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Abstract

A connected t-chromatic graph G is double-critical if G − {u, v} is (t − 2)-colorable for
each edge uv ∈ E(G). A long-standing conjecture of Erdős and Lovász that the complete
graphs are the only double-critical t-chromatic graphs remains open for all t ≥ 6. Given the
difficulty in settling Erdős and Lovász’s conjecture and motivated by the well-known Hadwiger’s
conjecture, Kawarabayashi, Pedersen and Toft proposed a weaker conjecture that every double-
critical t-chromatic graph contains a Kt minor and verified their conjecture for t ≤ 7. Albar and
Gonçalves recently proved that every double-critical 8-chromatic graph contains aK8 minor, and
their proof is computer-assisted. In this paper we prove that every double-critical t-chromatic
graph contains a Kt minor for all t ≤ 9. Our proof for t ≤ 8 is shorter and computer-free.

1 Introduction

All graphs in this paper are finite and simple. For a graph G we use |G|, e(G), δ(G) to denote

the number of vertices, number of edges and minimum degree of G, respectively. The degree of

a vertex v in a graph is denoted by dG(v) or simply d(v). For a subset S of V (G), the subgraph

induced by S is denoted by G[S] and G− S = G[V (G) \ S]. If G is a graph and K is a subgraph

of G, then by N(K) we denote the set of vertices of V (G) \ V (K) that are adjacent to a vertex of

K. If V (K) = {x}, then we use N(x) to denote N(K). By abusing notation we will also denote by

N(x) the graph induced by the set N(x). We define N [x] = N(x)∪ {x}, and similarly will use the

same symbol for the graph induced by that set. If u, v are distinct nonadjacent vertices of a graph

G, then by G+ uv we denote the graph obtained from G by adding an edge with ends u and v. If

u, v are adjacent or equal, then we define G+ uv to be G.

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting

edges. We write G ≥ H if H is a minor of G. In those circumstances we also say that G has

an H minor. A connected graph G is called double-critical if for any edge uv ∈ E(G), we have

χ(G − {u, v}) = χ(G) − 2. The following long-standing Double-Critical Graph Conjecture is due

to Erdős and Lovász [3].
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†Corresponding author. E-mail address: Zixia.Song@ucf.edu.
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Conjecture 1.1 Double-Critical Graph Conjecture (Erdős and Lovász [3]) For every integer

t ≥ 1, the only double-critical t-chromatic graph is Kt.

Conjecture 1.1 is a special case of the so-called Erdős-Lovász Tihany Conjecture [3]. It is trivially

true for t ≤ 3 and reasonably easy for t = 4. Mozhan [8] and Stiebitz [10] independently proved

Conjecture 1.1 for t = 5.

Theorem 1.2 (Mozhan [8]; Stiebitz [10]) The only double-critical 5-chromatic graph is K5.

Conjecture 1.1 remains open for all t ≥ 6. Given the difficulty in settling Conjecture 1.1

and motivated by the well-known Hadwiger’s conjecture [4], Kawarabayashi, Pedersen and Toft

proposed a weaker conjecture.

Conjecture 1.3 (Kawarabayashi, Pedersen and Toft [6]) For every integer t ≥ 1, every double-

critical t-chromatic graph contains a Kt minor.

Conjecture 1.3 is a weaker version of Hadwiger’s conjecture [4], which states that for every integer

t ≥ 1, every t-chromatic graph contains aKt minor. Conjecture 1.3 is true for t ≤ 5 by Theorem 1.2.

In the same paper [6], Kawarabayashi, Pedersen and Toft verified their conjecture for t ∈ {6, 7}.

Theorem 1.4 (Kawarabayashi, Pedersen and Toft [6]) For every integer t ≤ 7, every double-critical

t-chromatic graph contains a Kt minor.

Recently, Albar and Gonçalves [1] announced a proof for the case t = 8.

Theorem 1.5 (Albar and Gonçalves [1]) Every double-critical 8-chromatic graph has a K8 minor.

Our main result is the following next step.

Theorem 1.6 For integers k, t with 1 ≤ k ≤ 9 and t ≥ k, every double-critical t-chromatic graph

contains a Kk minor.

We actually prove a much stronger result, the following.

Theorem 1.7 For k ∈ {6, 7, 8, 9}, let G be a (k− 3)-connected graph with k+1 ≤ δ(G) ≤ 2k− 5.

