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Abstract

A connected t-chromatic graph G is double-critical if G — {u,v} is (t — 2)-colorable for
each edge wv € F(G). A long-standing conjecture of Erdds and Lovdsz that the complete
graphs are the only double-critical ¢-chromatic graphs remains open for all ¢t > 6. Given the
difficulty in settling Erdés and Lovasz’s conjecture and motivated by the well-known Hadwiger’s
conjecture, Kawarabayashi, Pedersen and Toft proposed a weaker conjecture that every double-
critical ¢-chromatic graph contains a K; minor and verified their conjecture for ¢ < 7. Albar and
Gongalves recently proved that every double-critical 8-chromatic graph contains a Kg minor, and
their proof is computer-assisted. In this paper we prove that every double-critical ¢-chromatic
graph contains a K; minor for all ¢ < 9. Our proof for ¢ < 8 is shorter and computer-free.

1 Introduction

All graphs in this paper are finite and simple. For a graph G we use |G|, ¢(G), §(G) to denote
the number of vertices, number of edges and minimum degree of G, respectively. The degree of
a vertex v in a graph is denoted by dg(v) or simply d(v). For a subset S of V(G), the subgraph
induced by S is denoted by G[S] and G — S = G[V(G) \ S]. If G is a graph and K is a subgraph
of G, then by N(K) we denote the set of vertices of V(G) \ V(K) that are adjacent to a vertex of
K. If V(K) = {z}, then we use N(x) to denote N(K). By abusing notation we will also denote by
N (x) the graph induced by the set N(z). We define N[x| = N(x)U {x}, and similarly will use the
same symbol for the graph induced by that set. If u, v are distinct nonadjacent vertices of a graph
G, then by G + uv we denote the graph obtained from G by adding an edge with ends v and v. If
u,v are adjacent or equal, then we define G + uv to be G.

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting
edges. We write G > H if H is a minor of G. In those circumstances we also say that G has
an H minor. A connected graph G is called double-critical if for any edge uwv € E(G), we have
X(G — {u,v}) = x(G) — 2. The following long-standing Double-Critical Graph Conjecture is due
to Erdés and Lovész [3].
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Conjecture 1.1 Double-Critical Graph Conjecture (Erdés and Lovasz [3]) For every integer
t > 1, the only double-critical ¢-chromatic graph is Kj.

Conjecture [Tl is a special case of the so-called Erdds-Lovédsz Tihany Conjecture [3]. It is trivially
true for ¢ < 3 and reasonably easy for ¢ = 4. Mozhan [8] and Stiebitz [I0] independently proved
Conjecture [L.1l for ¢ = 5.

Theorem 1.2 (Mozhan [§]; Stiebitz [10]) The only double-critical 5-chromatic graph is K.

Conjecture [Tl remains open for all ¢ > 6. Given the difficulty in settling Conjecture [L.1]
and motivated by the well-known Hadwiger’s conjecture [4], Kawarabayashi, Pedersen and Toft

proposed a weaker conjecture.

Conjecture 1.3 (Kawarabayashi, Pedersen and Toft [6]) For every integer ¢ > 1, every double-

critical t-chromatic graph contains a K; minor.

Conjecture [[.3is a weaker version of Hadwiger’s conjecture [4], which states that for every integer
t > 1, every t-chromatic graph contains a K; minor. Conjecture[L.3]is true for ¢ < 5 by Theorem [[.2]
In the same paper [6], Kawarabayashi, Pedersen and Toft verified their conjecture for t € {6,7}.

Theorem 1.4 (Kawarabayashi, Pedersen and Toft [6]) For every integer ¢t < 7, every double-critical

t-chromatic graph contains a K; minor.

Recently, Albar and Gongalves [I] announced a proof for the case t = 8.

Theorem 1.5 (Albar and Gongalves [I]) Every double-critical 8-chromatic graph has a Kg minor.

Our main result is the following next step.

