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Abstract

Proteins interact with small molecules through specific molecular recognition, which is central to 

essential biological functions in living systems. Therefore, understanding such interactions is 

crucial for basic sciences and drug discovery. Here, we present Stalis (Structure template-based ab 

initio ligand design solution), a knowledge-based approach that uses structure templates from the 

PDB libraries of whole ligands and their fragments and generates a set of molecules (virtual 

ligands) whose structures represent the pocket shape and chemical features of a given target 

binding site. Our benchmark performance evaluation shows that ligand structure-based virtual 

screening using virtual ligands from Stalis outperforms a receptor structure-based virtual screening 

using AutoDock Vina, demonstrating reliable overall screening performance applicable to 

computational high-throughput screening. However, virtual ligands from Stalis are worse in 

recognizing active compounds at the small fraction of a rank-ordered list of screened library 

compounds than crystal ligands, due to the low-resolution of the virtual ligand structures. In 

conclusion, Stalis can facilitate drug discovery research by designing virtual ligands that can be 

used for fast ligand structure-based virtual screening. Moreover, Stalis provides actual three-

dimensional ligand structures that likely bind to a target protein, enabling to gain structural insight 

into potential ligands. Stalis can be an efficient computational platform for high-throughput ligand 

design for fundamental biological study and drug discovery research at the proteomic level.
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Abstract

A better understanding of protein-ligand interactions in the context of their three-dimensional 

structure is essential for fundamental biological study and structure-based drug discovery. We 

present Stalis, a knowledge-based computational method that uses structure templates from the 

Protein Data Bank to design small molecule ligands for a given target protein. This method 

provides actual protein-bound ligand structures. Our benchmark performance evaluation also 

demonstrates the reliable quality of the computationally designed ligands for fast ligand structure-

based virtual high-throughput screening.

Keywords

protein-ligand interaction; template-based approach; computer-aided drug discovery; virtual 
screening; fragment-based drug design

Introduction

One of the most remarkable features of proteins is their ability of specific, reversible binding 

to other molecules (i.e., other proteins, small molecules, carbohydrates, lipids, or nucleic 

acids). Of greatest importance is the fact that these molecular recognitions are associated 

with a vast array of essential biological functions in living systems. Many proteins interact 

with small molecule ligands, such as cofactors, metabolites, neurotransmitters, and 

hormones. Therefore, accurate characterization of these endogenous ligands that bind to 

specific proteins is crucial to better understand protein functions. For example, metabolites 

serve as signals to control a variety of cellular processes mainly to maintain cellular 

homeostasis through either orthosteric or allosteric interactions.[1–3] In addition to such 

fundamental biology studies, interactions between proteins and small molecules are a vital 

consideration in the development of new drugs.

Researchers have been trying to probe ligands that specifically bind to a target protein. 

Global mass spectrometry approaches are used to identify endogenous ligand(s) to a given 

protein from a large pool of metabolites.[4] In this approach, an immobilized protein of 
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interest is incubated with a metabolite mixture and a bound-metabolite to the target protein 

is analyzed using a liquid chromatography-mass spectrometry (LC-MS). In pharmaceutical 

industry, high-throughput screening (HTS) is a routine approach to the identification of 

small molecules that selectively bind to a target protein.[5] An HTS campaign screens 

considerable numbers of compounds (usually up to 106 molecules), but these compound 

libraries still have limitation of fully covering possible chemical space. To tackle this 

problem, fragment-based drug design (FBDD) is used to find small molecules that bind to 

target protein as a complementary and contrasting approach to HTS.[6] In this approach, a 

smaller library consisting of fragment molecules (<300 Da) is screened in vitro using an 

array of biophysical techniques and then the validated fragment hits are synthetically 

elaborated into larger molecules for better affinity. Once a hit molecule is obtained from 

diverse experimental approaches including LC-MS, HTS, and FBDD, people seek to solve 

the three-dimensional (3D) structure of the protein-ligand complex by biophysical 

techniques such as X-ray crystallography and nuclear magnetic resonance (NMR) to 

determine a bioactive conformation of the ligand and the detailed atomic interactions 

between the ligand and protein. Although these experimental approaches provide valuable 

information to identify protein-small molecule interactions, they require significant 

investment in equipment and are often time-consuming. In recent years, moreover, the 

productivity decline in pharmaceutical research and development, despite of huge advances 

in sciences and technologies, is urging to develop alternative approaches to improve 

efficiency in drug discovery.[7]

In the efforts to solve this problem, computational methods have emerged to predict 

endogenous ligands and to aid design and optimize new molecules to modulate protein 

functions. Given the 3D protein structure of a target protein, molecular docking is a common 

method of choice to predict small molecules (from compound libraries) that likely bind to 

the protein.[8] The docking computationally fits molecules by changing their conformations 

and positions and evaluate their binding affinities using a given scoring function. More than 

60 different docking tools are currently available for both academic and commercial use,[9] 

such as GOLD,[10] ICM,[11] Surflex,[12] Glide,[13] AutoDock Vina,[14] and DOCK6.[15] 

Although molecular docking is a critical component in current drug discovery campaigns, 

the inaccuracy in scoring functions and the sensitivity of docking results to marginal 

conformational changes in ligand binding sites significantly reduce the chances of finding 

correct ligands.[16,17] Furthermore, performing docking calculations with vast number of 

compounds is still computationally expensive.

In silico FBDD tools serve as a complementary method to the molecular docking. While 

docking relies on pre-existing compounds, this approach generate molecules by identifying 

building blocks (fragments) within a target binding site and linking them (i.e., ab initio 

approach).[18] The applicability of this approach, however, is limited mainly by low 

efficiency in the sampling of the chemical space and poor accuracy of scoring functions. 

