
Exploring Micro-Services for Enhancing Internet QoS

Deval Bhamare

Qatar University,

Doha, Qatar

devalb@qu.edu.qa

Mohammed Samaka

Qatar University,

Doha, Qatar

samaka.m@qu.edu.qa

Aiman Erbad

Qatar University,

Doha, Qatar

aerbad@qu.edu.qa

Raj Jain

Washington Univ.,

St. Louis, USA

jain@wustl.edu

Lav Gupta

Washington Univ.,

St. Louis, USA

lavgupta@wustl.edu

Abstract: With the enhancements in the field of software-defined

networking and virtualization technologies, novel networking

paradigms such as network function virtualization (NFV) and the

Internet of things (IoT) are rapidly gaining ground. Development of

IoT as well as 5G networks and explosion in online services has

resulted in an exponential growth of devices connected to the

network. As a result, application service providers (ASPs) and

Internet service providers (ISPs) are being confronted with the

unprecedented challenge of accommodating increasing service and

traffic demands from the geographically distributed users. To tackle

this problem, many ASPs and ISPs, such as Netflix, Facebook,

AT&T and others are increasingly adopting micro-services (MS)

application architecture. Despite the success of MS in the industry,

there is no specific standard or research work for service providers

as guidelines, especially from the perspective of basic micro-service

operations. In this work, we aim to bridge this gap between industry

and academia and discuss different micro-service deployment,

discovery and communication options for service providers as a

means to forming complete service chains. In addition, we address

the problem of scheduling micro-services across multiple clouds,

including micro-clouds. We consider different user-level SLAs, such

as latency and cost, while scheduling such services. We aim to

reduce overall turnaround time as well as costs for the deployment

of complete end-to-end service. In this work, we present a novel

affinity-based fair weighted scheduling heuristic to solve this

problem. We also compare the results of proposed solution with

standard greedy scheduling algorithms presented in the literature

and observe significant improvements.1

Keywords — edge-computing; fog-computing; micro-services;

scheduling; NFV; SDN.

I. Introduction

With the explosion of online services as well as mobile and

sensory devices, demand for new services and consequently

data traffic is growing rapidly. The popularity of Internet of

Things (IoT) and 5G networks have contributed significantly

to this trend, with millions of new sensing devices and online

services exchanging data. According to Wireless World

Research Forum (WWRF), the number of connected wireless

devices is expected to be 100 billion by 2025 [1]. Cloud

computing has been considered as a major enabler for such

novel networking paradigms [2]. The online services, sensing

devices, as well as end-users, are generally spread across

geographically distributed areas. This motivates the ASPs and

ISPs to deploy the services over multiple clouds for scalability,

1
 This is an extended version of a paper presented at IEEE ICC 2017. We have

extended the work significantly (50% changes) for submission to Journal of

Transactions on Emerging Telecommunications Technologies (ETT).

redundancy and quicker response to the users [1, 3, 4].

Increasing use of virtualization technologies also helps ASPs

and ISPs to deploy their services over standard high-volume

infrastructures to accommodate such high volume of user

demands.

Large services, which were monolithic software in the

past, are being replaced by a set of lightweight services called

micro-services [5, 6], which are being deployed in distributed

virtualized environments. Monolithic applications are

complex, hard to scale, difficult to upgrade and innovate. On

the contrary, micro-services, where the functionalities of the

application are segregated, are lightweight, easy to deploy and

scale. Instead of building a single, monolithic application, the

idea is to split the application into a set of smaller,

interconnected services, called micro-services (or simply

services) [7]. Such services are lightweight and perform

distinct tasks independent of each other. Hence, they can be

deployed quickly and independently as user demands vary.

The micro-services can be easily upgraded or scaled without

affecting much of the other functionality. Spreading micro-

services across multiple clouds allows having ASP’s points-of-

presence close to the distributed mobile users. The services are

then chained through a process called service function chaining

(SFC) [8] to create a complete end-to-end service. The goal is

to enable the traffic to flow smoothly through the network,

resulting in an optimal quality of experience to the users.

Micro-services can be easily deployed over physical

machines (PMs) or virtual machines (VMs) using novel

techniques such as containers, allowing service providers to

easily deploy, scale and load balance their applications [5, 6,

9]. Micro-services deployed using containers benefit from

lower maintenance, lower costs and more scalability as

compared to directly deploying the virtual machines. The

ASPs such as Google, Netflix, and others, are already using

containers extensively. ISPs like AT&T and international

communities like IETF are actively proposing the use of

micro-services to bolster SDN and NFV efficiency [12, 13,

14]. For example, AT&T has started an “open container

initiative” [13]. The users benefit from the quick response and

lower costs, while ASPs and ISPs benefit from quicker and

cheaper deployment options. Micro-services are usually scaled

dynamically depending on the user demands. Many service

providers are opting for micro-services to deploy their

services. With the advancements in the virtualization

technology, the micro-services are being deployed over virtual

machines (VMs) as well. ASPs and ISPs send requests to cloud

service providers (CSPs) and obtain the resources to deploy the

eprint
Transactions on Emerging Telecommunications Technologies, June, 2018

micro-services as per their requirements at the time [3]. We

discuss more about micro-services in Section III.

 Another recent trend is the movement of micro-services

from host-centric to data-centric model in which the

computational resources move closer to the end users. This

results in further reduction in response time to the end-users

and lower costs to ASPs and ISPs because of shorter access

links. This has led service providers to the concept of micro-

clouds at the cellular base stations [3, 13]. The technology is

called as Micro Edge Computing or MEC. A sample scenario

is demonstrated in Fig. 1. We consider the example of Netflix,

a multinational entertainment content provider, which

specializes in streaming media and video on demand. As a

result, of an explosion in mobile devices [1], Netflix would

benefit from locally relevant content cached at micro-clouds

served to users through a micro-service. This will reduce the

user-latencies and result in better user experience. In addition,

it may result in lower operational expense (OpEx) to Netflix by

reducing the usage of expensive wide area network (WAN)

bandwidth.

Fig. 1. Micro-Clouds at the base station for quicker response.