If every edge of G is contained in at least k − 2 triangles and for any minimal separating set S of

G and any x ∈ S, G[S\{x}] is not a clique, then G ≥ Kk.

Theorem 1.6 follows directly from Proposition 2.1 (see below) and Theorem 1.7. Our proof

of Theorem 1.7 closely follows the proof of the extremal function for K9 minors by Song and

Thomas [9] (see Theorem 1.10 below). Note that the proof of Theorem 1.4 for k = 7 is about ten

pages long and the proof of Theorem 1.5 is computer-assisted. Our proof of Theorem 1.6 is much

shorter and computer-free for k ≤ 8. For k = 9, our proof is computer-assisted as it applies a

computer-assisted lemma from [9] (see Lemma 1.13 below). Note that a computer-assisted proof of
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Theorem 1.7 for all k ≤ 8 (and hence computer-assisted proofs of Theorem 1.4 and Theorem 1.5)

follows directly from Theorem 1.7 for k = 9. (To see that, let G and k ≤ 8 be as in Theorem 1.7,

and let H be obtained from G by adding 9− k vertices, each adjacent to every other vertex of the

graph. Then H is 6-connected and satisfies all the other conditions as stated in Theorem 1.7. Thus

H ≥ K9 and so G ≥ Kk.) Conjecture 1.3 remains open for all t ≥ 10. It seems hard to generalize

Theorem 1.6.

We need some known results to prove our main results. Before doing so, we need to define

(H, k)-cockade. For a graph H and an integer k, let us define an (H, k)-cockade recursively as

follows. Any graph isomorphic to H is an (H, k)-cockade. Now let G1, G2 be (H, k)-cockades and

let G be obtained from the disjoint union of G1 and G2 by identifying a clique of size k in G1 with a

clique of the same size in G2. Then the graph G is also an (H, k)-cockade, and every (H, k)-cockade

can be constructed this way. We are now ready to state some known results. The following theorem

is a result of Dirac [2] for p ≤ 5 and Mader [7] for p ∈ {6, 7}.

Theorem 1.8 (Dirac [2]; Mader [7]) For every integer p ∈ {1, 2, . . . , 7}, a graph on n ≥ p vertices

and at least (p− 2)n−
(

p−1
2

)

+ 1 edges has a Kp minor.

Jørgensen [5] and later Song and Thomas [9] generalized Theorem 1.8 to p = 8 and p = 9,

respectively, as follows.

Theorem 1.9 (Jørgensen [5]) Every graph on n ≥ 8 vertices with at least 6n − 20 edges either

contains a K8-minor or is isomorphic to a (K2,2,2,2,2, 5)-cockade.

Theorem 1.10 (Song and Thomas [9]) Every graph on n ≥ 9 vertices with at least 7n− 27 edges

either contains a K9-minor, or is isomorphic to K2,2,2,3,3, or is isomorphic to a (K1,2,2,2,2,2, 6)-

cockade.

In our proof of Theorem 1.7, we need to examine graphs G such that k + 1 ≤ |G| ≤ 2k − 5,

δ(G) ≥ k − 2 and G 6≥ Kk ∪ K1. We shall use the following results. Lemma 1.11 is a result of

Jørgensen [5].

Lemma 1.11 (Jørgensen [5]) Let G be a graph with n ≤ 11 vertices and δ(G) ≥ 6 such that for

every vertex x in G, G− x is not contractible to K6. Then G is one of the graphs K2,2,2,2,K3,3,3 or

the complement of the Petersen graph.

Lemma 1.11 implies Lemma 1.12 below. To see that, let G be a graph satisfying the conditions

given in Lemma 1.12. By applying Lemma 1.11 to the graph obtained from G by adding 6 − t

vertices, each adjacent to every other vertex of the graph, we see that G ≥ Kt ∪K1.

Lemma 1.12 For t ∈ {1, 2, 3, 4, 5}, let G be a graph with n ≤ 2t− 1 vertices and δ(G) ≥ t. Then

G ≥ Kt ∪K1.
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Lemma 1.13 is a result of Song and Thomas [9]. Note that the proof of Lemma 1.13 is computer-

assisted.