With a rapid increase in the number of high-resolution protein structures in the Protein Data 

Bank (PDB, http://www.rcsb.org),[19] structural information from known protein-ligand 

structures can be used to design small molecule ligands. Our previous study indicates that 

similar binding sites occur in unrelated protein structures, making it feasible to predict 

ligand structures from protein-ligand complex structures in the PDB.[20–22] As an example 
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of this knowledge-based approach, a commercial tool, MED-Portion/MED-SuMo/MED-

Hybridise detects MED-Portions, protein-fragment binding sites that are derived from the 

PDB protein-ligand complex structures by MED-SuMo and generate a pool of MED-Portion 

hybrids by MED-Hybridise.[23] PoLi is a computational pipeline for virtual screening.[24] 

PoLi first predicts the ligand-binding pocket in a target protein and copies template ligands 

based on binding-pocket alignment by APoc. Up to the top 200 copied template ligands are 

subject to virtual screening against a compound library based on two-dimensional (2D) and 

3D ligand similarity metrics.

In this study, we present a knowledge-based approach, Stalis (Structure template-based ab 

initio ligand design solution). Stalis is a template-based computational method to design 

small molecule ligands for a given target binding site. In our previous study, we have 

developed an efficient local structure alignment tool, G-LoSA (Graph-based Local Structure 

Alignment; https://compbio.lehigh.edu/GLoSA).[22] A recent comprehensive benchmark 

performance evaluation study reports that G-LoSA offers a fairly robust overall performance 

over other widely used local structure alignment tools.[25] Stalis is developed to design 

ligands by harnessing structure templates identified by G-LoSA from the PDB structure 

libraries of small molecule ligands and their chemical fragments. We first describe the 

algorithm of Stalis. Comprehensive benchmark performance evaluation tests are then 

presented to validate the applicability of Stalis to ligand structure-based virtual screening. 

Representative examples of the ligands designed by Stalis are illustrated, followed by 

discussion on its potential for biological study and structure-based drug design.

Methods

Improvements of G-LoSA

G-LoSA is a computational tool to align protein local structures in a sequence order 

independent way and to provide a GA-score (G-LoSA Alignment score), a size-independent 

quantity of structural similarity for a given structure pair.[22] G-LoSA generates possible 

structure alignments between two structures by iterative maximum clique search and 

fragment superposition based on the geometry of Cα atoms (i.e., single-point representation 

of each residue). The GA-score is a scoring function to quantify structural similarity based 

on the chemical feature points (CFPs) of each amino acid (i.e., multiple CFPs for each 

residue). GA-score is defined as

GA−score = Max 1
NT i

Nali qi

1
di

d0 NT

2 (1)

where ‘Max’ denotes that the GA-score is the maximum of all possible alignments, NT is the 

smaller number of CFPs between two local structures, and Nali is the number of aligned 

CFPs. di is the distance between the CFPs in the ith pair. d0(NT) is a size-dependent scaling 

factor to normalize the aligned distances. qi is defined based on the chemical feature 

similarity of the ith CFP pair.
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This hybrid approach (i.e., alignment by Cα atoms and scoring by CFPs) has been designed 

to achieve a reliable measurement of structural similarity with high computing efficiency. 

However, this approach fails to generate good alignments between two structures that do not 

have any significant conservation of their Cα atoms, but do have highly conserved side chain 

CFPs. To tackle this problem, we have modified the iterative maximum clique search 

algorithm to generate additional initial alignments based on CFPs (CFP-based iterative 

maximum clique search). Although using CFPs is computational more expensive due to the 

larger number of representing points, the cost can be offset by the smaller size of ligand 

fragment binding site. A representative example is shown in Figure S1 to demonstrate the 

effect of the CFP-based iterative maximum clique search in improving the quality of local 

structure alignment by G-LoSA.

To validate the size-independency of GA-score by the updated G-LoSA, we generated 

18,270 random ligand binding site patches using the ligand-containing PDB structures (as of 

Feb. 2016, resolution ≤ 3 Å) and performed all-to-all G-LoSA alignments, showing that 

mean GA-scores are independent of the number of CFPs (Figure S2). The GA-score 

distribution modeled by the type I extreme value distribution indicates that a GA-score of 

0.52 is significant at P < 5 × 10−2 (Figure S3).

Generation of PDB ligand/binding-site structure library

We downloaded all PDB entries containing at least one protein and one ligand whose 

resolution is better or equal to 3.5 Å from the PDB.[19] DNA and RNA molecules were 

discarded, and ligand molecules in the PDB files were identified in the heteroatom section. 

Heteroatoms having an identical chain ID and sequence number were grouped into one 

heteroatom group. If a distance of any atom pair from different heteroatom groups was 1–2 

Å, the two heteroatom groups were merged into one group and identified as multipart 

ligands. Small molecular weight additives were removed by setting the minimum number of 

heavy atoms in a heteroatom group to 5. Metal ions and water molecules were saved as 

separate files. If any atom of a protein residue is within 4.5 Å of its cognate ligand, the 

residue is defined as the binding-site residue. Metal- and water-mediated interactions were 

defined by the cutoff distances of 3.0 Å and 3.2 Å from any ligand and protein atom, 

respectively. The protein residues involved in the metal- and water-mediated interactions 

were also added to the binding-site residues. Homologous binding-sites were removed by 

sequence identity ≥ 70% between the protein chains using BLAST clustering results (ftp://

resources.rcsb.org/sequence/clusters/). A binding site from a PDB structure with worse 

resolution was removed from a pair of homologous binding sites. If two binding sites are 

homologous and their ligands are not identical, both binding sites were kept in the structure 

library. A path-based fingerprint (FP2 option) using 1024-bit vector in Open Babel (version 

2.4)[26] was used to measure the structural similarity between ligands. There were 79,710 

ligand/binding-site structure pairs in this PDB structure library (as of July, 2018).