Due to the nature of the contemporary telecommunications

applications, the services need to be highly available, almost as

much as 99.999% [13]. Additionally, most of the

contemporary applications are sensitive to the delays, jitter,

and packet-loss (such as online games, healthcare applications,

video streaming and others). Many of these services are

required to support millions of subscribers and meet the

rigorous performance standards [13, 16]. Proper scheduling of

these services is important for reducing total delays, total

required resources, and overall deployment costs [14]. These

requirements mandate the optimal placement and scheduling of

the service instances and proper interconnection among them.

 Although virtual machine placement problem has already

been studied in the literature [9-11, 44-48], micro-service

architecture and its scheduling is a relatively novel problem.

The instances of the micro-services are generally short-lived

and dynamic in nature. Researchers are working on innovative

schemes to design efficient algorithms for appropriately

placing as well as scheduling the services [8, 13], splitting the

load across instances on multiple clouds, and chaining them to

improve performance parameters. However, we argue that

there is a lack of research work in the domain of micro-service

scheduling across multiple clouds for optimal service function

chains (SFCs), for both ASPs and ISPs [6].

Despite the widespread acceptance of the micro-services

in the industry, there is a huge gap between industry and

academia in this field [25-28]. Hence, in this work, we aim to

bridge this gap by discussing the micro-services and some of

the options for deployment and discovery of micro-services as

well communication among different instances of micro-

service. In addition, we formally discuss the problem of

scheduling micro-services. The service providers may benefit

from such work to understand the limitations, challenges, and

advantages of this novel networking architecture. Such work

may motivate ASPs and ISPs to leverage advantages of micro-

service and multi-cloud platforms.

The rest of the paper is organized as follows. In the next

section, we discuss the state-of-the-art of micro-services and

the scheduling problem in the SFC context to show the

limitations of existing approaches. In Section III, we discuss

the options for deployment and discovery of micro-services as

well as communication among different instances of the micro-

services to form end-to-end service chains. Section IV

formalizes the micro-service scheduling problem. In Section

V, we propose a novel FWS algorithm for micro-service

scheduling and explain the experimental setup, and in Section

VI, we present the comparison results. Finally, Section VII

concludes the paper. A list of the acronyms used throughout

this paper is given in Table 1.

Table I. List Of Acronyms

Acronym Description

API Application program interface

ASP Application service provider

CAPEX Capital expenditures

CSP Cloud service providers

DB Database

DPI Deep packet inspector

EC2 Elastic Compute 2

ESB Enterprise service bus

FWS Fair weighted affinity-based scheduling

IaaS Infrastructure as a service

IoT Internet of Things

ISP Internet service provider

IT Information Technology

LFDT Least-full first with decreasing time

LFFF Least-full first with first finish

MFDT Most-full first with decreasing finish

MFFF Most-full first with first time

MORSA Multi-objective resource scheduling

MS Micro-service

NFV Network function virtualization

OF OpenFlow

OPEX Operational expenses

OSGi Open Service Gateway Initiative

PM Physical machine

REST Representational State Transfer

SDN Software-defined networking

SLA Service level agreement

SFC Service function chaining

SOA Service-oriented architecture

VF Virtual function

VM Virtual machine

VNF Virtual network function

WAN Wide area network

WWRF Wireless World Research Forum

II. Related Work

Micro-services are being extensively used in the industry.

However, research community lacks the intensity with respect

to various micro-service aspects. There are only a few works,

e.g. [31-36], that discuss the micro-services. Most of the works

on micro-services are available on blogs and online

communities, mostly in a scattered manner [5, 42]. Johannes et

al. and Dmitry et al. discuss the micro-service platform

architectures in brief in [6, 11], respectively. Balalaie et al.

provide the micro-service architecture for clouds in [14].

Newman discusses different options for building micro-

services in [25]. Garderen also discusses micro-service

architecture in brief [29].

Recently researchers have been studying SDN and NFV

integration with micro-services as well. Authors in [49]

leverage the NFV and micro-service architectural style to

propose an architecture for on-the-fly CDN component

provisioning to tackle issues such as flash crowds. In the

proposed architecture, CDN components are designed as sets

of micro-services which interact via RESTFul Web services

and are provisioned as Virtual Network Functions (VNFs),

which are deployed and orchestrated on-the-fly. Luong et al.

[50] present a micro-service platform to target the flexibility of

telecom networks and the automation of its deployment. Using

Docker orchestration, this demo paper shows the flexibility

and the rapid deployment of wireless network infrastructure. In

[51], authors introduce tunable and scalable mechanisms that

provide NFV MANO with high availability and fault recovery

using micro-services. Fazio et al. [52] argue that developers

can engineer applications that are composed of multiple

lightweight, self-contained, and portable runtime components

deployed across a large number of geo-distributed servers and

discuss open issues in micro-service scheduling. Authors in

[53] and [54] investigate further into fog-computing to reduce

the latencies in LTE and 5G networks respectively, where

micro-services can be a candidate solution for service

deployment. Yaseen et al. [55] and Brito et al. [56] discuss

leveraging fog computing and SDN for the security of the

mobile wireless sensor networks and smart factories.

Micro-service architecture is being implemented by large

enterprises such as banks, financial institutions, global retail

stores and others to build their services in an incremental,

flexible and cost-effective manner. Recently, there has been a

trend to use containers to deploy micro-services across

geographically distributed clouds. Containers are the

lightweight version of the virtual machines. They are gaining

significant traction in the industry recently since they are

lightweight as compared to VMs. They can be easily

downloaded and quickly deployed [29, 30]. Platforms such as

Docker, Solaris Zones [33, 41] are available to ASPs for

deployment of their services using containers [15].

Researchers have identified the importance of micro-services

as an enabler for novel networking paradigms such as IoT and

5G. They have started identifying and addressing various

problems in this context [5, 6].

One important problem in the context of micro-services is

their scheduling over the available and scattered resources to

form complete service function chains. Optimal scheduling of

micro-services is necessary for faster deployments and

minimum expenses to the service providers as well the better

quality of experience to the end-users, such as lower latencies.