Theorem 1.6 For integers k,t with 1 < k <9 and t > k, every double-critical ¢-chromatic graph

contains a Kj minor.

We actually prove a much stronger result, the following.

Theorem 1.7 For k € {6,7,8,9}, let G be a (k — 3)-connected graph with k+1 < §(G) < 2k —5.
If every edge of GG is contained in at least £ — 2 triangles and for any minimal separating set S of

G and any x € S, G[S\{z}] is not a clique, then G > Kj.

Theorem follows directly from Proposition 2.1] (see below) and Theorem [[L71 Our proof
of Theorem [L.7] closely follows the proof of the extremal function for K¢ minors by Song and
Thomas [9] (see Theorem [L.I0 below). Note that the proof of Theorem [[.4] for k¥ = 7 is about ten
pages long and the proof of Theorem is computer-assisted. Our proof of Theorem is much
shorter and computer-free for £k < 8. For k = 9, our proof is computer-assisted as it applies a

computer-assisted lemma from [9] (see Lemma [[.13] below). Note that a computer-assisted proof of



Theorem [I.7] for all £ < 8 (and hence computer-assisted proofs of Theorem [[.4] and Theorem [L5])
follows directly from Theorem [T for £ = 9. (To see that, let G and k < 8 be as in Theorem [L.7,
and let H be obtained from G by adding 9 — k vertices, each adjacent to every other vertex of the
graph. Then H is 6-connected and satisfies all the other conditions as stated in Theorem [[L71 Thus
H > Ky and so G > K}.) Conjecture [[.3 remains open for all £ > 10. It seems hard to generalize
Theorem

We need some known results to prove our main results. Before doing so, we need to define
(H, k)-cockade. For a graph H and an integer k, let us define an (H, k)-cockade recursively as
follows. Any graph isomorphic to H is an (H, k)-cockade. Now let Gy, G2 be (H, k)-cockades and
let G be obtained from the disjoint union of G; and G4 by identifying a clique of size k in G with a
clique of the same size in Go. Then the graph G is also an (H, k)-cockade, and every (H, k)-cockade
can be constructed this way. We are now ready to state some known results. The following theorem

is a result of Dirac [2] for p < 5 and Mader [7] for p € {6, 7}.

Theorem 1.8 (Dirac [2]; Mader [7]) For every integer p € {1,2,...,7}, a graph on n > p vertices
and at least (p — 2)n — (pgl) + 1 edges has a K, minor.

Jorgensen [5] and later Song and Thomas [9] generalized Theorem [[.§ to p = 8 and p = 9,

respectively, as follows.

Theorem 1.9 (Jgrgensen [5]) Every graph on n > 8 vertices with at least 6n — 20 edges either

contains a Kg-minor or is isomorphic to a (K32222.2, 5)-cockade.

Theorem 1.10 (Song and Thomas [9]) Every graph on n > 9 vertices with at least 7n — 27 edges
either contains a Kog-minor, or is isomorphic to Ks2233, or is isomorphic to a (Kj22222,6)-

cockade.

In our proof of Theorem [[7, we need to examine graphs G such that k + 1 < |G| < 2k — 5,
0(G) > k—2and G 2 K U K;. We shall use the following results. Lemma [[.T1] is a result of
Jorgensen [5].

Lemma 1.11 (Jgrgensen [5]) Let G be a graph with n < 11 vertices and 6(G) > 6 such that for
every vertex x in G, G — x is not contractible to K. Then G is one of the graphs K229, K333 or

the complement of the Petersen graph.

Lemma [L1T] implies Lemma [[.T2] below. To see that, let G' be a graph satisfying the conditions
given in Lemma [[.LT2] By applying Lemma [[.T1] to the graph obtained from G by adding 6 — ¢
vertices, each adjacent to every other vertex of the graph, we see that G > K; U K.

Lemma 1.12 For ¢t € {1,2,3,4,5}, let G be a graph with n < 2t — 1 vertices and 6(G) > ¢. Then
G > K;UK;j.