Generation of PDB ligand fragment/binding-site structure library using MolFrag

To construct a PDB structure library of ligand fragments and their binding sites, we have 

developed MolFrag to automatically dissect PDB ligands into chemical fragments and then 

identify their binding sites. Sequential steps for ligand fragmentation in MolFrag are 
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outlined in Figure S4. MolFrag first detects rings in a given PDB ligand using an exhaustive 

ring perception algorithm by Hanser et al, which is based on a progressive collapsing of the 

path graph.[27] Based on the ring structures identified by this algorithm, a PDB ligand is 

divided into rings, substituents, and linkers. A linker is a chemical group whose two ends are 

connected to rings. A substituent is a chemical group with only one end connected to a ring. 

Each ring, substituent, or linker is assigned as a fragment. Substituent fragments with < 3 

atoms are merged with their linked rings. Specific chemical groups (e.g., CO2, PO4, SO4) in 

a substituent or linker fragment (with > 5 atoms) that can favorably interact with receptor are 

separated from their fragment and assigned as new fragments. Chemical groups such as -

CO-, -CN-, -CS- in a linker with > 5 atoms are also assigned as separate fragments. In 

addition, an atom with the largest number of linkages is detected from a substituent or linker, 

and then the atom and its linked atoms are assigned as a separate fragment. This procedure is 

iterated until there is no atom with ≥ 2 linkages. Lastly, the continuity of atom linkages is 

checked in each fragment and a discontinuous fragment is separated at the broken points. A 

ligand with no ring structure is fragmentized as a whole using the same algorithm. 

Fragmentation of a PDB ligand by MolFrag is shown in Figure 1 as an example.

A workflow of generating a PDB binding-site library using the ligand fragments generated 

using MolFrag is shown in Figure 2. If a fragment has < 3 atoms, the fragment is merged 

with its smallest adjacent fragment. This process is iterated until there is no fragment with < 

3 atoms. Binding-site residues are identified for each ligand fragment by MolFrag using the 

cutoff distances If a ligand fragment has its binding site with < 5 residues, an adjacent ligand 

fragment with the smallest number of binding-site residues is identified, and the two ligand 

fragments and their binding sites are merged. This procedure is iterated until there is no 

ligand fragment binding site with < 5 residues. The procedure of binding-site identification 

for the ligand fragments by MolFrag in Figure 1 is illustrated in Figure 3.

SLIM-score

SLIM (Shape-based LIgand Matching with binding pocket) is a high-speed virtual screening 

method to generate receptor-ligand complex models and evaluate their relative binding 

affinity quantified by the SLIM-score.[17,28] The SLIM-score is a coarse-grained approach to 

approximately measure relative binding affinity by calculating shape and chemical feature 

complementarity between each library compound and the negative image of a binding 

pocket that is a set of virtual atoms representing the inner shape and chemical features of the 

binding pocket.

To generate the negative image of each target protein, a box centered by its cognate ligand 

with the size of 30 Å for X, Y, and Z was divided into a set of grid points using a grid 

spacing of 2 Å. To specifically extract the inner shape of a binding pocket, the grid points in 

the box were successively discarded by grid filtering criteria.[17] To generate the negative 

images of different sizes, we used five specific cutoff distances (4–12 Å by an increment of 

2 Å). Seven chemical features (H-bond donor, H-bond acceptor, cation, anion, ring, 

hydrophobe, and hydroxyl group) were incorporated on the surface of the negative image 

based on the chemical features of atoms consisting of the binding pocket.[28] Five chemical 

features (H-bond donor, H-bond acceptor, ring, hydrophobe, and hydroxyl group) were 
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assigned for each library compound (virtual ligand in this study). The SLIM-score between a 

compound i and a negative image is defined as the sum of their Z-transformed 3D shape 

similarity (Sshape) and chemical feature similarity (SCF) values:

SLIM‐scorei, = Si, Z
shape + Si, Z

CF
(2)

Sshape is given by a Tanimoto coefficient calculated by the individual volumes and volume 

overlap between a negative image and a compound, each of which is represented by a 

Gaussian description of molecular shape.[29] The volume overlap (VO) is defined as

VONC =
i N j C

pip jexp
αiα jri j

2

αi α j

π
αi + α j

3
2

(3)

where i and j are a grid point of a negative image (N) and an atom of a compound (C), 

respectively. p and α are the weight and exponent of a spherical Gaussian. rij is the distance 

between a grid point of a negative image (N) and an atom of a compound (C).

SCF is defined as

SCF =
i j

1
exp ri j

(4)

where rij is the distance between the assigned chemical features i (in a negative image) and j 
(in a compound). We calculated the chemical feature similarity only for pairs with distances 

≤ 3 Å, and only when their chemical features are identical, hydroxyl group (i) – H-bond 

donor/acceptor (j) and vice versa, cation (i) – H-bond donor (j), anion (i) – H-bond acceptor 

(j), and ring/hydrophobe (i) – ring/hydrophobe (j). Chemical feature assignments for library 

compounds and calculations of 3D shape and chemical feature similarity were performed by 

an in-house software written using Open Babel C++ library.[26]

Benchmark Performance Evaluation

Compound sets consisting of actives and decoys (inactive compounds) for 40 and 102 

protein targets were obtained from the Directory of Useful Decoys (DUD)[30] and its 

enhanced version (DUD-E),[31] respectively, to evaluate the high-throughput screening 

performance of crystal ligands, virtual ligands by Stalis, and a control docking tool, 

AutoDock Vina.[14] The binding-site residues of each target were extracted from the 

provided crystal structure for each target using a cutoff distance of 5.0 Å between any atoms 

of a protein residue and its cognate ligand (i.e., crystal ligand).