The problem of placing and scheduling the virtual functions

has been actively pursued in the industry and academia for

years. However, researchers argue that the problem needs to be

revisited from the perspective of micro-services over service

chains, as service function chains (SFCs) has some unique

features [18]. For example, SFC is an ordered chain of

services, so the order in which the service instance needs to be

visited is defined dynamically by the traffic flows [7]. The

SFC scheduling problem has been in focus recently and works

such as in [8-12, 16-21] provide a wide range of VM

scheduling strategies in a single cloud or across multiple

clouds forming efficient SFCs.

Due to the time-sensitive nature of contemporary

applications, VM placement alone is not sufficient to yield

acceptable performance in the deployment of micro-services

over micro-clouds. Especially from the perspective of the

short-lived micro-services, scheduling is more important than

the placement problem. Also, mobile users have strict SLAs as

far as tariffs and delays are concerned. This mandates ASPs to

create points of presence close to the mobile users, reducing

access latency and the overall cost. Merely efficiently placing

the micro-services is not sufficient to obtain optimal results.

Recently, researchers have become aware of the importance of

scheduling problem for micro-services in SFCs, especially for

the micro-clouds at the edges to guarantee carrier-grade

performance [18]. However there is a dearth of research works

which address the scheduling problem in the context of micro-

services.

In this work, we propose a novel fair weighted affinity-

based scheme for scheduling micro-services and compare

results with four different variants of the greedy strategies,

which are common in the literature. We show significant

improvements with the proposed heuristic. In the next section,

we discuss the options for deployment, the discovery of micro-

services as well communication among the different instances

of the micro-services.

III. Micro-services and Options

As defined in [25, 47], the micro-service architecture is a

specialization of an implementation approach for service-

oriented architectures (SOA) used to build flexible,

independently deployable software systems. Generally,

software applications become easier to build and maintain

when they are divided into smaller pieces, which cooperate to

perform one particular complex task. For this discussion, we

consider the example of an ASP who provides e-commerce

based services. This may apply to ASPs such as Netflix, Uber,

Amazon and many others who provide their services through

the Internet. A single user request for some online service may

comprise of a set of functionalities, which are accounting,

storage, inventory and shipping [5, 42]. Each such

functionality may be deployed as a micro-service (Fig. 2). The

point to be noted here is that the scope of micro-service

architecture is not only limited to the ASPs but also is equally

important for the transport services, multimedia services as

well as network services [13].

Micro-services communicate with each other to provide

the desired functionality to end-users. For example, the user

request for online service or product has to travel through the

micro-service managing inventory, then accounting, storage

and finally shipping to complete the order. Micro-services

perform the allocated task and then exchange the related data

to update the other micro-services. For example, in this case,

inventory micro-service will update the accounting micro-

service regarding total quantities ordered of the goods or

services to prepare the bill. The same task may be performed

using traditional monolithic services or even virtual machines.

However, micro-services are more agile, lightweight and easy

to scale up or down as per the user demands vary. In the

remaining section, we discuss various ways to deploy different

ways in which micro-services can be deployed to form

complete service chains for an ASP’s services.

1. Micro-service Deployment: With the advent of the

virtualization technology, many micro-service deployment

options are becoming available to the service providers.

Below we discuss these options and the pros and cons

associated with each one.

a. Multiple Service Instances per Host: This is the simplest

way of micro-service deployment, where multiple

micro-service instances are deployed on a single host.

Though the host could be a physical machine or a

virtual machine, physical machines are preferred in this

simpler way of deployment. This scheme benefits from

the high resource utilization. However, it suffers from

some significant drawbacks. The major drawback is that

there is little isolation for different service instances. A

single service instance may consume a significant

amount of resources starving other service instances. In

addition, security becomes a major threat in such an

environment. This option is shown in Fig. 2.

Fig. 2. Multiple service instances per host (generally PM).

b. Single Service Instance per Host: In this approach, a

separate host is selected for each micro-service.

Generally, virtual machines (VMs) are selected as hosts.

VM types are selected as per the system requirements of

the service. Multiple hosts such VMs are then deployed

over a single or multiple servers as per the capacity and

other constraints. Recently, this is the primary approach

used by a majority of the ASPs. Cloud service providers

(CSPs), such as Amazon, make the resources available

through the Infrastructure as a Service (IaaS) model.

The benefit of this approach is that each service instance

is executed within a completely isolated environment. It

has a fixed amount of CPU and memory and does not

have to share resources with other micro-services. With

this model, ASPs can leverage mature cloud

infrastructure. Single service instance per VM

deployment is shown in Fig. 3 with account service as

an example. However, since VMs are available in fixed

sizes, it is possible that some VMs will be underutilized.

Also, shutting down or restarting a particular VM

instance, as user demands vary, is time-consuming and

may affect the user-latencies adversely.

Fig. 3. Single service instance per host (generally VM)

c. Single Service Instance per Container: Containers are

the lightweight version of the virtual machines. A

container is an OS-level virtualization to deploy and run

applications without launching entire VM and is

suitable for the deployment of the micro-services. A

container consists of the libraries required to run the

entire micro-service. A container may host multiple

micro-services. More details about the containers may

be found in the works such as [27, 35, 36] and online

resources such as [5, 42]. Containers are gaining

significant traction in the industry recently since they

are lightweight as compared to VMs. They can be easily

downloaded and quickly deployed. Containers may be

deployed over physical machines or virtual machines

quickly as per the choice of the service providers. The

platforms such as Docker are generally used for the

deployment of containers [33]. Micro-service

deployment option using containers is shown in Fig. 4.

Fig. 4. Single service instance per container.

2. Discovery of Micro-services: Once the micro-services are

deployed, next important stage is the discovery of such

services for the end-users, so that the user requests can be

guided through the underlying network properly. In a

service-oriented architecture (SOA), the inter-service

communication among the service instances and service

discovery module are implemented with an Enterprise

Service Bus (ESB) [37]. For the efficient discovery of

micro-services, various platforms such as Kubernetes and

Marathon [42], which implement the service registry, have

been developed in the industry. A service registry is

nothing but a database of available service instances.

Service registry module translates user requests into the

appropriate message types and routes them to the

appropriate provider, by enabling users to interconnect

with the different services.