Lemma[[.T3is a result of Song and Thomas [9]. Note that the proof of Lemmal[l.13]is computer-

assisted.

Lemma 1.13 (Song and Thomas [9]) Let G be a graph with |G| € {9,10,11,12,13} such that
0(G) > 7. Then either G > K7 U K1, or G satisfies the following

(A) either G is isomorphic to Kjg2222, or G has four distinct vertices ap,by,az,by such that
ajag,bibs ¢ E(G) and for ¢ = 1,2 the vertex a; is adjacent to b;, the vertices a;, b; have at
most four common neighbors, and G + ajas + b1by > Ky,

(B) for any two sets A, B C V(G) of cardinality at least five such that neither is complete and AUB
includes all vertices of G of degree at most |G| — 2, either

(B1) there exist a € A and b € B such that G’ > Kz, where G’ is obtained from G by adding all
edges aa’ and bb' for a’ € A — {a} and V' € B — {b}, or

(B2) there exist a € A — B and b € B — A such that ab € E(G) and the vertices a and b have at
most five common neighbors in G, or

(B3) one of A and B contains the other and G+ab > K7 UK for all distinct nonadjacent vertices
a,be AN B.

2 Basic properties of non-complete double-critical graphs

We begin with basic properties of non-complete double-critical k-chromatic graphs established in [6].

We only list those that will be used in our proofs.

Proposition 2.1 (Kawarabayashi, Pedersen and Toft [6]) If G is a non-complete double-critical
k-chromatic graph, then the following hold:

(a) 6(G) > k+1.
(b) Every edge xy € E(G) belongs to at least k — 2 triangles.
(c) G is 6-connected and no minimal separating set of G can be partitioned into two sets A and

B such that G[A] and G[B] are edge-empty and complete, respectively.

Two proper vertex-colorings ¢; and cg of a graph G are equivalent if, for all z,y € V(G),
c1(x) = c1(y) iff co(x) = c2(y). Two vertex-colorings ¢; and co of a graph G are equivalent on a
set A C V(G) if the restrictions c14 and c214 to A are equivalent on the subgraph G[A]. Let S
be a separating set of G, and let G, Go be connected subgraphs of G such that Gy UGy = G and
G1 NGy = G[S]. If ¢1 is a k-coloring of G7 and cg is a k-coloring of G5 such that ¢; and ¢y are
equivalent on S, then it is clear that ¢; and c¢o can be combined to a k-coloring of G by a suitable
permutation of the color classes of, say ¢;. The main technique in the proof of Proposition 2.1l(@)
involves reassigning and permuting the colors on a separating set S of a non-complete double-

critical k-chromatic graph G so that ¢; and ¢y are equivalent on S to obtain a contradiction, where



c1 is a (k — 1)-coloring of G; and ¢ is a (k — 1)-coloring of Ga. It seems hard to use this idea to
prove that every non-complete double-critical k-chromatic graph is 7-connected, but we can use it

to say a bit more about minimal separating sets of size 6 in non-complete double-critical graphs.

Lemma 2.2 Suppose GG is a non-complete double-critical k-chromatic graph. If S is a minimal

separating set of G with |S| = 6, then either G[S] C K3 3 or G[S] C K3 2 2.