The DUD and DUD-E protein structures and compound sets were preprocessed using 

MGLTools (http://mgltools.scripps.edu, version 1.5) and Open Babel, respectively, for 

molecular docking using AutoDock Vina. Each docking box center was determined by the 

geometric center of the cognate ligand and the box size was set to 20 Å in X, Y, and Z.

For each target, pairwise 2D similarities between its crystal ligand (or a virtual ligand) and 

DUD/DUD-E (active and decoy) compounds were quantified by a Tanimoto coefficient 
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calculated based on a path-based fingerprint (FPT) generated by Open Babel.[32] Pairwise 

3D shape similarities between a crystal ligand (or a virtual ligand) in a target protein and an 

ensemble of (active and decoy) compound structures were calculated by ROCS (Rapid 

Overlay of Chemical Structures, version 3.2)[33]. An ensemble of up to 200 conformations 

of each compound was generated using the default parameters in the OMEGA program 

(version 2.5)[34]. We used the ImplicitMillsDean color force field to measure chemical 

complementarity between compounds. The 3D similarity is given by the sum of the shape 

Tanimoto and scaled color values ranging from 0 to 2. All experiments were performed with 

default parameter values in ROCS.

The performance of Stalis was evaluated using the area-under-curve (AUC), enrichment 

factor (EF), and hit rate (HR). The AUC value is an objective measure of the overall 

performance of a given virtual screening tool in discriminating active compounds from 

decoy compounds. We plotted receiver operating characteristic (ROC) curves from the 

prediction results and calculated the AUC values. An AUC value of 1.0 indicates that the 

virtual screening tool perfectly prioritizes active compounds (i.e., an ideal case), while a 

value of 0.5 implies random prediction. EF describes the success of a virtual screening 

method at ordering the library with the active compounds to be screened first. Very high EF 

indicates that only a small percentage of the library needs to be screened to find a large 

number of active molecules. HR is a normalized expression of EF. EF and HR in the top x% 

of the screened library are defined as

EFx% =
No . of activesx%/Nselected

x%

Nactives/Ntotal
(5)

HRx% =
EFactual

x%

EFideal
x% × 100 (6)

For the performance evaluation of virtual ligands by Stalis, we used top five virtual ligands 

in this study. To use the multiple virtual ligands for ligand structure-based virtual screening, 

we used the unsupervised data fusion technique, where a final score is a weighted sum of the 

average and maximum score of the five virtual ligands.

Scored = w v 1

Nv S Vv Dd
Nv

+ 1 − w max
v ∈ 1, …, Nv

S Vv, Dd
(7)

where Nv is the number of virtual ligands, S(V, D) is a virtual screening score between a 

virtual ligand and a database compound, and w is an empirical weight parameter (w = 0.2).
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Results

Development of Stalis

Stalis is an integrated method of StalisF and StalisW. StalisW uses ligand templates from a 

PDB library of whole (W) ligands and their binding sites. On the other hand, StalisF obtains 

the structure templates from a PDB library of ligand fragments (F) and their binding sites. 

Overall workflow of StalisW is schematically illustrated in Figure S5. (1) A set of binding 

sites with significant similarity (GA-score ≥ 0.6) to a target binding site is identified by G-

LoSA from the PDB ligand/binding site library. (2) The template ligands in the identified 

binding sites are mapped onto the target binding site upon the structure superposition of 

their binding site. (3) Structurally similar ligand templates are excluded to remove the 

redundancy using a positional overlap Tanimoto coefficient (TPO) with a cutoff of 0.7. TPO 

is defined by NOI/(Ni + Nj + NOI), where NOI, Ni, and Nj are the number of spatially 

overlapped identical atoms (only heavy atoms with distance ≤ 1.2 Å) between templates i 
and j, the total number of atoms in template i, and the total number of atoms in template j, 
respectively. Top 20 ligand templates are selected based on their GA-score from the non-

redundant set. If GA-score is ≥ 0.7, however, the templates are all selected regardless of the 

maximum template number. (4) Bad-contact atoms and non-interacting atom groups are 

removed from the template ligands. A bad-contact atom is defined by an atom overlap ratio 

with a cutoff of 0.5. The atom overlap ratio is defined by (Ri + Rj − dij)/(Ri + Rj), where i 
and j are atoms from a template ligand and a target protein, R is an atomic radius, and dij is a 

distance between atoms i and j. To identify non-interacting atom groups, each template 

ligand is dissected into fragments using MolFrag, and the fragments without any contacts 

from the target protein within 5.5 Å are removed from the template. (5) The trimmed 

templates are subject to druggability check by measuring number of atoms (the minimum 

number of atoms = 8 and the maximum number of atoms = 50) and number of rotatable 

bonds (the maximum number of rotatable bonds = 9).[35] Remaining templates are filtered 

again using a TPO cutoff of 0.5 to obtain more deserve non-redundant set. The top N 
templates, which is called “virtual ligands”, are selected from the set based on the GA-score.

Figure 4 schematically shows an overall workflow of StalisF. The workflow of StalisF is 

similar to that of StalisW, but has three major differences. (1) The first one is to use a PDB 

library of ligand fragments and their binding sites, instead of whole ligands and their binding 

sites. CFP-based iterative maximum clique search option is used for G-LoSA calculations. 