Examples of the service registry are Apache

Zookeeper, Netflix Eureka, and others. The OSGi

architecture [38] also provides a similar platform for

service registry, discovery, and deployment of the

services. These specifications enable a development model

where applications are composed of many different

reusable components. Contemporary service discovery

architectures can be divided into two types, which are

discussed below.

a. Client-side Discovery: In this approach, the client or the

API-GW is responsible for obtaining the location of a

service instance by querying a service registry. The user

is also responsible for load balancing among the service

instances. A sample client-side discovery model is

shown in Fig. 5. We assume that the micro-service

instances implement Representational State Transfer

(REST) APIs [39, 40] for the communication purpose.

The service provider is responsible for implementing

the service registry; however, it is the responsibility of

the clients or end-users to determine the location of the

micro-service instance from the service registry. Netflix

OSS is a good example of client-side discovery model

[42]. Though this model is simple to implement, it

couples the client code with the service registry.

Fig. 5. Client-side service discovery.

b. Server-side Discovery: With this approach,

clients/API-GWs send the request to a component,

such as a load balancer, that runs in a well-known

location. The load balancer is responsible for calling

the service registry and determining the absolute

location of the micro-service, as shown in Fig. 6. That

component has an entry for the port and IP address for

the service registry. Amazon web service elastic load

balancer (AWS ELB) [43] is a good example of server-

side discovery. The major advantage of this model is

that the details of service registry are abstracted from

the client.

Fig. 6. Server-side service discovery.

3. Micro-service Communication: In monolithic

applications, different components invoke one another

using language-level function calls. In contrast, in micro-

service based applications, each service instance is

typically a process. There are synchronous and

asynchronous modes of communication among processes

and micro-services use combination of these interaction

styles. Communication among various micro-service

instances is important for a complete service to the end

users. There should be a proper mechanism to guide the

user packets through proper instances of the micro-

services in the given order [45]. For example, with the

given hypothetical ASP in this work, the order of service

instances through which the user request should be routed

is: (inventoryaccountshippingstore). From the

design perspective, following communication options are

available for the ASPs in their micro-service setup.

a. Point to point: This is the simplest approach in which

each service instance directly communicates with

another using the APIs such as REST. The user directly

communicates with the first service instance as shown

in Fig. 7. As the number of functionalities and instances

of each sub-service increase, the performance of

systems based on point-to-point communication

degrades. In addition, it gets unmanageable with a large

number of service instances.

Fig. 7. Point-to-point micro-service communication.

b. Communication through the API gateway: In this

option, an application program interface gateway (API-

GW) is installed in-between the end-users and the

micro-service instances, as shown in Fig. 8. API-GW

has a well-known port-IP combination, to which, clients

send the requests and API-GW forwards the requests to

the appropriate service instance. The decision is taken

based on parameters such as possible delay, load

balancing, and others. Service instances do not have to

bother with the communication among each other, and

they just forward their replies to the gateways. This is

more scalable as compared to the previous option.

However, a single gateway may become a single point

of failure. This disadvantage can be easily eliminated by

having multiple instances of such gateways for load

balancing and redundancy (Fig. 8).

Fig. 8. Communication through API-gateway.

c. Message Broker Style: This is an asynchronous mode of

communication. A given micro-service can be a message

producer and can asynchronously send messages to a queue.

On the contrary, the consuming micro-service takes

messages from the queue. Such style of communication

decouples message producers from message consumers and

the intermediate message broker buffers messages until the

consumer is able to consume or process them. Producer

micro-services are completely unaware of the consumer

micro-services, hence, are said to be in asynchronous

communication [26, 27, 42]. Micro-service communication

using message broker style is shown in Fig. 9.

Fig. 9. Message-Broker Style Communication option.

In the next section, we discuss one particular and important

problem in the context of micro-services, that is, scheduling of

micro-services. This is an important problem for optimal

placement of service chains. Optimal scheduling is necessary

to satisfy the service level agreements (SLAs) and QoS to end-

users (such as minimum latencies) as well as minimum

expenses to the service providers while deploying the instances

of micro-services over the available resources. As pointed out

earlier, though the problem of placement of virtual machines is

studied quite extensively in the literature, scheduling of micro-

services along with relevant micro-service options are severely

under-researched.

IV. Micro-services Scheduling Problem

In this section, we discuss the micro-service scheduling

problem in the context of constitution and placement of SFCs.

The problem generally comprises three sub-problems: (1)

selecting types and numbers of the service instances to be

scheduled (2) selecting physical machines (PMs) or virtual

machines (VMs) on which the services should be scheduled

and (3) deciding the time slot for which a particular service

instance needs to be executed. Common heuristics used in the

state-of-art systems for these tasks are “greedy with bias” [8,

19, 35]. The bias is towards some factor such as: (1) select a

service with earliest finish time or (2) select service with the

longest execution time. Similarly, the bias while selecting

VMs/PMs are: (1) select most-loaded machine or (2) select

least-loaded machine [11, 16]. We start our discussion with a

particular use case. We consider an ASP such as Facebook

(FB) and take up a hypothetical example of the services

offered by FB to explain the problem under consideration. It is

important to note that the scope of the problem under

consideration is not only limited to the application services,

but is equally important for the telecommunication services,

multimedia services, and network services as well [7, 8]. For

example, the network-slicing problem for the network service

providers [13, 49].

As shown in Fig. 10, different groups of users from

various user-bases may send different types of web requests to

FB webserver(s). For example, some users may be interested

in signing up for the service and others may log in to check

their messages or posts on the wall or scan through their friend

requests. The sign-up requests, after passing through the

firewall, are passed to a set of services, which handle user

registration logic (in this case firewall  f1  f2  f3  f4 f5

 database). However, login requests may have to be passed

through deep packet inspection (DPI) in addition to the

firewall to distinguish among user demands (such as wall-post,

photo upload or online FB integrated games). A complete

service chain may comprise of a combination of IT and

telecommunication services. This example is just for an

illustration purpose of the service flows, and it may be

different in actual FB implementation of the services. The

important point to be noted here is the dynamic formation of

complex and hybrid service chains, which comprise a different

set of micro-services implemented at the application layer.

Some of the long-lived services in the process such as the

firewall, the deep packet inspection (DPI) and the database

(DB) may stay for longer durations compared to other short-

lived services such as function specific micro-services.

Whereas placement would be enough for such long-lived

services, the short-lived micro-services needs to be scheduled

for efficient service chains [49].

