovery of such 

services for the end-users, so that the user requests can be 

guided through the underlying network properly. In a 

service-oriented architecture (SOA), the inter-service 

communication among the service instances and service 

discovery module are implemented with an Enterprise 

Service Bus (ESB) [37]. For the efficient discovery of 

micro-services, various platforms such as Kubernetes and 

Marathon [42], which implement the service registry, have 

been developed in the industry. A service registry is 

nothing but a database of available service instances. 

Service registry module translates user requests into the 

appropriate message types and routes them to the 

appropriate provider, by enabling users to interconnect 

with the different services. 

Examples of the service registry are Apache 

Zookeeper, Netflix Eureka, and others. The OSGi 

architecture [38] also provides a similar platform for 

service registry, discovery, and deployment of the 

services. These specifications enable a development model 

where applications are composed of many different 

reusable components. Contemporary service discovery 

architectures can be divided into two types, which are 

discussed below. 

a. Client-side Discovery: In this approach, the client or the 

API-GW is responsible for obtaining the location of a 

service instance by querying a service registry. The user 

is also responsible for load balancing among the service 

instances. A sample client-side discovery model is 

shown in Fig. 5. We assume that the micro-service 

instances implement Representational State Transfer 

(REST) APIs [39, 40] for the communication purpose. 

The service provider is responsible for implementing 

the service registry; however, it is the responsibility of 

the clients or end-users to determine the location of the 

micro-service instance from the service registry. Netflix 

OSS is a good example of client-side discovery model 

[42]. Though this model is simple to implement, it 

couples the client code with the service registry. 

 

Fig. 5. Client-side service discovery. 

b. Server-side Discovery: With this approach, 

clients/API-GWs send the request to a component, 

such as a load balancer, that runs in a well-known 

location. The load balancer is responsible for calling 

the service registry and determining the absolute 

location of the micro-service, as shown in Fig. 6. That 

component has an entry for the port and IP address for 

the service registry. Amazon web service elastic load 

balancer (AWS ELB) [43] is a good example of server-

side discovery. The major advantage of this model is 

that the details of service registry are abstracted from 

the client. 

 

Fig. 6. Server-side service discovery. 



3. Micro-service Communication: In monolithic 

applications, different components invoke one another 

using language-level function calls. In contrast, in micro-

service based applications, each service instance is 

typically a process. There are synchronous and 

asynchronous modes of communication among processes 

and micro-services use combination of these interaction 

styles. Communication among various micro-service 

instances is important for a complete service to the end 

users. There should be a proper mechanism to guide the 

user packets through proper instances of the micro-

services in the given order [45]. For example, with the 

given hypothetical ASP in this work, the order of service 

instances through which the user request should be routed 

is: (inventoryaccountshippingstore). From the 

design perspective, following communication options are 

available for the ASPs in their micro-service setup. 

a. Point to point: This is the simplest approach in which 

each service instance directly communicates with 

another using the APIs such as REST. The user directly 

communicates with the first service instance as shown 

in Fig. 7. As the number of functionalities and instances 

of each sub-service increase, the performance of 

systems based on point-to-point communication 

degrades. In addition, it gets unmanageable with a large 

number of service instances. 

 

Fig. 7. Point-to-point micro-service communication. 

b. Communication through the API gateway: In this 

option, an application program interface gateway (API-

GW) is installed in-between the end-users and the 

micro-service instances, as shown in Fig. 8. API-GW 

has a well-known port-IP combination, to which, clients 

send the requests and API-GW forwards the requests to 

the appropriate service instance. The decision is taken 

based on parameters such as possible delay, load 

balancing, and others. Service instances do not have to 

bother with the communication among each other, and 

they just forward their replies to the gateways. This is 

more scalable as compared to the previous option. 

However, a single gateway may become a single point 

of failure. This disadvantage can be easily eliminated by 

having multiple instances of such gateways for load 

balancing and redundancy (Fig. 8). 

 

Fig. 8. Communication through API-gateway. 

c. Message Broker Style: This is an asynchronous mode of 

communication. A given micro-service can be a message 

producer and can asynchronously send messages to a queue. 

On the contrary, the consuming micro-service takes 

messages from the queue. Such style of communication 

decouples message producers from message consumers and 

the intermediate message broker buffers messages until the 

consumer is able to consume or process them. Producer 

micro-services are completely unaware of the consumer 

micro-services, hence, are said to be in asynchronous 

communication [26, 27, 42]. Micro-service communication 

using message broker style is shown in Fig. 9. 