As in StalisW, top ligand fragment templates are selected based on their GA-scores from the 

non-redundant set. In StalisF, however, the maximum number of the top templates is set to 

100 based on the abundance of the available templates due to their small size. (2) The 

second difference is the addition of fragment assembly step to generate larger molecules by 

linking neighboring fragments. The top templates are clustered by their spatial proximity 

(cutoff distance of 5.0 Å). The clusters are sorted by the best GA-score among the elements 

in each cluster. StalisF generates all possible assemblies using ligand fragment templates 

from different clusters when the fragment pair has less than two bad contacts. If the distance 

between bad-contact atoms is less than 0.7 Å, an end-atom (with only single linkage) 

between the two atoms is removed from the template. If the two atoms are both end-atoms, 

the chemical complementarity (hydrophobic, H-bond acceptor, H-bond donor, or hydroxyl 
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group) to their nearest receptor atoms are evaluated, and any atom with worse 

complementarity is removed from the template. The nearest atom pair between the ligand 

fragment templates are then identified within a distance range of 1–2 Å to assemble the two 

fragments. The maximum number of linkages that each atom can have are examined to 

check if the two templates could be assembled by adding a bond between the atoms (see 

Figure S6 for atom-deletion and fragment-assembly procedures). A generated fragment 

assembly is used as a new template to be assembled with another template during this 

fragment assembly step. This step is iterated to generate the maximum number of 50,000 

fragment assemblies. (3) The last difference from StalisW is to use the SLIM-score[17,28] to 

rapidly prioritize more reliable fragment assemblies. All ligand fragment templates and their 

assemblies are sorted by their SLIM-score, following druggability check and filtering using 

a TPO cutoff of 0.5 to select top N virtual ligands. Stalis obtains top 20 virtual ligands 

separately from StalisW and StalisF. These virtual ligands are examined by the SLIM-score 

and then top N virtual ligands are finally chosen. All templates used in the top 20 virtual 

ligands by StalisF and StalisW for each DUD target are listed in Supporting Information List 

S1.

Benchmark performance validation

To evaluate the quality of virtual ligands generated by Stalis, we have carried out ligand 

structure-based virtual screening against 40 DUD and 102 DUD-E targets. The top five 

virtual ligands identified by Stalis were used as queries for fingerprint (FPT) calculations, a 

representative 2D ligand structure-based approach and ROCS calculations, a representative 

3D ligand structure-based approach, against the (active and decoy) compound sets of the 

targets. We also examined the performance by combining FPT and ROCS (FPT+ROCS). 

The crystal ligand of each DUD/DUD-E target available in the websites (http://

dud.docking.org and http://dude.docking.org, respectively) was also used as a query for the 

ligand structure-based virtual screening for performance comparison. As a control, we 

carried out molecular docking experiments using AutoDock Vina, a receptor structure-based 

virtual screening tool, for the compound sets of the targets. In Stalis, we excluded all the 

templates from homologous holo-proteins in our PDB libraries whose sequence identify is ≥ 

30% to the target protein in order to remove the easy cases which could be detected by 

ligand (fragment) templates from homologous holo-proteins.

Table 1 reports the performances of virtual ligands by Stalis and crystal ligands in ligand 

structure-based virtual screening and AutoDock Vina in receptor structure-based virtual 

screening using the average AUC over the DUD and DUD-E targets and the number of 

targets whose AUC is ≥ 0.7 (a cutoff to evaluate success in virtual screening). The results 

show that simple combination of 2D and 3D ligand structure-based virtual screening 

methods increases the average AUC values in the DUD set, not in the DUD-E set due to the 

poor performance of ROCS. Combination of StalisF and StalisW improves the average AUC 

values in the DUD set or removes the ambiguity in selecting better method between StalisF 

and StalisW in the DUD-E set, showing their performance complementarity in designing 

virtual ligands in Stalis. In the DUD set, all Stalis-related approaches (StalisF, StalisW, and 

Stalis with FPT, ROCS, and FPT+ROCS) outperform AutoDock Vina, a control method for 

receptor structure-based virtual screening, in terms of both the average AUC and the number 
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of successful targets. The usage of crystal ligands for 2D and 3D ligand structure-based 

virtual screening shows better performance than all other approaches. When virtual ligands 

from Stalis are used for FPT+ROCS against the DUD targets, its performance (average AUC 

= 0.73 and the number of successful targets = 25) is comparable to those by each FPT (0.74 

and 25) and ROCS (0.73 and 25) and slightly worse than that by FPT+ROCS (0.76 and 27) 

with the crystal ligands.

An AUC is a simple and convenient quantity to evaluate overall virtual screening 

performance, but this quantity has a limitation of characterizing ability to better identify 

more active compounds at the small fraction of screened compounds. As the complementary 

metrics of AUC, we measured EF (Table S1) and HR (Table 2) at top 1, 5, 10, 20, and 30% 

for the DUD set to further examine the performance of Stalis. The overall trend of the virtual 

screening performances measured by EF and HR is similar to that measured by AUC. 

However, the EF and HR tables report that ligand structure-based virtual screening using 

crystal ligands show better performance in particular at small fractions of screened 

compounds than using virtual ligands from Stalis (i.e., top 1, 5, and 10%). The results 

indicate that screening using Stalis virtual ligands needs more top-ranked screened 

compounds to identify the same number of active compounds than using crystal ligands, 

which results from the lower resolution of the virtual ligands. In Stalis, FPT shows much 

worse performance than ROCS at top 1%, eventually showing no improvement in EF and 

HT from the combination of FPT and ROCS. This suggests that Stalis virtual ligands are 

more effective to detect active compounds from small number of screened compounds 

through their 3D shape comparison in the case where the performance of ROCS is 

comparable to that of FPT. For all of the benchmark performance evaluations, we used the 

top five virtual ligands from StalisF, StalisW, and Stalis. Increase in the number of the virtual 

ligands did not show any improvement in the average performance (data not shown).