Fig. 10. SFCs for different services offered by an ASP (such as FB).

In this example, if we consider some specific

functionality, such as user registration (sign-up), wall-post on

FB or other integrated game applications, a specific set of

service instances need to be executed. Such sets of service

instances may be switched on/off as user demands vary,

especially at the micro-clouds, since the capacities are limited.

Scheduling these service instances over the available resources

is an important problem. In this work, we have considered four

SFCs comprising twenty micro-services in total. The SFC

shapes and graphs are shown in the Fig. 11. Note that the

topologies of the SFCs also indicate their execution order. For

example, in SFC 1, service f2 has to be executed after f1. This

may be because of the business logic dependence or some

mandatory network traffic flow demand. For example, web-

service logic handling service has to be executed before the

service handling databases; or firewall must be executed before

the business logic, etc.

However, f4 and f5 may be executed in parallel after f3,

since they are independent of each other. Similarly, in SFC 2,

f7 and f8 may be executed at the same time after f6. However, f9

has to be executed only after both f7 and f8 have finished their

execution. This mandatory ordered flow of services in SFCs

makes scheduling a complex problem. For the sake of

simplicity, we assume that the VFs are visited in the numerical

order. There may exist different service flows following

different chains. However, the numbers for the VFs are in

numerical order. For example, different chains consisting of

different VFs may exist, such as (1,2,3,4), (1,2,3,5), (6,7,9,10),

(15, 17, 20) as shown in Fig. 11.

Fig. 11. Four SFCs with 20 virtual functions (VFs) used for

evaluation.

Let us now consider the scheduling problem of micro-

service by considering three SFCs from the example above

displayed on the left of Fig. 12. On the right-hand side, we

show the Gantt chart for the scheduling of the micro-services

over available resources, using the virtual machines (VM1 to

VM5), deployed across three clouds C1, C2, and C3. Vertical

lines indicate the time slots and each service needs different

time to finish the execution. We assume that three user

requests for these three SFCs arrive at the same time. The

widths of the micro-services indicate the total time needed to

execute the services (longer services mean longer time for

execution). A possible scheduling to optimize the total time

and the resources required for the three SFCs on the available

resources is shown in Fig. 12.

Fig. 12. Gantt chart for optimal scheduling.

We observe that, with optimal scheduling, all the executions

finish before time-slot t10 keeping VM5 free and ready to serve

another incoming request. We argue that a sophisticated

heuristic is needed to solve the large-scale micro-service

scheduling problem within acceptable time limits. In the next

section, we propose our novel affinity-based fair weighted

scheduling (FWS) scheme and explain the experimental setup.

We implement all the four combinations of SFCs along with

our proposed FWS approach. Our proposed novel heuristic

performs scheduling of micro-services on multiple VMs/PMs

spread across multiple clouds. We consider different user-level

service level agreements (SLAs), such as traffic-affinity among

services [8], user delays, and cost constraints. In addition, we

consider network parameters such as link loads and network

traffic. We aim to reduce the overall turnaround time for the

service and reduce the total inter-VM traffic generated.

V. Heuristics and Experimental Setup

In this section, we propose a novel affinity-based fair weighted

scheme (FWS) for the scheduling problem under

consideration. The heuristic can be divided into two distinct

parts, that is, (1) selection of next service instance to be

scheduled and (2) selection of next machine (VM or PM) on

which the service instance should be scheduled. Heuristic

starts at the time t = t0. User requests arrive dynamically with

inter-arrival time exponentially distributed, that is, the arrival

process is Poisson [16, 23]. Let U be the set of users, waiting

for the service or being served at any time t. Initially, we

prepare the graphs for each SFC for each user u in U. It is to be

noted that the graph may have disjoint sets of sub-graphs.

A sample inline service graph is shown in Fig. 13. Solid,

dotted and dashed lines highlight three possible service chains

(there may be several other SFCs as well). Also, the users may

demand a single functionality, such as F9 shown in the figure.

Again, these graphs can be of any shape and size, depending

on the service provided by a specific ASP and the types of

end-user demands. We have used various resource

combinations (from Amazon EC2 [22]) mentioned in Table II

to simplify configurations so that resource requirements can be

easily mapped to the nearest available configuration.

Depending on the user resource demands, a particular VM is

chosen from Table II such that the requirements are the closest

match. Initially, we assign labels to the services using

Coffman-Graham algorithm [9].

Fig. 13. An inline graph for services forming different SFCs.

It ensures that the service instance that needs to be

executed first for the particular SFC (starting service) gets a

priority as per the arrival time. The service instance with the

highest value of the label is scheduled first. Further, we assign

weight w to the services, such that:

w α (number of dependent services in that chain) and

w α (time spent by the services in the waiting queue).

If there are ties between two services for scheduling (that is,

services having the same labels), the service with higher

weight is selected. This step ensures fair scheduling as it

makes sure that the longer SFCs and the SFCs, which have

waited longer in the queue get a fair chance for their

scheduling.

Table II. Resource configuration taken from Amazon EC2.

While selecting the VMs/PMs for service deployment, the

affinity between services is taken into consideration. Two

services belonging to the same instance of an SFC are

considered to have higher affinity, and we try to place them on

the same machine. This ensures minimum delays and less

inter-machine traffic overhead. This step ensures that the

services for the same SFC are scheduled on the same machine,

if possible, to minimize the total traffic generated. Otherwise,

it tries to schedule the service on the machine with which inter-

machine traffic will be minimized, and all capacity constraints

are satisfied. We may combine two or more services and

deploy them on a single machine as well, provided a machine

of that capacity is available. Availability of the machines

depends on the cloud capacity. If a service instance is not

serving any user demands, it is buffered in the cloud. In the

buffered stage, the service uses fewer resources (such as

storage only to save the state). However, it can be brought up

quickly whenever relevant user demand arrives, saving

resources and time [16]. For simplicity, we assume clouds

have infinite buffering capacity. The steps for FWS algorithm

are given in detail in Table III.

Table III. FWS algorithm for micro-service scheduling [49].

1. Let {1, 2, 3, 4, …, N} be the set of micro-services to be

scheduled on M machines. Let {T1, T2, T3, …, Tn} be

their finish times.