 

Fig. 9. Message-Broker Style Communication option. 

In the next section, we discuss one particular and important 

problem in the context of micro-services, that is, scheduling of 

micro-services. This is an important problem for optimal 

placement of service chains. Optimal scheduling is necessary 

to satisfy the service level agreements (SLAs) and QoS to end-

users (such as minimum latencies) as well as minimum 

expenses to the service providers while deploying the instances 

of micro-services over the available resources. As pointed out 

earlier, though the problem of placement of virtual machines is 

studied quite extensively in the literature, scheduling of micro-

services along with relevant micro-service options are severely 

under-researched. 



IV. Micro-services Scheduling Problem 
 

In this section, we discuss the micro-service scheduling 

problem in the context of constitution and placement of SFCs. 

The problem generally comprises three sub-problems: (1) 

selecting types and numbers of the service instances to be 

scheduled (2) selecting physical machines (PMs) or virtual 

machines (VMs) on which the services should be scheduled 

and (3) deciding the time slot for which a particular service 

instance needs to be executed. Common heuristics used in the 

state-of-art systems for these tasks are “greedy with bias” [8, 

19, 35]. The bias is towards some factor such as: (1) select a 

service with earliest finish time or (2) select service with the 

longest execution time. Similarly, the bias while selecting 

VMs/PMs are: (1) select most-loaded machine or (2) select 

least-loaded machine [11, 16]. We start our discussion with a 

particular use case. We consider an ASP such as Facebook 

(FB) and take up a hypothetical example of the services 

offered by FB to explain the problem under consideration. It is 

important to note that the scope of the problem under 

consideration is not only limited to the application services, 

but is equally important for the telecommunication services, 

multimedia services, and network services as well [7, 8]. For 

example, the network-slicing problem for the network service 

providers [13, 49]. 

As shown in Fig. 10, different groups of users from 

various user-bases may send different types of web requests to 

FB webserver(s). For example, some users may be interested 

in signing up for the service and others may log in to check 

their messages or posts on the wall or scan through their friend 

requests. The sign-up requests, after passing through the 

firewall, are passed to a set of services, which handle user 

registration logic (in this case firewall  f1  f2  f3  f4 f5 

 database). However, login requests may have to be passed 

through deep packet inspection (DPI) in addition to the 

firewall to distinguish among user demands (such as wall-post, 

photo upload or online FB integrated games). A complete 

service chain may comprise of a combination of IT and 

telecommunication services. This example is just for an 

illustration purpose of the service flows, and it may be 

different in actual FB implementation of the services. The 

important point to be noted here is the dynamic formation of 

complex and hybrid service chains, which comprise a different 

set of micro-services implemented at the application layer. 

Some of the long-lived services in the process such as the 

firewall, the deep packet inspection (DPI) and the database 

(DB) may stay for longer durations compared to other short-

lived services such as function specific micro-services. 

Whereas placement would be enough for such long-lived 

services, the short-lived micro-services needs to be scheduled 

for efficient service chains [49]. 

 
Fig. 10. SFCs for different services offered by an ASP (such as FB). 

In this example, if we consider some specific 

functionality, such as user registration (sign-up), wall-post on 

FB or other integrated game applications, a specific set of 

service instances need to be executed. Such sets of service 

instances may be switched on/off as user demands vary, 

especially at the micro-clouds, since the capacities are limited. 

Scheduling these service instances over the available resources 

is an important problem. In this work, we have considered four 

SFCs comprising twenty micro-services in total. The SFC 

shapes and graphs are shown in the Fig. 11. Note that the 

topologies of the SFCs also indicate their execution order. For 

example, in SFC 1, service f2 has to be executed after f1. This 

may be because of the business logic dependence or some 

mandatory network traffic flow demand. For example, web-

service logic handling service has to be executed before the 

service handling databases; or firewall must be executed before 

the business logic, etc. 

However, f4 and f5 may be executed in parallel after f3, 

since they are independent of each other. Similarly, in SFC 2, 

f7 and f8 may be executed at the same time after f6. However, f9 

has to be executed only after both f7 and f8 have finished their 

execution. This mandatory ordered flow of services in SFCs 

makes scheduling a complex problem. For the sake of 

simplicity, we assume that the VFs are visited in the numerical 

order. There may exist different service flows following 

different chains. However, the numbers for the VFs are in 

numerical order. For example, different chains consisting of 

different VFs may exist, such as (1,2,3,4), (1,2,3,5), (6,7,9,10), 

(15, 17, 20) as shown in Fig. 11. 
 