Lemma 1.13 (Song and Thomas [9]) Let G be a graph with |G| ∈ {9, 10, 11, 12, 13} such that

δ(G) ≥ 7. Then either G ≥ K7 ∪K1, or G satisfies the following

(A) either G is isomorphic to K1,2,2,2,2, or G has four distinct vertices a1, b1, a2, b2 such that

a1a2, b1b2 /∈ E(G) and for i = 1, 2 the vertex ai is adjacent to bi, the vertices ai, bi have at

most four common neighbors, and G+ a1a2 + b1b2 ≥ K8,

(B) for any two sets A,B ⊆ V (G) of cardinality at least five such that neither is complete and A∪B

includes all vertices of G of degree at most |G| − 2, either

(B1) there exist a ∈ A and b ∈ B such that G′ ≥ K8, where G′ is obtained from G by adding all

edges aa′ and bb′ for a′ ∈ A− {a} and b′ ∈ B − {b}, or

(B2) there exist a ∈ A−B and b ∈ B −A such that ab ∈ E(G) and the vertices a and b have at

most five common neighbors in G, or

(B3) one of A and B contains the other and G+ab ≥ K7∪K1 for all distinct nonadjacent vertices

a, b ∈ A ∩B.

2 Basic properties of non-complete double-critical graphs

We begin with basic properties of non-complete double-critical k-chromatic graphs established in [6].

We only list those that will be used in our proofs.

Proposition 2.1 (Kawarabayashi, Pedersen and Toft [6]) If G is a non-complete double-critical

k-chromatic graph, then the following hold:

(a) δ(G) ≥ k + 1.

(b) Every edge xy ∈ E(G) belongs to at least k − 2 triangles.

(c) G is 6-connected and no minimal separating set of G can be partitioned into two sets A and

B such that G[A] and G[B] are edge-empty and complete, respectively.

Two proper vertex-colorings c1 and c2 of a graph G are equivalent if, for all x, y ∈ V (G),

c1(x) = c1(y) iff c2(x) = c2(y). Two vertex-colorings c1 and c2 of a graph G are equivalent on a

set A ⊆ V (G) if the restrictions c1|A and c2|A to A are equivalent on the subgraph G[A]. Let S

be a separating set of G, and let G1, G2 be connected subgraphs of G such that G1 ∪G2 = G and

G1 ∩ G2 = G[S]. If c1 is a k-coloring of G1 and c2 is a k-coloring of G2 such that c1 and c2 are

equivalent on S, then it is clear that c1 and c2 can be combined to a k-coloring of G by a suitable

permutation of the color classes of, say c1. The main technique in the proof of Proposition 2.1(c)

involves reassigning and permuting the colors on a separating set S of a non-complete double-

critical k-chromatic graph G so that c1 and c2 are equivalent on S to obtain a contradiction, where
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c1 is a (k − 1)-coloring of G1 and c2 is a (k − 1)-coloring of G2. It seems hard to use this idea to

prove that every non-complete double-critical k-chromatic graph is 7-connected, but we can use it

to say a bit more about minimal separating sets of size 6 in non-complete double-critical graphs.

Lemma 2.2 Suppose G is a non-complete double-critical k-chromatic graph. If S is a minimal

separating set of G with |S| = 6, then either G[S] ⊆ K3, 3 or G[S] ⊆ K2, 2, 2.

Proof. By Propostion 2.1(c), G is 6-connected. Let S = {v1, . . . , v6} ⊂ V (G) be a minimal

separating set of G such that neither G[S] ⊆ K3, 3 nor G[S] ⊆ K2, 2, 2. Let G1 and G2 be subgraphs

of G such that G1 ∪ G2 = G, G1 ∩ G2 = S, and there are no edges from G1 − S to G2 − S. Since

k ≥ 6 by Theorem 1.2, we have δ(G) ≥ 7 by Propostion 2.1(a). In particular, since |S| = 6, there

must exist at least one edge yizi in Gi −S for i ∈ {1, 2}. It follows then that Gi is (k− 2)-colorable

since it is a subgraph of G−{y3−i, z3−i}. Let c1, c2 be (k− 2)-colorings of G1 and G2, respectively.