2. If Ti < Tj then MS j is said to be immediate successor

of task i.

3. Let S(i) be the set of all immediate successors of MS i

4. Let Li be the label assigned to MS i.

5. Choose MS i from the arrived request s.t. S(i) = 0. Let

Li be 1.

6. For l = 2 to N

7. Let C be the set of unlabeled MS s.t. there is no

unlabeled successor.

8. Let s be the MS in C s.t. Ts < Ts* for all other MS

s* in C

9. Let Ls = l

10. Once labels are assigned, we assign weights {w1, w2,

w3,…, wn} to the services, s.t.:

 wi  (number of dependent services in that chain) and

 wi  (time spent by the services in the waiting queue).

11. Foreach service i

12. if li = li+1

13. select i for scheduling if wi > wi+1

14. else select i+1

15. Select the machine from the sorted list as per the

remaining capacity for deployment.

We consider a 20-node topology out of which, 16 are the

micro-clouds deployed at the edges such as cellular base

stations, closer to the end users and four are core public clouds,

with larger capacities, as shown in Fig. 14. Computation

and/or data intensive services which need more processing

and/or storage capacities and which tend to run for longer

times, such as firewall, database services, are generally

deployed at core clouds. We assume that each service instance

produces data in the range of 5 kB to 20 kB. Also, the number

of user requests each micro-service instance can handle at

average load is selected from a range of 20 to 100 requests/sec.

Time needed for execution of each service is chosen from the

range of 10 to 100 milliseconds (ms) [18].

Fig. 14. 20-node topology with 16 micro-clouds and four core clouds.

All the values are selected randomly from the given ranges. In

addition, we assign each user request with some delays and

cost constraints it may tolerate. We also make sure these

constraints are satisfied while scheduling the micro-services on

the clouds. In the next section, we compare the results of

proposed FWS solution with four variants of standard biased

Name API Name Memory Cores
Max
Bandwidth On Demand cost

T2 Small t2.small 2.0 GB 1 cores 25 MB/s $0.034 hourly

T2 Medium t2.medium 4.0 GB 2 cores 25 MB/s $0.068 hourly

T2 Large t2.large 8.0 GB 2 cores 25 MB/s $0.136 hourly

M4 Large m4.large 8.0 GB 2 cores 56.25 MB/s $0.140 hourly

greedy scheduling strategy, which are common in the literature

and observe significant improvements.

VI. Results and Analysis

We now present the results obtained through the

experimental setup. In addition to our FWS approach, we have

implemented four additional algorithms based on the greedy

biased approach for comparison. Service labeling step is

common for all the heuristics. Table IV displays the basic steps

for the following strategies:

1. Least-full First with First Finish (LFFF)

2. Most-full First with First Finish (MFFF)

3. Least-full First with Decreasing Time (LFDT)

4. Most-full First with Decreasing Time (MFDT)

Table IV. The selection criterion for greedy biased heuristics.

We execute the algorithms for a certain number of times,

and then we take an average. Graphs in Fig. 15 show the

comparison of the four approaches mentioned above and our

FWS approach in terms of the total inter-VM traffic generated.

FWS approach (thick yellow line) performs the best with the

least inter-VM traffic. For example, with 3000 user demands,

greedy algorithms produce more than 20 MB of data, whereas

FWS only produces less than 10 MB data, which is an

improvement of 50%.

Fig. 15. Total traffic generated (in KB).

Fig. 16. Total turnaround time (in milliseconds).

Similarly, Fig. 16 shows the average turnaround time for

each user where FWS again performs the best. For example,

with 4000 user demands, FWS results in a turnaround time of

less than 220 ms, whereas the other algorithms need around

330 ms We also present bar charts for above results, that is, for

total traffic generated and average turnaround time in Fig. 17

and Fig. 18 respectively.

However, the average turnaround time alone is not

sufficient to measure the performance, especially in the context

of the time-sensitive applications. Most of the time, if the user

demands are not satisfied within a given time constraint, it is

as bad as service denied. Hence, we also find out the

percentage of user demands which got satisfied in the given

time constraints (Fig. 19). We observe that a significantly

higher percentage of the user demands get satisfied with the

FWS approach. The total percentage varies from 100% to 96%

as user demands vary from 100 to 5000. On the contrary, the

percentage drops to 70% for LFFF, 62% for LFDT & MFFF

and 74% for MFDT.

Fig. 17. Bar chart for total traffic generated (in KB).

Fig. 18. Bar chart for total turnaround time (in milliseconds).

We have also analyzed the effect of traffic loads on

average turnaround time or average time to schedule all the

services. We observe exponential growth in the total

turnaround delays as traffic loads in the network grow. We

generated dummy traffic to obtain different average traffic

loads. The links were modeled as M/D/1 queues, and by the

standard formula, we calculate the delays in the links as given

in Equation (1) below [23]. We note that is the total delay

on the link (i, j). is the arrival rate of packets and is the

processing rate of the same link. =

 ×

 (1)

Fig. 19. Percentage of user demands satisfied.

In Fig. 20 we observe that even at 90% traffic load, the total

delays, with the proposed FWS scheme remain within the

range of 250 ms, which is within acceptable limits for the

contemporary real-time applications [24]. For other schemes,

however, it varies from 400 to more than 600 ms. In Fig. 21,

we plot the graphs for the total costs of the resources needed to

satisfy all the given demands using all the approaches. The

cost has been calculated for an hour to host the required

services for all the users.

We assume the Amazon pricing model as shown in Table

II to calculate the costs. We observe that the proposed affinity-

based FWS approach performs better than the greedy

approaches in terms of the total cost as well. The cost

difference goes on increasing with increase in the total number

of users. This may be attributed to the fact that, in the affinity-

based FWS approach, we try to accommodate the VMs,

hosting micro-services with affinity, on a single machine with

the closest match for the required capacities. This reduces the

required number of the resources and eventually the cost. From

the results, we observe that the proposed FWS scheme

outperforms the contemporary greedy approaches in terms of

the total traffic overhead, total turnaround time, the total

number of the services satisfied as well as the total deployment

cost.

Fig. 20. Average turnaround time.

Fig. 21. Cost comparison (FWS vs. Greedy approaches).