 
Fig. 11. Four SFCs with 20 virtual functions (VFs) used for 

evaluation. 

Let us now consider the scheduling problem of micro-

service by considering three SFCs from the example above 

displayed on the left of Fig. 12. On the right-hand side, we 

show the Gantt chart for the scheduling of the micro-services 

over available resources, using the virtual machines (VM1 to 

VM5), deployed across three clouds C1, C2, and C3. Vertical 

lines indicate the time slots and each service needs different 

time to finish the execution. We assume that three user 

requests for these three SFCs arrive at the same time. The 

widths of the micro-services indicate the total time needed to 

execute the services (longer services mean longer time for 

execution). A possible scheduling to optimize the total time 

and the resources required for the three SFCs on the available 

resources is shown in Fig. 12. 

 
Fig. 12. Gantt chart for optimal scheduling.  

 

We observe that, with optimal scheduling, all the executions 

finish before time-slot t10 keeping VM5 free and ready to serve 

another incoming request. We argue that a sophisticated 

heuristic is needed to solve the large-scale micro-service 

scheduling problem within acceptable time limits. In the next 

section, we propose our novel affinity-based fair weighted 

scheduling (FWS) scheme and explain the experimental setup. 

We implement all the four combinations of SFCs along with 

our proposed FWS approach. Our proposed novel heuristic 

performs scheduling of micro-services on multiple VMs/PMs 

spread across multiple clouds. We consider different user-level 

service level agreements (SLAs), such as traffic-affinity among 

services [8], user delays, and cost constraints. In addition, we 

consider network parameters such as link loads and network 

traffic. We aim to reduce the overall turnaround time for the 

service and reduce the total inter-VM traffic generated. 

 

V. Heuristics and Experimental Setup 

 

In this section, we propose a novel affinity-based fair weighted 

scheme (FWS) for the scheduling problem under 

consideration. The heuristic can be divided into two distinct 

parts, that is, (1) selection of next service instance to be 

scheduled and (2) selection of next machine (VM or PM) on 

which the service instance should be scheduled. Heuristic 

starts at the time t = t0. User requests arrive dynamically with 

inter-arrival time exponentially distributed, that is, the arrival 

process is Poisson [16, 23]. Let U be the set of users, waiting 

for the service or being served at any time t. Initially, we 

prepare the graphs for each SFC for each user u in U. It is to be 

noted that the graph may have disjoint sets of sub-graphs. 

A sample inline service graph is shown in Fig. 13. Solid, 

dotted and dashed lines highlight three possible service chains 

(there may be several other SFCs as well). Also, the users may 

demand a single functionality, such as F9 shown in the figure. 

Again, these graphs can be of any shape and size, depending 

on the service provided by a specific ASP and the types of 

end-user demands. We have used various resource 

combinations (from Amazon EC2 [22]) mentioned in Table II 

to simplify configurations so that resource requirements can be 

easily mapped to the nearest available configuration. 

Depending on the user resource demands, a particular VM is 

chosen from Table II such that the requirements are the closest 

match. Initially, we assign labels to the services using 

Coffman-Graham algorithm [9].  

 
Fig. 13. An inline graph for services forming different SFCs. 



It ensures that the service instance that needs to be 

executed first for the particular SFC (starting service) gets a 

priority as per the arrival time. The service instance with the 

highest value of the label is scheduled first. Further, we assign 

weight w to the services, such that: 

w α (number of dependent services in that chain) and 

w α (time spent by the services in the waiting queue). 

If there are ties between two services for scheduling (that is, 

services having the same labels), the service with higher 

weight is selected. This step ensures fair scheduling as it 

makes sure that the longer SFCs and the SFCs, which have 

waited longer in the queue get a fair chance for their 

scheduling. 

Table II. Resource configuration taken from Amazon EC2. 