For i = 1, 2, define |ci(A)| to be the number of distinct colors assigned to the vertices of A by ci

for any A ⊆ S. Clearly c1 and c2 are not equivalent on S, otherwise c1 and c2, after a suitable

permutation of the colors of c2, can be combined to a (k − 2)-coloring of G, a contradiction. By

Proposition 2.1(c), α(G[S]) ≤ 4 and so neither c1 nor c2 applies the same color to more than four

vertices of S. Utilizing a new color, say β, we next redefine the colorings c1 and c2 so that c1

and c2 are (k − 1)-colorings of G1 and G2, respectively, and are equivalent on S. This yields a

contradiction, as c1 and c2, after a suitable permutation of the colors of c2, can be combined to a

(k − 1)-coloring of G.

Suppose that one of the colorings c1 and c2, say c1, assigns the same color to four vertices of

S, say c1(v3) = c1(v4) = c1(v5) = c1(v6). Then {v3, v4, v5, v6} is an independent set in G. By

Proposition 2.1(c), we must have v1v2 /∈ E(G). But then G[S] ⊆ K2, 2, 2, a contradiction. Thus

neither c1 nor c2 assigns the same color to four distinct vertices of S.

Next suppose that one of the colorings c1 and c2, say c1, assigns the same color to three vertices

of S, say c1(v4) = c1(v5) = c1(v6). Then {v4, v5, v6} is an independent set in G. Since G[S] 6⊆ K3,3,

we have |c2({v1, v2, v3})| ≥ 2. If |c2({v1, v2, v3})| = 2, we may assume that c2(v2) = c2(v3). Then

{v2, v3} is an independent set. Then redefining c2(v4) = c2(v5) = c2(v6) = β and c1(v2) = c1(v3) =

β will make c1 and c2 equivalent on S, a contradiction. Thus |c2({v1, v2, v3})| = 3 and so c2 assigns

distinct colors to each of v1, v2, v3. We redefine c2(v4) = c2(v5) = c2(v6) = β. Clearly c1 and c2 are

equivalent on S if c1 assigns distinct colors to each of v1, v2, v3. Thus |c1({v1, v2, v3})| ≤ 2. Since

G[S] 6⊆ K3, 3, we have |c1({v1, v2, v3})| = 2. We may assume that c1(v2) = c1(v3). Now redefining

c1(v3) = β yields that c1 and c2 are equivalent on S. This proves that neither c1 nor c2 assigns the

same color to three distinct vertices of S. Thus 6 ≥ |ci(S)| ≥ 3 (i = 1, 2). Since G[S] 6⊆ K2, 2, 2, we

have |ci(S)| ≥ 4 (i = 1, 2). We may assume that |c1(S)| ≥ |c2(S)|. Then |c2(S)| ≤ 5, for otherwise

c1 and c2 are equivalent on S. Thus 5 ≥ |c2(S)| ≥ 4.
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Suppose that |c2(S)| = 5. Then |c1(S)| = 5 or |c1(S)| = 6. We can make c1 and c2 equivalent

on S by assigning color β to one of the two vertices that are colored the same color by c1 (if

|c1(S)| = 5) and c2. Thus |c2(S)| = 4. Since neither c1 nor c2 assigns the same color to more

than two distinct vertices of S, we may assume that c2(v3) = c2(v4) and c2(v5) = c2(v6). Then

v3v4 /∈ E(G) and v5v6 /∈ E(G). Since G[S] 6⊆ K2, 2, 2, we have v1v2 ∈ E(G). Thus c1(v1) 6= c1(v2).

We may assume that c1(v3) 6= c1(v4) as c1 and c2 are not equivalent on S. If |c1(S)| = 6, then

redefining c1(v5) = c1(v6) = β and c2(v3) = β will make c1 and c2 equivalent. If |c1(S)| = 5,

then at least one of v3, v4, v5, v6 shares a color with another vertex of S, say c1(v6) = c1(vi) for

some i ∈ {1, . . . , 5}. Then redefining c1(v5) = c1(v6) = β and c2(v3) = β will again make c1

and c2 equivalent. Thus |c1(S)| = 4. Suppose that one of v1 or v2 shares a color with another

vertex of S. Since v1v2 ∈ E(G), we may assume by symmetry that c1(v1) = c1(v3). If c1(v5)

and c1(v6) are the two colors each assigned to only a single vertex of S by c1, then we also have

c1(v2) = c2(v4). Now redefining c1(v3) = c1(v4) = β and c2(v5) = β will make c1 and c2 equivalent.