VII. Concluding Remarks and Future Work

In this paper, we discuss the micro-services and address

important problems such as deployment and discovery of

micro-services as well as communication among the different

instances of the micro-services to form end-to-end service

chains. In addition, we discuss the problem of scheduling

micro-services. We point out that this is an important problem

to be addressed for optimal service chains and point out the

gap between the work done for virtual machine placement

problem and micro-service scheduling problem. In addition,

we point out that link loads and network delays while

minimizing the total turnaround time and total traffic generated

needs to be considered.

In this work, we aim to bridge the gap between the

academia and the industry to help the service providers to

deploy the micro-services more efficiently. In addition, we

propose a novel FWS approach for micro-service scheduling in

the multi-cloud scenario to form optimal SFCs. We take into

account different delay and cost related SLAs. Also, we

consider link loads and network delays while minimizing the

total turnaround time and total traffic generated. The proposed

approach demonstrates significant improvement compared to

standard biased greedy approaches. However, there is still a

wide area open for the research in developing novel scheduling

algorithms considering the different delay and cost related

SLAs. Advancements in the field of machine learning may be

applied, such as proactive scheduling. Micro-service

architecture brings in more challenges, such as distributed data

management, failure recovery, security, monitoring, network

latency, message formats, load balancing, fault tolerance and

others, which need to be investigated further.

Acknowledgment
This publication was made possible by the NPRP award

[NPRP 8-634-1-131] from the Qatar National Research Fund

(a member of The Qatar Foundation). The statements made

herein are solely the responsibility of the author[s].

References
[1] Sørensen LT, Skouby KE, Dietterle D, Jhunjhunwala A, Fu X, Wang X.

User scenarios 2020: a worldwide wireless future. Wireless world

research forum (Wwrf) Outlook July 2009;(4).

Online (accessed on 12/14/2017):

http://www.wwrf.ch/files/wwrf/content/files/publications/outlook/Outloo

k4.pdf

[2] Miorandi D, Sicari S, De Pellegrini F, Chlamtac I. Internet of things:
Vision, applications and research challenges. Ad Hoc Networks

2012;10(7):1497-1516.

[3] Zhang Q, Cheng L, Boutaba R. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications 2010;

1(1):7-18.

[4] Bhamare D, Jain R, Samaka M, Erbad A. A survey on service function
chaining. Journal of Network and Computer Applications 2016;75:138-

155.

[5] Indrasiri K. Microservices in Practice: From Architecture to Deployment.
Online (accessed on 12/14/2017):

https://dzone.com/articles/microservices-in-practice-1

[6] Namiot D, Sneps-Sneppe M. On micro-services architecture.

International Journal of Open Information Technologies 2014;2(9):24-

27.

[7] Kecskemeti G, Marosi AC, Kertesz A. The ENTICE approach to
decompose monolithic services into microservices. IEEE International

Conference on High-Performance Computing & Simulation (HPCS) July
2016;591-596.

Halpern J, Pignataro C. Service Function Chaining (SFC) Architecture.

RFC 7665 October 2015. Online (accessed on 12/14/2017):
https://tools.ietf.org/html/rfc7665

[8] Mouat A. Using Docker: Developing and Deploying Software with
Containers. O'Reilly Media Inc.; 2015.

[9] Mehraghdam S, Keller M, Karl H. Specifying and placing chains of
virtual network functions. IEEE 3rd International Conference on Cloud

Networking (CloudNet) 2014;7-13.

[10] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem. European Journal of

Operational Research 2007;177(3):2033-2049.

[11] Wolff E. Microservices: Flexible Software Architectures. ISBN:978-
0134602417.

[12] Open Container Initiative Online (accessed on 12/14/2017):
https://www.opencontainers.org/.

[13] Newman S. Building Microservices. O'Reilly Media Inc.; 2015.

[14] Yoshida M, Shen W, Kawabata T, Minato K, Imajuku W. MORSA: A
multi-objective resource scheduling algorithm for NFV infrastructure.

IEEE 16th Asia-Pacific Network Operations and Management
Symposium (APNOMS) 2014;1-6.

[15] Mijumbi R, Serrat J, Gorricho JL, Bouten N, De Turck F, Davy S.
Design and evaluation of algorithms for mapping and scheduling of

virtual network functions. 1st IEEE Conference on Network

Softwarization (NetSoft), April 2015;1-9.

[16] Riera JF, Hesselbach X, Escalona E, Garcia-Espin JA, Grasa E. On the
complex scheduling formulation of virtual network functions over optical

networks. IEEE 16th International Conference on Transparent Optical

Networks (ICTON) July 2014;1-5.

[17] Lopez-Pires F, Baran B. Virtual machine placement literature review.
Polytechnic School National University of Asuncion, Tech. Rep. 2015.

[18] Lucrezia F, Marchetto G, Risso F, Vercellone V. Introducing network-
aware scheduling capabilities in OpenStack. IEEE 1st Intnl Conference

on Network Softwarization (NetSoft) April 2015;1-5.

[19] Xia M, Shirazipour M, Zhang Y, Green H, Takacs A. Network function
placement for NFV chaining in packet/optical datacenters. Journal of
Lightwave Technology 2015;33(8):1565-1570.

[20] Lakkakorpi J, Sayenko A, Moilanen J. Comparison of different
scheduling algorithms for WiMAX base station: Deficit round-robin vs.

proportional fair vs. weighted deficit round-robin. IEEE Wireless

Communications and Networking Conference (WCNC) March
2008;1991-1996.

[21] EC2Instances.info. Easy Amazon EC2 Instance Comparison. Online
(accessed on 12/14/2017): http://www.ec2instances.info/

[22] Jain R. The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling. New

York: Wiley Interscience; April 1991.

[23] ITU-T Recommendation Y.1541. Network performance objectives for
IP-based services 2011. Online (accessed on 12/14/2017):

https://www.itu.int/rec/T-REC-Y.1541/en

[24] Riera JF, Escalona E, Batalle J, Grasa E, Garcia-Espin JA. Virtual
network function scheduling: Concept and challenges. IEEE

International Conference on Smart Communications in Network
Technologies (SaCoNeT) 2014;1-5.