Proof. By Propostion 2l[@), G is 6-connected. Let S = {v1,...,v6} C V(G) be a minimal
separating set of G such that neither G[S] C K3 3 nor G[S] C K3 2 . Let G and G2 be subgraphs
of G such that Gy UGy = G, G1 NGy = S, and there are no edges from G; — S to Go — S. Since
k > 6 by Theorem [[.2] we have §(G) > 7 by Propostion 2I|@). In particular, since |S| = 6, there
must exist at least one edge y;z; in G; — S for i € {1,2}. It follows then that G; is (k — 2)-colorable
since it is a subgraph of G — {ys_;, z3—;}. Let ¢1,ca be (k — 2)-colorings of G and G, respectively.
For i = 1,2, define |¢;(A)| to be the number of distinct colors assigned to the vertices of A by ¢;
for any A C S. Clearly ¢; and ¢y are not equivalent on S, otherwise ¢; and cg, after a suitable
permutation of the colors of cg, can be combined to a (k — 2)-coloring of G, a contradiction. By
Proposition 2.1l[@), «(G[S]) < 4 and so neither ¢; nor ¢y applies the same color to more than four
vertices of S. Utilizing a new color, say (3, we next redefine the colorings ¢; and co so that c;
and ¢y are (k — 1)-colorings of G and G, respectively, and are equivalent on S. This yields a
contradiction, as ¢; and co, after a suitable permutation of the colors of ¢g, can be combined to a
(k — 1)-coloring of G.

Suppose that one of the colorings ¢; and ¢y, say c1, assigns the same color to four vertices of
S, say c1(vs) = ¢1(vq) = c1(vs) = c1(vg). Then {vs,v4,v5,v6} is an independent set in G. By
Proposition 2Ii@), we must have vivy ¢ E(G). But then G[S] C K3 2 2, a contradiction. Thus

neither ¢; nor ¢y assigns the same color to four distinct vertices of S.

Next suppose that one of the colorings ¢; and cs, say c;, assigns the same color to three vertices
of S, say ci(vs) = c1(vs) = c1(vs). Then {v4,vs,v6} is an independent set in G. Since G[S] € K3 3,
we have |ca({v1,v2,v3})| > 2. If |ea({v1,v2,v3})| = 2, we may assume that ca(vy) = ca2(v3). Then
{v9,v3} is an independent set. Then redefining co(v4) = c2(v5) = c2(vg) = B and ¢1(v2) = ¢1(v3) =
B will make ¢; and ¢y equivalent on S, a contradiction. Thus |cy({v1, v2,v3})| = 3 and so ¢y assigns
distinct colors to each of vy, vy, v3. We redefine co(vg) = co(vs) = co(vg) = 8. Clearly ¢ and ¢y are
equivalent on S if ¢; assigns distinct colors to each of vy, vy, v3. Thus |ci({v1,v2,v3})| < 2. Since
G[S] € K3 3, we have |ci({v1,v2,v3})] = 2. We may assume that ¢ (v2) = ¢1(v3). Now redefining
c1(vs) = B yields that ¢; and ¢y are equivalent on S. This proves that neither ¢; nor ¢y assigns the
same color to three distinct vertices of S. Thus 6 > |¢;(S)| > 3 (i = 1,2). Since G[S] € K3, 2,2, we
have |¢;(S)| > 4 (i = 1,2). We may assume that |c1(S)| > |c2(S)|. Then |c2(S)| < 5, for otherwise
c1 and ¢y are equivalent on S. Thus 5 > |c2(S)| > 4.