Hence one of the colors c1(v5) and c1(v6) is assigned to two vertices of S, say c1(v6) = c1(vi) for

some i ∈ {2, 4, 5}. If i = 2 then redefine c1(v5) = c1(v6) = β and c2(v1) = c2(v3) = β, if i = 4

then redefine c1(v3) = c1(v4) = β and c2(v6) = β, and if i = 5 then redefine c1(v3) = β and

c2(v3) = β, and in each case c1 is equivalent to c2. Therefore c1(v1) and c1(v2) are the two colors

assigned to only a single vertex of S by c1. Since c1 and c2 are not equivalent, we must have, say

c1(v3) = c1(v5) and c1(v4) = c1(v6). Now redefining c1(v5) = c1(v6) = β and c2(v3) = β will make

c1 and c2 equivalent. �

3 Proofs of Theorem 1.7 and Theorem 1.6

In this section we first prove Theorem 1.7.

Proof. Let G be a graph as in the statement with n vertices. By assumption, we have

(1) k + 1 ≤ δ(G) ≤ 2k − 5 and δ(N(x)) ≥ k − 2 for any x in G; and

(2) G is (k − 3)-connected and for any minimal separating set S of G and any x ∈ S, G[S\{x}] is

not a complete subgraph.

We first show that the statement is true for k = 6. Then G is 3-connected with δ(G) = 7. The

statement is trivially true if G is complete, so we may assume G is not complete. Let x ∈ V (G)

be a vertex of degree 7. By (1), δ(N(x)) ≥ 4, and so e(N(x)) ≥ 14. If e(N(x)) ≥ 16, then by

Theorem 1.8, N(x) ≥ K5 and so G ≥ N [x] ≥ K6. If e(N(x)) = 15, then let K be a component of

G−N [x] with |N(K)| minimum. By (2), |N(K)| ≥ 3 and N(K) is not complete. Let y, z ∈ N(K)

be non-adjacent in N(x) and let P be a (y, z)-path with interior vertices in K. We see that G ≥ K6

by contracting all but one of the edges of P . So we may assume that e(N(x)) = 14, and so N(x)

is 4-regular and N(x) is 2-regular. Thus N(x) is then either isomorphic to C7 or to C4 ∪ C3, and
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in both cases it is easy to see that N(x) ≥ K5 and thus G ≥ K6, as desired. Hence we may assume

7 ≤ k ≤ 9.

Suppose for a contradiction that G 6≥ Kk. We next prove the following.

(3) Let x ∈ V (G) be such that k + 1 ≤ d(x) ≤ 2k − 5. Then there is no component K of G−N [x]

such that N(K ′)∩M ⊆ N(K) for every component K ′ of G−N [x], where M is the set of vertices

of N(x) not adjacent to all other vertices of N(x).

Proof. Suppose such a component K exists. Among all vertices x with k+ 1 ≤ d(x) ≤ 2k − 5 for

which such a component exists, choose x to be of minimal degree, and among all such componentsK

of G−N [x], choose K such that |N(K)| is minimum. We first prove that M ⊆ N(K). Suppose for

a contradiction that M −N(K) 6= ∅, and let y ∈ M \N(K) be such that d(y) is minimum. Clearly,

d(y) < d(x). Let J be the component of G−N [y] containing K. Since d(y) < d(x) the choice of x

implies that N(x) \N [y] 6⊆ V (J). Let H = N(x) \ (N [y] ∪N(K)). We have dG(z) ≥ dG(y) for all

z ∈ V (H) by the choice of y. Let t = |V (H)|. Then t ≥ 2, for otherwise the vertex y and component

H contradict the choice of x. On the other hand t ≤ d(x)− d(y) ≤ (2k − 5)− (k + 1) = k − 6 ≤ 3

and so k ≥ 8. Notice that t = 2 when k = 8. From (1) applied to y we deduce that N(y) ∩N(x)

has minimum degree at least k− 3. Let L be the subgraph of G induced by (N [y]∩N(x))∪V (H).