[25] Namiot D, Sneps-Sneppe M. On micro-services architecture.
International Journal of Open Information Technologies 2014; 2.9.

[26] Kratzke N. About microservices, containers and their underestimated
impact on network performance. Proceedings of CLOUD

COMPUTING 2015.

[27] Thönes J. Microservices. IEEE Software 2015;32.1:116-116.

[28] Garderen V. Archivematica: Using micro-services and open-source

software to deliver a comprehensive digital curation solution.
Proceedings of the 7th International Conference on Preservation of

Digital Objects Vienna, Austria, 2010.

[29] Balalaie A, Heydarnoori A, Jamshid P. Migrating to cloud-native
architectures using microservices: an experience report. Springer
European Conference on Service-Oriented and Cloud Computing

September 2015;201-215.

[30] Viennot N, Lécuyer M, Bell J, Geambasu R, Nieh J. Synapse: a
microservices architecture for heterogeneous-database web applications.

ACM Proceedings of the Tenth European Conference on Computer
Systems April 2015;21.

[31] Balalaie A, Heydarnoori A, Jamshidi P. Microservices Architecture
Enables DevOps: Migration to a Cloud-Native Architecture. IEEE

Software 2016;42-52.

[32] Stubbs J. Moreira W, Dooley R. Distributed systems of microservices

using Docker and Serfnode. IEEE 7th International Workshop on
Science Gateways (IWSG) 2015.

[33] Davies M, Gil G, Maknavicius L, Narganes M, Urdiales D, Zhdanova
AV. m: Ciudad: an infrastructure for creation and sharing of end user

generated microservices. In Proceedings of the Poster and Demonstration

Paper Track of the 1st Future Internet Symposium (FIS), CEUR

Workshop Proceedings September 2008;399:24-26.

[34] Kwok Y, Ahmad I. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Computing Surveys (CSUR)

1999;406-471.

[35] Mohamed M, Yangui S, Moalla S, Tata S. Web service micro-container
for service-based applications in cloud environments. IEEE 20th IEEE

International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE) June 2011;61-66.

[36] Online (accessed on 12/14/2017): http://www.ibm.com/cloud-
computing/products/hybrid-integration/enterprise-service-bus-esb/

[37] Online (accessed on 12/14/2017):
https://www.osgi.org/developer/architecture/

[38] Verborgh R, Harth A, Maleshkova M, Stadtmüller S, Steiner T,
Taheriyan M, Van de Walle R. Survey of semantic description of REST
APIs. In REST: Advanced Research Topics and Practical Applications

Springer New York 2014;69-89.

[39] Online (accessed on 12/14/2017):
https://en.wikipedia.org/wiki/Representational_state_transfer

[40] Anderson C. Docker. IEEE Software 2015;32.3.

[41] Online (accessed on 12/14/2017):
https://www.nginx.com/blog/introduction-to-

microservices/?utm_source=building-microservices-using-an-api-
gateway&utm_medium=blog

[42] Online (accessed on 12/14/2017):
https://aws.amazon.com/elasticloadbalancing/

[43] Bhamare D, Jain R, Samaka M, Vaszkun G, Erbad A. Multi-cloud
distribution of virtual functions and dynamic service deployment: Open

ADN perspective. IEEE International Conference on Cloud Engineering
(IC2E) March 2015;299-304).

[44] Montesi F, Weber J. Circuit Breakers, Discovery, and API Gateways in
Microservices. arXiv preprint arXiv:1609.05830.

[45] Gupta L, Samaka M, Jain R, Erbad A, Bhamare D, Metz C. COLAP: A
predictive framework for service function chain placement in a multi-

cloud environment. IEEE 7th Annual Computing and Communication
Workshop and Conference (CCWC) January 2017;1-9.

[46] Luizelli MC, Bays LR, Buriol LS, Barcellos MP, Gaspary LP. Piecing
together the NFV provisioning puzzle: Efficient placement and chaining

of virtual network functions. IFIP/IEEE International Symposium on
Integrated Network Management (IM) 2015;98-106.

[47] Bhamare D, Samaka M, Erbad A, Jain R, Gupta L, Chan HA. Optimal
virtual network function placement in multi-cloud service function

chaining architecture. Computer Communications 2017;102:1-16.

[48] Bhamare D, Samaka M, Erbad A, Jain R, Gupta L, Chan HA. Multi-
Objective Scheduling of Micro-Services for Optimal Service Function
Chains. IEEE International Conference on communications May 2017; 1-

6.

[49] Jahromi, N. T., Glitho, R. H., Larabi, A., Brunner, R. An NFV and
microservice based architecture for on-the-fly component provisioning in

content delivery networks. 15th IEEE conference in Consumer
Communications & Networking (CCNC) January 2018;1-7.

[50] Luong, D. H., Thieu, H. T., Outtagarts, A., Mongazon-Cazavet, B.
Telecom microservices orchestration. IEEE Conference on Network

Softwarization (NetSoft) 2017 July 2017;1-2.

[51] Soenen, T., Tavernier, W., Colle, D., Pickavet, M. Optimising

microservice-based reliable NFV management & orchestration
architectures. IEEE 9th International Workshop on Resilient Networks

Design and Modeling (RNDM) September 2017;1-7.

[52] Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L., Villari, M. Open
issues in scheduling microservices in the cloud. IEEE Cloud Computing,
3(5), 2016;81-88.

[53] García-Pérez, C. A., Merino, P. Experimental evaluation of fog
computing techniques to reduce latency in LTE networks. Transactions

on Emerging Telecommunications Technologies 2017.

[54] Farris I, Taleb T, Flinck H, Iera A. Providing ultra-short latency to user-
centric 5G applications at the mobile network edge. Trans Emerging Tel
Tech. 2017;e3169.

[55] Yaseen Q, Albalas F, Jararwah Y, Al-Ayyoub M. Leveraging fog

computing and software defined systems for selective forwarding attacks

detection in mobile wireless sensor networks. Trans Emerging Tel Tech.

2017;e3183.

[56] de Brito MS, Hoque S, Steinke R, Willner A, Magedanz T. Application
of the Fog computing paradigm to Smart Factories and cyber-physical

systems. Trans Emerging Tel Tech. 2017;e3184.