Suppose that |c2(S)| = 5. Then |¢1(S)| =5 or |e1(S)] = 6. We can make ¢; and ¢y equivalent
on S by assigning color § to one of the two vertices that are colored the same color by ¢; (if
lc1(S)] = 5) and co. Thus |c2(S)| = 4. Since neither ¢; nor ¢y assigns the same color to more
than two distinct vertices of S, we may assume that ca(vs) = ca(vs) and ca(vs) = ca(vs). Then
vgvy ¢ E(G) and vsvg ¢ E(G). Since G[S] € K3 2 2, we have vivg € E(G). Thus ¢i(v1) # ¢1(v2).
We may assume that c¢1(vs) # c1(v4) as ¢; and cg are not equivalent on S. If |¢1(S)| = 6, then
redefining ¢1(vs) = c1(vg) = B and co(v3) = B will make ¢; and ¢y equivalent. If |¢1(S)| = 5,
then at least one of vs, vy, vs, v shares a color with another vertex of S, say c1(vg) = ¢1(v;) for
some ¢ € {1,...,5}. Then redefining c¢1(vs) = c1(vg) = B and co(v3) = B will again make ¢y
and ¢y equivalent. Thus |c;(S)| = 4. Suppose that one of vy or ve shares a color with another
vertex of S. Since vy € E(G), we may assume by symmetry that c¢i(vi) = ¢1(vs). If ¢1(vs)
and ¢ (vg) are the two colors each assigned to only a single vertex of S by c;, then we also have
c1(v2) = c2(v4). Now redefining c¢1(v3) = ¢1(vg) = 8 and ca(vs) =  will make ¢; and ¢y equivalent.
Hence one of the colors ¢1(vs) and c¢1(vg) is assigned to two vertices of S, say ¢1(vg) = c1(v;) for
some i € {2,4,5}. If i = 2 then redefine ¢;(vs) = ¢1(vs) = B and ca(v1) = ca(vs) = B, if i = 4
then redefine cj(v3) = ci1(vy) = B and ca(vg) = B, and if © = 5 then redefine ¢1(v3) = 8 and
c2(v3) = B, and in each case ¢; is equivalent to co. Therefore c1(v1) and ¢1(v2) are the two colors
assigned to only a single vertex of S by ¢1. Since ¢; and cg are not equivalent, we must have, say
c1(v3) = ¢1(vs) and ¢1(vq) = ¢1(vg). Now redefining ¢;(vs) = ¢1(vg) = f and c2(v3) = 8 will make

c1 and cy equivalent. [ |

3 Proofs of Theorem 1.7 and Theorem

In this section we first prove Theorem [I.7]

Proof. Let G be a graph as in the statement with n vertices. By assumption, we have
(1) k+1<0(G) <2k—5and §(N(x)) >k — 2 for any x in G; and

(2) G is (k — 3)-connected and for any minimal separating set S of G and any = € S, G[S\{z}] is

not a complete subgraph.

We first show that the statement is true for £ = 6. Then G is 3-connected with §(G) = 7. The
statement is trivially true if G is complete, so we may assume G is not complete. Let z € V(G)
be a vertex of degree 7. By (1), 6(N(z)) > 4, and so e(N(z)) > 14. If e(N(z)) > 16, then by
Theorem [[.8, N(z) > K5 and so G > N|x] > Kg. If e(N(x)) = 15, then let K be a component of
G — Nlz] with |N(K)| minimum. By (2), |V(K)| > 3 and N(K) is not complete. Let y,z € N(K)
be non-adjacent in N(x) and let P be a (y, z)-path with interior vertices in K. We see that G > K
by contracting all but one of the edges of P. So we may assume that e(N(x)) = 14, and so N(z)

is 4-regular and N (x) is 2-regular. Thus N(x) is then either isomorphic to C7 or to Cy U C3, and



in both cases it is easy to see that N(z) > K5 and thus G > Kg, as desired. Hence we may assume
7T<k<9.
Suppose for a contradiction that G ? K. We next prove the following.

(3) Let « € V(G) be such that k + 1 < d(x) < 2k — 5. Then there is no component K of G — N|z]
such that N(K')N M C N(K) for every component K’ of G — N[z, where M is the set of vertices
of N(x) not adjacent to all other vertices of N(x).

Proof. Suppose such a component K exists. Among all vertices z with k+ 1 < d(z) < 2k — 5 for
which such a component exists, choose x to be of minimal degree, and among all such components K
of G — N|z], choose K such that |[N(K)| is minimum. We first prove that M C N(K). Suppose for
a contradiction that M — N(K) # 0, and let y € M \ N(K) be such that d(y) is minimum. Clearly,
d(y) < d(x). Let J be the component of G — N[y] containing K. Since d(y) < d(x) the choice of z
implies that N(x)\ N[y] £ V(J). Let H = N(x) \ (N[y] U N(K)). We have dg(z) > dg(y) for all
z € V(H) by the choice of y. Let t = |V(H)|. Then ¢t > 2, for otherwise the vertex y and component
H contradict the choice of . On the other hand t < d(z) —d(y) < (2k—5) — (k+1)=k—6<3
and so k > 8. Notice that t = 2 when k& = 8. From (1) applied to y we deduce that N(y) N N(z)
has minimum degree at least k — 3. Let L be the subgraph of G induced by (N[y] "N (z)) UV (H).
Then the edge-set of L consists of edges of N(x) N N(y), edges incident with y, and edges incident
with V(H). Clearly, e(L — V(H), H) = }_ v (d(z) — 1) — 2e(H) > t(d(y) — 1) — 2e(H). Thus