Then the edge-set of L consists of edges of N(x) ∩N(y), edges incident with y, and edges incident

with V (H). Clearly, e(L− V (H),H) =
∑

z∈V (H) (d(z) − 1)− 2e(H) ≥ t(d(y)− 1)− 2e(H). Thus

e(L) ≥
(k − 3) (d(y) − 1)

2
+ d(y)− 1 + e(L− V (H),H) + e(H)

≥
(k − 3) (d(y) − 1)

2
+ d(y)− 1 + t(d(y)− 1)− e(H)

≥
(k − 3)(d(y) − 1)

2
+ d(y)− 1 + t(d(y)− 1)−

1

2
t(t− 1)

≥

{

5(d(y) + 2) + d(y)
2 − 33

2 if k = 8
6(d(y) + t) + (t− 2)d(y) − 4− 7t− 1

2 t(t− 1) if k = 9

≥ (k − 3)|V (L)| −

(

k − 2

2

)

+ 1,

because d(y) ≥ k + 1 and 2 ≤ t ≤ k − 6. If k = 9, since 12 ≤ |V (L)| ≤ 13 the graph L is not a

(K2,2,2,2,2, 5)-cockade. By Theorem 1.8 and Theorem 1.9, N(x) ≥ L ≥ Kk−1. Thus G ≥ N [x] ≥ Kk,

a contradiction. This proves that M ⊆ N(K).

If N(x) ≥ Kk−2 ∪K1, then N(x) has a vertex y such that N(x) − y ≥ Kk−2. If y 6∈ M , then

N(x) ≥ Kk−1. Otherwise, by contracting the connected set V (K) ∪ {y} we can contract Kk−1

onto N(x). Thus in either case G ≥ Kk, a contradiction. Thus N(x) 6≥ Kk−2 ∪ K1. If k ≤ 8,

by Lemma 1.11 and Lemma 1.12, we have k = 8 and N(x) is either K3,3,3 or P , where P is the

complement of the Petersen graph. If N(x) = P , it can be easily checked that P + yz ≥ K7 for

any yz ∈ E(P ). By (2), |N(K)| ≥ 5 and N(K) is not complete. Let y, z ∈ N(K) be non-adjacent

in N(x) and let Q be a (y, z)-path with interior vertices in K. We see that G ≥ K8 by contracting

7



all but one of the edges of Q, a contradiction. Thus N(x) = K3,3,3, and so M = N(x). Let

{a1, a2, a3} and {b1, b2, b3} be the vertex sets of two disjoint triangles of N(x). Suppose G −N [x]

is 2-connected or has at most two vertices. By Proposition 2.1(b), the vertices ai, bi (i=1,2) have

at least two common neighbors in G − N [x]. Let u1, u2 (resp. w1, w2) be two distinct common

neighbors of a1 and b1 (resp. a2 and b2) in G − N [x]. By Menger’s Theorem, G − N [x] contains

two disjoint paths from {u1, u2} to {w1, w2} and so G ≥ N [x] + a1a2 + b1b2 ≥ K8, a contradiction.

Thus G−N [x] has at least three vertices and is not 2-connected. If G −N [x] is disconnected, let

H1 = K and H2 be another connected component of G −N [x]. If G −N [x] has a cut-vertex, say

w, let H1 be a connected component of G −N [x] − w and let H2 = G −N [x] − V (H1). In either

case, H1 and H2 are disjoint connected subgraphs of G − N [x] such that M ⊆ N(H1) ∪ N(H2)

(because we have shown that M ⊆ N(K)). Thus N(H1) ∪N(H2) = N(x) because M = N(x). By

(2), N(Hi) is not complete and |N(Hi)| ≥ 4 since k = 8. Thus each of N(H1) and N(H2) must

contain at least one edge of N(x). Since N(x) = K3,3,3 and N(H1) ∪N(H2) = N(x), we may thus

assume that a1a2 ∈ N(H1) and b1b2 ∈ N(H2). By contracting H1 onto a1 and H2 onto b1 we see

that G ≥ N [x] + a1a2 + b1b2 ≥ K8, a contradiction. This proves that k = 9 and so by Lemma 1.13,

we may assume that N(x) satisfies properties (A) and (B).

Since d(x) ≥ 10, N(x) 6= K1,2,2,2,2. If G−N [x] is 2-connected or has at most two vertices, then

by property (A) and (2), the set N(x) has four distinct vertices a1, b1, a2, b2 such that a1a2, b1b2 /∈

E(G), N(x)+a1a2+b1b2 ≥ K8 and for i = 1, 2 the vertex ai is adjacent to bi, and the vertices ai, bi

have at least two common neighbors in G−N [x]. Let u1, u2 (resp. w1, w2) be two distinct common

neighbors of a1 and b1 (resp. a2 and b2) in G − N [x]. By Menger’s Theorem, G − N [x] contains

two disjoint paths from {u1, u2} to {w1, w2} and so G ≥ N [x] + a1a2 + b1b2 ≥ K9, a contradiction.