Similarity between crystal and virtual ligands and its relationship with performance in 2D 
FPT and 3D ROCS

Figure 5A shows the relationship of the best TPO between top five Stalis virtual ligands and 

the crystal ligand for each of 40 DUD targets with the screening performance of the best 

virtual ligands in ROCS, measured by AUC (AUCROCS). The structural similarities of the 

best virtual ligands to their crystal ones show a modest positive correlation (Pearson 

correlation coefficient r = 0.48, p < 0.05) with the virtual screening performance, 

demonstrating that the performance of 3D ligand structure-based virtual screening is 

dependent to some extent on the Stalis’ ability to accurately predict the structure of the 

native ligands. In Figure 6, we present four representative examples to illustrate the Stalis’ 

ability to regenerate the native ligands. While the examples show significant structural 

similarity between the crystal ligands and best virtual ligands, the structure comparisons 

suggest that reliable prediction of the core structures of the native ligands determine the 

success of virtual ligands in 3D ligand structure-based virtual screening. The 2D FPT 

approach show less performance correlation with the structural similarity to the crystal 

ligands (r = 0.36, p < 0.05, data not shown), which results from the nature of its molecular 

fingerprint algorithm using atom-to-atom paths, requiring little to no 3D structure 

information. As expected, Figure 5B shows a weak correlation between 2D and 3D ligand 
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structure-based virtual screening performance (r = 0.32, p < 0.05), due to differences in their 

similarity calculation principles. Meanwhile, this also explains the origin of the performance 

improvement achieved by the combination of 2D and 3D approach (FPT+ROCS), shown in 

the benchmark evaluation results for the DUD set (Table 1). Representative examples are 

shown in Figure 7 to illustrate the performance complementarity between 2D FPT and 3D 

ROCS approach.

The screening performances of FPT are consistent over the DUD and DUD-E set, whereas 

ROCS shows much worse performances in the DUD-E set (Table 1). This decreased 

performance results from the less tolerance of ROCS to increased structural similarity 

between the active and decoy compounds in the DUD-E set,[24,31] suggesting that 2D ligand 

structure-based approach works better with low-resolution ligands generated by Stalis.

Performance complementarity of StalisF and StalisW

We examined how many virtual ligands from StalisF are generated through assembly of 

multiple ligand fragments. In Figure 8, we plot the average number of fragments in top 20 

virtual ligands from StalisF for the DUD set with respect to the number of binding-site 

residues. The plot shows a tendency that virtual ligands are made up with more ligand 

fragments as the target binding-site size is larger (r = 0.49, p < 0.05), indicating the ability of 

the fragment assembly step in StalisF to generate molecules that better fit into the target 

binding site.

Stalis selects five virtual ligands from top 20 virtual ligands separately from SatlisF and 

StalisW. As shown in our benchmark performance evaluation results, this integration 

approach improves the performance of the virtual ligands in ligand structure-based 

screening, indicating their complementarity in designing better virtual ligands. We examined 

the five virtual ligands from Stalis to find out whether each virtual ligand comes from StalisF 

or StalisW. The result shows that average 3.83 and 3.39 virtual ligands over the 40 DUD and 

102 DUD-E targets are generated by StalisF, respectively, indicating more dominant roles of 

StalisF in identifying better virtual ligands. Figure 9 shows the structures of crystal ligands 

and virtual ligands, where the screening performance of the virtual ligands by StalisF is 

largely different from that by StalisW in the DUD set, to illustrate the performance 

complementarity between both approaches.

Discussion and Conclusions

In this study, we have described a computational methodology, Stalis for ab initio ligand 

design by harnessing structure templates from the PDB libraries of whole ligands (StalisW) 

and their fragments (StalisF). Rather than identifying bioactive compounds from pre-existing 

compound libraries, Stalis generates a set of molecules whose structures represent the pocket 

shape and chemical features of a given target binding site. We have carried out a benchmark 

performance evaluation study to investigate how effective the designed molecules by Stalis 
(virtual ligands) are in computational screening of the 40 DUD and 102 DUD-E compound 

sets. The results show that computational ligand structure-based screening using Stalis 
virtual ligands outperforms receptor structure-based screening examined by a control 

molecular docking tool, AutoDock Vina. Stalis has comparable overall screening 
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performance to the case using crystal ligands in the DUD set. 2D ligand structure-based 

approach shows consistently reliable performance in both DUD and DUD-E set. Overall, the 

results demonstrate the reliable quality of Stalis virtual ligands and their applicability to 

ligand structure-based high-throughput virtual screening. Using crystal ligands as a query 

for ligand structure-based virtual screening, however, is the best approach over AutoDock 

Vina and Stalis particularly in identifying more active compounds at the small fraction of 

screened compounds. Stalis virtual ligands are worse in such ability due to the low-

resolution of the computationally predicted molecular structures.