er) > WD =N 4 i) 14 e(r - V). 1) + ()
> B =D gy 14 4(d(w) 1) — ()
> WD =D 4 ) — 14 agaty) 1) - ot —1)
2 ndy—tom_gue-n & R

> -avwl- (F57) 41

because d(y) > k+1land 2 <t <k —6. If k =9, since 12 < |V(L)| < 13 the graph L is not a
(K22222,5)-cockade. By Theorem[[.8 and Theorem[I.9, N(x) > L > Kj_;. Thus G > Nz] > K},
a contradiction. This proves that M C N(K).

If N(xz) > Kj_o U Ky, then N(x) has a vertex y such that N(z) —y > Kj_o. If y ¢ M, then
N(x) > Kp_q. Otherwise, by contracting the connected set V(K) U {y} we can contract Kj_;
onto N(z). Thus in either case G > Kj, a contradiction. Thus N(z) ? Ky o UK;. If E <8,
by Lemma [[L.TT] and Lemma [[T2] we have k = 8 and N(x) is either K333 or P, where P is the
complement of the Petersen graph. If N(x) = P, it can be easily checked that P + yz > Ky for
any yz € E(P). By (2), IN(K)| > 5 and N(K) is not complete. Let y,z € N(K) be non-adjacent
in N(z) and let @ be a (y, z)-path with interior vertices in K. We see that G > Ky by contracting



all but one of the edges of @, a contradiction. Thus N(z) = K333, and so M = N(z). Let
{ay1,az,a3} and {by, by, b3} be the vertex sets of two disjoint triangles of N(x). Suppose G — N|z]
is 2-connected or has at most two vertices. By Proposition 2ZII[D), the vertices a;,b; (i=1,2) have
at least two common neighbors in G — Nz]. Let u,uz (resp. wi,ws) be two distinct common
neighbors of a; and b; (resp. ag and by) in G — Nz]. By Menger’s Theorem, G — N|[z] contains
two disjoint paths from {uy,us} to {wi,ws} and so G > N[z]+ ajas + bibs > Kg, a contradiction.
Thus G — N[z] has at least three vertices and is not 2-connected. If G — N|x] is disconnected, let
H; = K and Hj be another connected component of G — N|z]. If G — N|z] has a cut-vertex, say
w, let Hy be a connected component of G — N[x] —w and let Hy = G — N[z| — V(H1). In either
case, Hy and Hs are disjoint connected subgraphs of G — N[z]| such that M C N(H;) U N(H2)
(because we have shown that M C N(K)). Thus N(H;) U N(Hz) = N(z) because M = N(z). By
(2), N(H;) is not complete and |N(H;)| > 4 since k = 8. Thus each of N(H;) and N(Hz2) must
contain at least one edge of N(x). Since N(z) = K333 and N(H;) U N(Hs) = N(x), we may thus
assume that ajas € m and b1by € m By contracting Hy onto a; and Hy onto b; we see
that G > N|x]+ ajas + bibe > Kg, a contradiction. This proves that & = 9 and so by Lemma [[.T3],

we may assume that N (z) satisfies properties (A) and (B).