Thus G−N [x] has at least three vertices and is not 2-connected. If G −N [x] is disconnected, let

H1 = K and H2 be another connected component of G−N [x]. If G−N [x] has a cut-vertex, say w,

let H1 be a connected component of G−N [x]−w and let H2 = G−N [x]− V (H1). In either case,

H1 and H2 are disjoint connected subgraphs of G−N [x] such that M ⊆ N(H1)∪N(H2) (because

we have shown that M ⊆ N(K)). For i = 1, 2 let Ai = N(Hi) ∩N(x). By (2), Ai is not complete

and |Ai| ≥ 5 for i = 1, 2. By property (B), A1 and A2 satisfy properties (B1), (B2) or (B3).

Suppose first that A1 and A2 satisfy property (B1). Then there exist ai ∈ Ai such that

N(x) + {a1a : a ∈ A1 \ {a1}} + {a2a : a ∈ A2 \ {a2}} ≥ K8. By contracting the connected sets

V (H1) ∪ {a1} and V (H2) ∪ {a2} to single vertices, we see that G ≥ K9, a contradiction. Suppose

next that A1 and A2 satisfy property (B2). Then there exist a1 ∈ A1 \ A2 and a2 ∈ A2 \ A1 such

that a1a2 ∈ E(G) and the vertices a1 and a2 have at most five common neighbors in N(x). Thus

a1, a2 ∈ M by (1), and by another application of (1) there exists a common neighbor u ∈ V (G)\N [x]

of a1 and a2. But a1 6∈ A2 and a2 6∈ A1, and hence u 6∈ V (H1) ∪ V (H2). Thus G−N [x] is discon-

nected and H1 = K. But then a2 ∈ M ⊆ N(K) = N(H1), a contradiction. Thus we may assume

that A1 and A2 satisfy (B3), and hence Ai ⊆ A3−i for some i ∈ {1, 2}. As M ⊆ A1 ∪A2, we have

M ⊆ N(H3−i). Since Ai is not complete, let a, b ∈ Ai be distinct and not adjacent. By property
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(B3), N(x) + ab ≥ K7 ∪ K1. Let P be an (a, b)-path with interior in Hi. By contracting all but

one of the edges of the path P and by contracting H3−i similarly as above, we see that G ≥ K9, a

contradiction.

(4) G−N [x] is disconnected for every vertex x ∈ V (G) of degree at most 2k − 5.

Proof. If G − N [x] is not null, then it is disconnected by (3). Thus we may assume that x is

adjacent to every other vertex of G. Let H = G − x. Then |H| = d(x) and δ(H) ≥ k. Thus

e(H) ≥ k d(x)
2 > (k− 3) d(x)−

(

k−2
2

)

+1 because d(x) ≤ 2k− 5. By Theorem 1.8 and Theorem 1.9,

G− x has a Kk−1 minor and so the graph G has a Kk minor, a contradiction.

(5) Let x ∈ V (G) be such that k + 1 ≤ d(x) ≤ 2k − 5. Then there is no component K of G−N [x]

such that dG(y) ≥ 2k − 4 for every vertex y ∈ V (K).

Proof. Assume that such a component K exists. Let G1 = G−V (K) and G2 = G[V (K)∪N(K)].

Let d1 be the maximum number of edges that can be added to G2 by contracting edges of G with

at least one end in G1. More precisely, let d1 be the largest integer so that G1 contains disjoint

sets of vertices V1, V2, . . . , Vp so that G1[Vj ] is connected, |N(K)∩ Vj| = 1 for 1 ≤ j ≤ p = |N(K)|,

and so that the graph obtained from G1 by contracting V1, V2, . . . , Vp and deleting V (G) \ (
⋃

j Vj)

has e(N(K)) + d1 edges. Let G′
2 be a graph with V (G′

2) = V (G2) and e(G′
2) = e(G2) + d1 edges

obtained from G by contracting edges in G1. By (1), |G′
2| ≥ k+2. If e(G′

2) ≥ (k−2) |G′
2|−

(

k−1
2

)

+2,

then by Theorem 1.8 and Theorem 1.9, G ≥ G′
2 ≥ Kk, a contradiction. Thus

e(G2) = e(G′
2)−d1 ≤ (k−2) |G2|−

(

k − 1

2

)

+1−d1 = (k−2)|N(K)|+(k−2)|K|−

(

k − 1

2

)

+1−d1.