The most time-consuming step in Stalis is the G-LoSA search to identify binding sites that 

have similar geometry to a target binding site from the PDB structure libraries. However, 

based on the fact that G-LoSA has high computational speed (< 0.1 sec. for alignment of 

two ligand binding sites in general) and the PDB libraries can be easily divided into a 

number of small subsets on a high-performance computing system, Stalis is a computational 

methodology to promptly provide 3D structural information of ligands and their binding 

poses for a target protein. Given a target protein structure, we can define its potential ligand 

binding sites based on experimental data or using computational approaches such as our 

CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site 

Prediction).[36] Once a ligand binding site is determined, we can easily determine binding-

site residues using the inner shape of the binding pocket. Given a target binding site 

consisting of the identified residues, we can apply Stalis to design virtual ligands and 

perform fast ligand structure-based virtual screening, eventually enabling to significantly 

downsize huge compound library. This screened small set of compound structures can be 

subject to computationally more expensive calculations including exhaustive docking using 

multiple receptor conformations and molecular dynamics simulations to finally select 

potential lead compounds. We believe that Stalis can greatly facilitate structure-based virtual 

screening campaigns. Stalis is also attractive in that this method provides actual 3D 

structures of molecules that likely bind to a target protein, making it possible to directly look 

at the structures and gain structural insight into potential ligands.

The major difference of Stalis from other available template-based methods is that our 

method identifies PDB ligand templates using local pocket alignment with G-LoSA, rather 

than using global structure alignments.[28,37] Utilization of PDB ligand fragments in StalisF 

could further reduce the dependency of the template identification based on global structure 

similarity. To examine the potential merit of harnessing PDB ligand fragment/binding-site 

structure library, we performed additional benchmark performance evaluation by removing 

ligand templates from homologous PDB holo-proteins based on global structural similarity 

of the target to the library proteins using TM-align (TM-score cutoff = 0.4)[38] as well as 

sequence identity. Indeed, FPT in StalisF shows a comparable performance to the case where 

templates from homologous holo-proteins are removed only based on the sequence identity 

(average AUC 0.66 to 0.67), while the StalisW performance decreases significantly (0.70 to 

0.62) (Table 3). Despite this comparable performance of FPT in StalisF, the additional 

removal of templates by global structural similarity seems to lower the quality of virtual 

ligands generated as shown in the ROCS performance. The results also support higher 

tolerance of 2D ligand structure-based approach to the lower quality of virtual ligands.
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Although Stalis shows reliable performance in ligand structure-based virtual screening, the 

methodology described in this study certainly has rooms to be improved for better 

performance. To illustrate our future direction, we evaluated Stalis performances with some 

prior knowledge (Table 4). If we selected better AUC between StalisF and StalisW and then 

calculated the average AUC over the 40 DUD targets, the performance improvement would 

be observed (0.75 w/ vs. 0.72 w/o prior knowledge for FPT and 0.74 w/ vs. 0.70 w/o prior 

knowledge for ROCS). As another case, if we calculated the average AUC using the best 

AUC values among top 10 virtual ligands from Stalis FPT+ROCS, the average AUC would 

become 0.82 with 34 successful targets (compared to 0.73 with 25 successful targets for top 

five virtual ligands w/o prior knowledge). The results of these ideal cases suggest that the 

Stalis performance in ligand structure-based virtual screening could be much more improved 

if better virtual ligands are selected from StalisF and StalisW. This imperfection of current 

Stalis might come from multiple factors including its algorithms for generating PDB 

structure libraries, aligning local structures by G-LoSA, assembling ligand fragment 

templates, and ranking virtual ligands by SLIM-score. We will continue to improve the 

algorithms in Stalis for its better performance.

Zhou et al. have recently reported an improved version of FINDSITEcomb 

(FINDSITEcomb2.0). FINDSITEcomb2.0 identifies template proteins based on a SP3 

threading, structure comparison, and structure-pocket comparison from multiple structure 

libraries built using the PDB, DrugBank, and ChEMBL database with advanced template 

selection algorithms.[39] The method shows exceptional performance against the DUD-E set 

(average AUC=0.81), suggesting that templates identification through local/global combined 

structure similarity comparison, optimal filtering, and integration of available structural 

databases can significantly enhance the quality of virtual ligands.

With advances in computational methodologies for protein structure prediction, it is 

expected that complete 3D structural information of most proteins in an organism will 

become available soon. Therefore, it is a ripe time to develop efficient computational 

methods capable of harnessing the big biomolecular structure data to get proteomic-level 

insight into protein-ligand interactions. Moreover, rather than acting in isolation, the protein-

ligand interactions usually carry out their biological processes through orchestration of 

complex networks of transient interactions. Therefore, proteome-scale approaches to 

protein-small molecule ligand interactions are imperatively needed to elucidate the 

fundamentals of complex biological systems and to develop more efficient therapeutic 

agents. We believe that Stalis could become a highly efficient computational platform for 

high-throughput ligand design at the proteomic level.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of fragmentation of a PDB ligand (ligand FAD in PDB 1a8p) by MolFrag.
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Figure 2. 
Workflow of generating a PDB binding-site library using the ligand fragments generated 

using MolFrag.
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Figure 3. 
Procedure of binding-site identification for the ligand fragments by MolFrag in Figure 1.
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Figure 4. 
Schematic illustration of StalisF workflow. Numbers in parenthesis indicate that these steps 

are elaborated in the Results section.
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Figure 5. 
Similarity between virtual and crystal ligands and its relationship with performance in 2D 

FPT and 3D ROCS. (A) Relationship of the best TPO (between top five virtual ligands 

generated by Stalis and the crystal ligands for 40 DUD targets) with the screening 

performance of the best virtual ligands in ROCS, measured by AUC (AUCROCS). (B) 