Since d(x) > 10, N(z) # Kj2222. If G — N|[z] is 2-connected or has at most two vertices, then
by property (A) and (2), the set N(x) has four distinct vertices a1, by, az, by such that ajag,bibs ¢
E(G), N(z)+ajaz+bibs > Kg and for i = 1,2 the vertex a; is adjacent to b;, and the vertices a;, b;
have at least two common neighbors in G — N[z]|. Let uy, ug (resp. wi,wsy) be two distinct common
neighbors of a; and b; (resp. ag and by) in G — Nz]. By Menger’s Theorem, G — N[z] contains
two disjoint paths from {u,us} to {w1,we} and so G > N[z| 4+ ajas + biby > Ky, a contradiction.
Thus G — N[z] has at least three vertices and is not 2-connected. If G — N|x] is disconnected, let
Hy = K and Hj be another connected component of G — N[z]. If G — Nz| has a cut-vertex, say w,
let H; be a connected component of G — N[z] —w and let Hy = G — N[z] — V(H;). In either case,
H, and Hy are disjoint connected subgraphs of G — N[z] such that M C N(H;) U N(Hz) (because
we have shown that M C N(K)). Fori=1,2let A; = N(H;) N N(x). By (2), 4; is not complete
and |A;| > 5 for i = 1,2. By property (B), A; and A satisfy properties (B1), (B2) or (B3).

Suppose first that A; and Ay satisfy property (B1). Then there exist a; € A; such that
N(z) +{a1a : a € Ay \{a1}} + {aga : a € A3\ {a2}} > Kg. By contracting the connected sets
V(Hy) U{a1} and V(Hz) U {az} to single vertices, we see that G > Ky, a contradiction. Suppose
next that A; and Ag satisfy property (B2). Then there exist a; € A1 \ Az and ay € Ag \ A; such
that ajas € E(G) and the vertices a; and ay have at most five common neighbors in N(z). Thus
ay,a2 € M by (1), and by another application of (1) there exists a common neighbor u € V(G)\ N|[z]
of a; and ag. But a1 € Ag and ag ¢ Ay, and hence u ¢ V(H;) UV (Hy). Thus G — N|x] is discon-
nected and Hy = K. But then ay € M C N(K) = N(H;), a contradiction. Thus we may assume
that A; and Aj satisfy (B3), and hence A; C As_; for some i € {1,2}. As M C A; U Ay, we have
M C N(Hs—;). Since A; is not complete, let a,b € A; be distinct and not adjacent. By property



(B3), N(z) +ab > K7 U K;. Let P be an (a,b)-path with interior in H;. By contracting all but
one of the edges of the path P and by contracting Hs_; similarly as above, we see that G > Ky, a

contradiction. -

(4) G — N|z] is disconnected for every vertex = € V(G) of degree at most 2k — 5.

Proof. If G — NJz] is not null, then it is disconnected by (3). Thus we may assume that = is
adjacent to every other vertex of G. Let H = G — x. Then |H| = d(z) and 6(H) > k. Thus
e(H) > %(x) > (k—3)d(x) — (k;2) + 1 because d(z) < 2k — 5. By Theorem [[.8 and Theorem [L.9]

G — x has a K;_1 minor and so the graph G has a K} minor, a contradiction. -

(5) Let x € V(QG) be such that k+ 1 < d(z) < 2k — 5. Then there is no component K of G — N|x]
such that dg(y) > 2k — 4 for every vertex y € V(K).

Proof. Assume that such a component K exists. Let G; = G-V (K) and G2 = G[V(K)UN(K)].
Let di be the maximum number of edges that can be added to Gy by contracting edges of G with
at least one end in G1. More precisely, let di be the largest integer so that (7 contains disjoint
sets of vertices Vi, Va,..., V), so that G1[V}] is connected, [N(K)NV;| =1for 1 < j <p=|N(K)|,
and so that the graph obtained from Gy by contracting Vi, Va,...,V, and deleting V/(G) \ (U; V;)
has e(N(K)) + d; edges. Let G be a graph with V(G%) = V(G2) and e(G%) = e(G2) + dy edges
obtained from G by contracting edges in G1. By (1), |G5| > k+2. If e(GS) > (k—2) |G| — (kgl) +2,
then by Theorem [I.8 and Theorem [[9, G > G, > K}, a contradiction. Thus

E—1

“(Ga) = (Gy)~a < (k-2) Gal -

>+1—d1 = (k—2)|N(K)|+ (k—2)| K |- <k’ ; 1> +1—d;.