 

While selecting the VMs/PMs for service deployment, the 

affinity between services is taken into consideration. Two 

services belonging to the same instance of an SFC are 

considered to have higher affinity, and we try to place them on 

the same machine. This ensures minimum delays and less 

inter-machine traffic overhead. This step ensures that the 

services for the same SFC are scheduled on the same machine, 

if possible, to minimize the total traffic generated. Otherwise, 

it tries to schedule the service on the machine with which inter-

machine traffic will be minimized, and all capacity constraints 

are satisfied. We may combine two or more services and 

deploy them on a single machine as well, provided a machine 

of that capacity is available. Availability of the machines 

depends on the cloud capacity. If a service instance is not 

serving any user demands, it is buffered in the cloud. In the 

buffered stage, the service uses fewer resources (such as 

storage only to save the state). However, it can be brought up 

quickly whenever relevant user demand arrives, saving 

resources and time [16]. For simplicity, we assume clouds 

have infinite buffering capacity. The steps for FWS algorithm 

are given in detail in Table III. 

Table III. FWS algorithm for micro-service scheduling [49].  

1. Let {1, 2, 3, 4, …, N} be the set of micro-services to be 

scheduled on M machines. Let {T1, T2, T3, …, Tn} be 

their finish times. 

2. If Ti < Tj then MS j is said to be immediate successor 

of task i. 

3. Let S(i) be the set of all immediate successors of MS i 

4. Let Li be the label assigned to MS i. 

5. Choose MS i from the arrived request s.t. S(i) = 0. Let 

Li be 1. 

6. For l = 2 to N 

7. Let C be the set of unlabeled MS s.t. there is no 

unlabeled successor. 

8. Let s be the MS in C s.t. Ts < Ts* for all other MS 

s* in C 

9. Let Ls = l 

10. Once labels are assigned, we assign weights {w1, w2, 

w3,…, wn} to the services, s.t.: 

 wi   (number of dependent services in that chain) and 

 wi   (time spent by the services in the waiting queue). 

11. Foreach service i 

12. if li = li+1 

13. select i for scheduling if wi > wi+1 

14. else select i+1 

15. Select the machine from the sorted list as per the 

remaining capacity for deployment. 

 

We consider a 20-node topology out of which, 16 are the 

micro-clouds deployed at the edges such as cellular base 

stations, closer to the end users and four are core public clouds, 

with larger capacities, as shown in Fig. 14. Computation 

and/or data intensive services which need more processing 

and/or storage capacities and which tend to run for longer 

times, such as firewall, database services, are generally 

deployed at core clouds. We assume that each service instance 

produces data in the range of 5 kB to 20 kB. Also, the number 

of user requests each micro-service instance can handle at 

average load is selected from a range of 20 to 100 requests/sec. 

Time needed for execution of each service is chosen from the 

range of 10 to 100 milliseconds (ms) [18]. 

 
Fig. 14. 20-node topology with 16 micro-clouds and four core clouds. 

All the values are selected randomly from the given ranges. In 

addition, we assign each user request with some delays and 

cost constraints it may tolerate. We also make sure these 

constraints are satisfied while scheduling the micro-services on 

the clouds. In the next section, we compare the results of 

proposed FWS solution with four variants of standard biased 

Name API Name Memory Cores
Max
Bandwidth On Demand cost

T2 Small t2.small 2.0 GB 1 cores 25 MB/s $0.034 hourly

T2 Medium t2.medium 4.0 GB 2 cores 25 MB/s $0.068 hourly

T2 Large t2.large 8.0 GB 2 cores 25 MB/s $0.136 hourly

M4 Large m4.large 8.0 GB 2 cores 56.25 MB/s $0.140 hourly



greedy scheduling strategy, which are common in the literature 

and observe significant improvements. 

VI. Results and Analysis 

 
We now present the results obtained through the 

experimental setup. In addition to our FWS approach, we have 

implemented four additional algorithms based on the greedy 

biased approach for comparison. Service labeling step is 

common for all the heuristics. Table IV displays the basic steps 

for the following strategies: 

1. Least-full First with First Finish (LFFF) 

2. Most-full First with First Finish (MFFF) 

3. Least-full First with Decreasing Time (LFDT) 

4. Most-full First with Decreasing Time (MFDT) 

Table IV. The selection criterion for greedy biased heuristics. 

 

We execute the algorithms for a certain number of times, 

and then we take an average. Graphs in Fig. 15 show the 

comparison of the four approaches mentioned above and our 

FWS approach in terms of the total inter-VM traffic generated. 

FWS approach (thick yellow line) performs the best with the 

least inter-VM traffic. For example, with 3000 user demands, 

greedy algorithms produce more than 20 MB of data, whereas 

FWS only produces less than 10 MB data, which is an 

improvement of 50%. 

 
Fig. 15. Total traffic generated (in KB). 

 
Fig. 16. Total turnaround time (in milliseconds). 