By contracting the edge xz, where z ∈ N(K) has minimum degree d in N(K), we see that d1 ≥

|N(K)| − d− 1 and hence

e(G2) ≤ (k − 3)|N(K)| + (k − 2)|K| −

(

k − 1

2

)

+ 2 + d. (a)

Let t = eG(N(K),K). We have e(G2) = e(K) + t+ e(N(K)) and

2e(K) ≥ (2k − 4)|K| − t, (b)

and hence

e(G2) ≥ (k − 2)|K|+ t/2 + d|N(K)|/2. (c)

Since N(x) has minimum degree at least k − 2, it follows that the subgraph N(K) of N(x)

has minimum degree at least (k − 2) − (d(x) − |N(K)|). Thus d ≥ (k − 2) − (d(x) − |N(K)|) ≥

|N(K)| − k + 3. From (a) and (c) we get

− t/2 ≥ −(k − 3)|N(K)| + d(|N(K)| − 2)/2 +

(

k − 1

2

)

− 2 ≥







−8 if k = 7
−14 if k = 8
−18 if k = 9

(d)
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where the second inequality becomes t
2 ≤ 11 when |N(K)| = 2k − 6 and k = 7, 8, and the second

inequality holds with equality only when |N(K)| = 10 and k = 9. Since G is not contractible to

Kk, we deduce from (b) and Theorem 1.8, Theorem 1.9 and Theorem 1.10 that |K| < 8. The

inequalities e(K) ≥ 5|K| − 8 when k = 7, e(K) ≥ 6|K| − 14 when k = 8, and e(K) ≥ 7|K| − 18

when k = 9 imply |K| ≤ 3. But every vertex of K has degree at least 2k− 4 and N(K) is a proper

subgraph of N(x), and hence |K| = 3, |N(K)| = 2k − 6 and t
2 = 3(k − 3) ≥ 12 when k = 7, 8, and

(d) holds with equality for |N(K)| = 12 when k = 9, contrary to our earlier observation of (d) that
t
2 ≤ 11 when |N(K)| = 2k − 6 and k = 7, 8, and (d) holds with equality only when |N(K)| = 10

and k = 9.

By (1) there is a vertex x of degree k + 1, k + 2, . . . , or 2k − 5 in G. Choose such a vertex x

so that G−N [x] has a component K of minimum order. Then choose a vertex y ∈ V (K) of least

degree in G. Thus k + 1 ≤ dG(y) ≤ 2k − 5 by (1) and (5). Let L be the component of G − N [y]

containing x. We claim that N(L) contains all vertices of N(y) that are not adjacent to all other

vertices of N(y). Indeed, let z ∈ N(y) be not adjacent to some vertex of N(y) \ {z}. We may

assume that z /∈ N(x), for otherwise z ∈ N(L). Thus z ∈ V (K), and hence dG(z) ≥ dG(y) by the

choice of y. Thus z has a neighbor z′ ∈ N [x] ∪ V (K) \ N [y]. Then z′ ∈ V (L), for otherwise the

component of G − N [y] containing z′ would be a proper subgraph of K. Thus z ∈ N(L). This

proves our claim that N(L) contains all vertices z as above, contrary to (3). This contradiction

completes the proof of Theorem 1.7.

We are now ready to prove Theorem 1.6.

Proof. Let G be a double-critical t-chromatic graph with t ≥ k. The assertion is trivially true if

G is complete. By Theorem 1.2, we may assume that t ≥ 6. By Proposition 2.1(a), δ(G) ≥ k + 1.

By Theorem 1.8, Theorem 1.9 and Theorem 1.10, we have δ(G) ≤ 2k − 5. By Proposition 2.1(b),

every edge of G is contained in at least k − 2 triangles. By Proposition 2.1(c), G is 6-connected

and no minimal separating set of G can be partitioned into a clique and an independent set. By

Theorem 1.7, G ≥ Kk, as desired.
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