By contracting the edge xz, where z € N(K) has minimum degree d in N(K), we see that dy >
IN(K)| —d—1 and hence

e(Ga) < (k — 3)N(K)| + (k — 2) K| — <k;1> 124d (a)
Let t = eq(N(K), K). We have e(G2) = e(K) +t + e(N(K)) and
2(I) > (2% — 4)| K| — , (b)

and hence
e(Ga) > (k—2)|K| +t/2+ d|N(K)|/2. (c)
Since N(x) has minimum degree at least k — 2, it follows that the subgraph N(K) of N(z)
has minimum degree at least (k — 2) — (d(x) — |[N(K)|). Thus d > (k —2) — (d(z) — |[N(K)|) >
|IN(K)| — k+ 3. From (a) and (c) we get

— —8  if k=7
_t/zz—(k—3)yN(K)y+d(yN(K)y—2)/2+( ) )—22 —ig i ZZS (d)



where the second inequality becomes % < 11 when |N(K)| = 2k — 6 and k = 7,8, and the second
inequality holds with equality only when |N(K)| = 10 and k£ = 9. Since G is not contractible to
Kj, we deduce from (b) and Theorem [I.8 Theorem and Theorem [[I0] that |K| < 8. The
inequalities e(K) > 5|K| —8 when k = 7, e(K) > 6|K| — 14 when k = 8, and ¢(K) > 7|K| — 18
when k& =9 imply |K| < 3. But every vertex of K has degree at least 2k —4 and N(K) is a proper
subgraph of N(z), and hence |K| =3, [N(K)| =2k — 6 and £ = 3(k — 3) > 12 when k = 7,8, and
(d) holds with equality for |[N(K)| = 12 when k£ = 9, contrary to our earlier observation of (d) that
£ <11 when |[N(K)| = 2k — 6 and k = 7,8, and (d) holds with equality only when |[N(K)| = 10
and k£ = 9. -

By (1) there is a vertex = of degree k + 1,k 4+ 2,..., or 2k — 5 in G. Choose such a vertex x
so that G — N[z] has a component K of minimum order. Then choose a vertex y € V(K) of least
degree in G. Thus k+ 1 < dg(y) < 2k —5 by (1) and (5). Let L be the component of G — N|[y]
containing x. We claim that N (L) contains all vertices of N(y) that are not adjacent to all other
vertices of N(y). Indeed, let z € N(y) be not adjacent to some vertex of N(y) \ {z}. We may
assume that z ¢ N(x), for otherwise z € N(L). Thus z € V(K), and hence dg(z) > dg(y) by the
choice of y. Thus z has a neighbor 2’ € N[z] UV(K) \ N[y]. Then 2z’ € V(L), for otherwise the
component of G — N[y] containing 2z’ would be a proper subgraph of K. Thus z € N(L). This
proves our claim that N (L) contains all vertices z as above, contrary to (3). This contradiction

completes the proof of Theorem [I.71 -
We are now ready to prove Theorem

Proof. Let G be a double-critical t-chromatic graph with ¢ > k. The assertion is trivially true if
G is complete. By Theorem [[.2] we may assume that ¢ > 6. By Proposition 2I@), 6(G) > k + 1.
By Theorem [I.8 Theorem and Theorem [LI0, we have 6(G) < 2k — 5. By Proposition 2.II([h),
every edge of G is contained in at least k — 2 triangles. By Proposition 2Il[@), G is 6-connected
and no minimal separating set of G can be partitioned into a clique and an independent set. By
Theorem [[7] G > K}, as desired. -
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