Relationship of the screening performance of the best virtual ligands in FPT (AUCFPT) with 

that in ROCS (AUCROCS).
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Figure 6. 
Representative examples to illustrate the Stalis’ ability to regenerate the native ligands. The 

virtual ligands were selected from Figure 5A. The pairs of crystal ligand and virtual ligand 

for four DUD targets [(A) SAHH, (B) TK, (C) NA, and (D) PR] are shown with their TPO 

and average AUC by ROCS (AUCROCS). All of the crystal and virtual ligands are receptor-

bound structures, but the receptor structures are not shown for clarity. PDB IDs for the 

crystal ligands and PDB templates used in the virtual ligands are shown in Figure S7.
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Figure 7. 
Representative examples to illustrate the performance complementarity between 2D FPT 

and 3D ROCS approach. The virtual ligands were selected from Figure 5B. The pairs of 

crystal ligand and virtual ligand for two DUD targets [(A) GPB and (B) ER antagonist] are 

shown with their TPO, average AUC by FPT (AUCFPT), and average AUC by ROCS 

(AUCROCS). PDB templates used in the virtual ligands are shown in Figure S8.
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Figure 8. 
Relationship of the average number of fragments in top 20 virtual ligands from StalisF with 

respect to the number of binding site residues.
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Figure 9. 
Representative examples to illustrate the performance complementarity between StalisF and 

StalisW. For this illustration, we divided top five virtual ligands by Stalis into virtual ligands 

from StalisF and those from StalisW, and then selected representative virtual ligands showing 

large performance difference in the average AUC by ROCS for two DUD targets [(A) AR 

and (B) FGFr1]. PDB templates used in the virtual ligands are shown in Figure S9.
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Table 1.

Virtual screening performance of different receptor or ligand structure-based virtual screening methods against 

40 DUD targets, measured using the average AUC and the number of successful targets.

Ligand Method
DUD (40 targets) DUD-E (102 targets)

Average AUC # Targets of AUC >= 0.7 Average AUC # Targets of AUC >= 0.7

AutoDock Vina 0.62 ± 0.16 14 0.69 ± 0.13 55

Crystal ligand

FPT 0.74 ± 0.18 25 0.76 ± 0.13 67

ROCS 0.73 ± 0.20 25 0.70 ± 0.15 59

FPT+ROCS
a 0.76 ± 0.18 27 0.77 ± 0.14 76

Virtual ligands by StalisF

FPT 0.68 ± 0.18 21 0.66 ± 0.15 44

ROCS 0.69 ± 0.18 25 0.52 ± 0.18 19

FPT+ROCS 0.71 ± 0.17 23 0.60 ± 0.18 32

Virtual ligands by StalisW

FPT 0.67 ± 0.22 19 0.70 ± 0.17 60

ROCS 0.67 ± 0.21 21 0.57 ± 0.18 26

FPT+ROCS 0.70 ± 0.22 24 0.66 ± 0.19 46

Virtual ligands by Stalis

FPT 0.72 ± 0.18 22 0.69 ± 0.17 55

ROCS 0.70 ± 0.19 25 0.56 ± 0.19 26

FPT+ROCS 0.73 ± 0.18 25 0.65 ± 0.20 45

a
In the FPT+ROCS approach, the final virtual screening score for each DUD compound is the sum of its FPT score (FPT score range: 0–1) and the 

half of its ROCS score (ROCS score range: 0–2).
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Table 2.

Virtual screening performance of different receptor or ligand structure-based virtual screening methods against 

40 DUD targets, measured using the average HR in the top x% of the screened library. The standard deviations 

are not included in the table for clarity.

Ligand Method HR1% HR5% HR10% HR20% HR30%

AutoDock Vina 19.23 20.50 28.71 40.47 49.35

Crystal ligand

FPT 53.37 42.18 49.66 57.83 65.17

ROCS 55.78 42.10 50.30 58.67 65.08

FPT+ROCS 58.12 46.66 54.26 62.76 69.62

Virtual ligands by StalisF

FPT 16.09 17.95 28.83 45.94 57.97

ROCS 30.47 23.56 33.83 48.79 60.88

FPT+ROCS 21.52 23.50 33.96 49.42 60.65

Virtual ligands by StalisW

FPT 21.35 23.14 36.21 46.33 55.06

ROCS 33.22 28.67 37.73 47.17 54.58

FPT+ROCS 28.08 28.12 37.97 51.67 61.68

Virtual ligands by Stalis

FPT 22.76 23.67 36.01 52.95 63.64

ROCS 34.64 27.67 37.91 51.34 62.08

FPT+ROCS 29.91 29.36 38.38 53.90 64.50
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Table 3.

Virtual screening performance for the DUD set by removing PDB ligand templates based on global structural 

similarity of the target to the library proteins using TM-align as well as sequence identity.

Ligand Method Average AUC # Targets of AUC >= 0.7

Virtual ligands by StalisF

FPT 0.69 ± 0.16 22

ROCS 0.57 ± 0.20 11

FPT+ROCS 0.66 ± 0.16 17

Virtual ligands by StalisW

FPT 0.62 ± 0.20 15

ROCS 0.59 ± 0.20 12

FPT+ROCS 0.64 ± 0.21 17

Virtual ligands by Stalis

FPT 0.70 ± 0.15 21

ROCS 0.57 ± 0.19 12

FPT+ROCS 0.67 ± 0.17 18
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Table 4.

Virtual screening performance in two ideal cases. One case “Better AUC between StalisF and StalisW” means 

that we select better AUC between StalisF and StalisW and then calculate the average AUC over the 40 DUD 

targets. The other case “Best AUC among top 10 virtual ligands from Stalis” means that we calculate the 

average AUC using the best AUC values among top 10 virtual ligands from Stalis.

Description Method Average AUC # Targets of AUC >= 0.7

Better AUC between StalisF and StalisW
FPT 0.75 ± 0.16 26

ROCS 0.74 ± 0.18 29

Best AUC among top 10 virtual ligands from Stalis FPT+ROCS 0.82 ± 0.14 34
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