Similarly, Fig. 16 shows the average turnaround time for 

each user where FWS again performs the best. For example, 

with 4000 user demands, FWS results in a turnaround time of 

less than 220 ms, whereas the other algorithms need around 

330 ms We also present bar charts for above results, that is, for 

total traffic generated and average turnaround time in Fig. 17 

and Fig. 18 respectively. 

However, the average turnaround time alone is not 

sufficient to measure the performance, especially in the context 

of the time-sensitive applications. Most of the time, if the user 

demands are not satisfied within a given time constraint, it is 

as bad as service denied. Hence, we also find out the 

percentage of user demands which got satisfied in the given 

time constraints (Fig. 19). We observe that a significantly 

higher percentage of the user demands get satisfied with the 

FWS approach. The total percentage varies from 100% to 96% 

as user demands vary from 100 to 5000. On the contrary, the 

percentage drops to 70% for LFFF, 62% for LFDT & MFFF 

and 74% for MFDT. 

 

 
Fig. 17. Bar chart for total traffic generated (in KB). 



 
Fig. 18. Bar chart for total turnaround time (in milliseconds). 

We have also analyzed the effect of traffic loads on 

average turnaround time or average time to schedule all the 

services. We observe exponential growth in the total 

turnaround delays as traffic loads in the network grow. We 

generated dummy traffic to obtain different average traffic 

loads. The links were modeled as M/D/1 queues, and by the 

standard formula, we calculate the delays in the links as given 

in Equation (1) below [23]. We note that     is the total delay 

on the link (i, j).     is the arrival rate of packets and     is the 

processing rate of the same link.     = 
 

     
 × 

            

           
    (1) 

 
Fig. 19. Percentage of user demands satisfied. 

In Fig. 20 we observe that even at 90% traffic load, the total 

delays, with the proposed FWS scheme remain within the 

range of 250 ms, which is within acceptable limits for the 

contemporary real-time applications [24]. For other schemes, 

however, it varies from 400 to more than 600 ms. In Fig. 21, 

we plot the graphs for the total costs of the resources needed to 

satisfy all the given demands using all the approaches. The 

cost has been calculated for an hour to host the required 

services for all the users.  

We assume the Amazon pricing model as shown in Table 

II to calculate the costs. We observe that the proposed affinity-

based FWS approach performs better than the greedy 

approaches in terms of the total cost as well. The cost 

difference goes on increasing with increase in the total number 

of users. This may be attributed to the fact that, in the affinity-

based FWS approach, we try to accommodate the VMs, 

hosting micro-services with affinity, on a single machine with 

the closest match for the required capacities. This reduces the 

required number of the resources and eventually the cost. From 

the results, we observe that the proposed FWS scheme 

outperforms the contemporary greedy approaches in terms of 

the total traffic overhead, total turnaround time, the total 

number of the services satisfied as well as the total deployment 

cost. 

 
Fig. 20. Average turnaround time. 

 

 
Fig. 21. Cost comparison (FWS vs. Greedy approaches). 

 

VII. Concluding Remarks and Future Work 

 

In this paper, we discuss the micro-services and address 

important problems such as deployment and discovery of 

micro-services as well as communication among the different 

instances of the micro-services to form end-to-end service 

chains. In addition, we discuss the problem of scheduling 

micro-services. We point out that this is an important problem 

to be addressed for optimal service chains and point out the 

gap between the work done for virtual machine placement 

problem and micro-service scheduling problem. In addition, 

we point out that link loads and network delays while 

minimizing the total turnaround time and total traffic generated 

needs to be considered. 



In this work, we aim to bridge the gap between the 

academia and the industry to help the service providers to 

deploy the micro-services more efficiently. In addition, we 

propose a novel FWS approach for micro-service scheduling in 

the multi-cloud scenario to form optimal SFCs. We take into 

account different delay and cost related SLAs. Also, we 

consider link loads and network delays while minimizing the 

total turnaround time and total traffic generated. The proposed 

approach demonstrates significant improvement compared to 

standard biased greedy approaches. However, there is still a 

wide area open for the research in developing novel scheduling 

algorithms considering the different delay and cost related 

SLAs. Advancements in the field of machine learning may be 

applied, such as proactive scheduling. Micro-service 

architecture brings in more challenges, such as distributed data 

management, failure recovery, security, monitoring, network 

latency, message formats, load balancing, fault tolerance and 

others, which need to be investigated further. 
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