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MAXIMUM-SIZE ANTICHAINS IN RANDOM SET-SYSTEMS

MAURÍCIO COLLARES NETO AND ROBERT MORRIS

Abstract. We show that, for pn → ∞, the largest set in a p-random sub-family of the

power set of {1, . . . , n} containing no k-chain has size (k− 1+ o(1))p
(

n
n/2

)

with high proba-

bility. This confirms a conjecture of Osthus.

1. Introduction

One of the cornerstones of extremal set theory is the famous theorem of Sperner [18], who

proved in 1928 that the largest antichain in P(n), the family of all subsets of {1, . . . , n}, has

size
(

n
n/2

)

. In 1945, Erdős [6] generalized this result by showing that any family of sets larger

than the k − 1 middle layers of P(n) contains a k-chain.

In this paper we will prove a sparse random analogue of Erdős’ theorem. More precisely,

for every function p ≫ 1/n we will determine, with high probability, the (asymptotic) size of

the largest sub-family of P(n, p), the p-random sub-family1 of P(n), containing no k-chain.

This confirms a conjecture of Osthus [14].

Theorem 1.1. Let 2 6 k ∈ N, let p = p(n) be such that pn → ∞. Then the largest family

A ⊂ P(n, p) containing no k-chain has size

(1) |A| =
(

k − 1 + o(1)
)

p

(

n

n/2

)

with high probability as n → ∞.

We remark that the bound on p is best possible, since the result fails to hold whenever

pn → C. Indeed, in this case Osthus [14] showed that, with high probability, the two middle

layers of P(n, p) contain an antichain A of size
(

1+ e−C/2+ o(1)
)

p
(

n
n/2

)

; adding k−2 further

layers to A gives a family of size
(

k − 1 + e−C/2 + o(1)
)

p
(

n
n/2

)

containing no k-chains.

The alert reader may have noticed that in order to obtain Theorem 1.1 it is sufficient

to prove it in the case k = 2, since every family A ⊂ P(n) containing no k-chain can be

decomposed into k − 1 antichains. (We thank Oliver Riordan for pointing this out to us.)

Our proof will not use this simple fact, however, proceeding instead via an application of

the hypergraph container method (see Section 2) to the k-uniform hypergraph encoding the

k-chains of P(n). While more complicated that strictly necessary, this approach has two

Research supported in part by a CAPES bolsa Proex (MCN) and by CNPq Proc. 479032/2012-2 and

Proc. 303275/2013-8 (RM).
1That is, P(n, p) is a random variable such that P(A ∈ P(n, p)) = p for each A ∈ P(n), and such events

are independent for different values of A.
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significant advantages: it motivates the proof of Theorem 1.2, below, which we consider to

be of independent interest, and it gives an easily accessible introduction to the approach2

of [13], which we expect to have numerous other applications.

The study of the random set-system P(n, p) was initiated in 1961 by Rényi [15], who de-

termined the threshold for the event that P(n, p) is an antichain. More recently, Kreuter [10]

and Kohayakawa, Kreuter and Osthus [9] studied the length of the longest chain in P(n, p),

and Kohayakawa and Kreuter [8] and Osthus [14] studied the size of the largest antichain.

In particular, Osthus [14] proved that (1) holds if pn ≫ logn, and conjectured that pn ≫ 1

is sufficient. We note that this conjecture has also been proved independently by Balogh,

Mycroft and Treglown [2], who also studied sparser random set-systems.

The problem of obtaining sparse random analogues of classical results in extremal com-

binatorics has attracted a large amount of attention in recent years, culminating in the

extraordinary breakthroughs of Conlon and Gowers [4] and Schacht [17], who developed

general techniques for solving such problems, and as a result were able to prove a number

of longstanding conjectures, such as sparse random analogues of the theorems of Turán and

Szemerédi. A third approach, now known as the ‘hypergraph container method’, was sub-

sequently developed independently by Balogh, Morris and Samotij [1] and by Saxton and

Thomason [16]. We will use this latter method in order to prove Theorem 1.1.

In order to effectively apply the hypergraph container method (see Section 2), one re-

quires a so-called ‘balanced supersaturation theorem’, and the proof of such a result (see

Theorem 1.2, below) is the main innovation of this paper. An ‘unbalanced’ supersaturation

theorem (giving a lower bound on the number of k-chains, but not controlling the distri-

bution of these chains) was proved by Kleitman [7] in the case k = 2, and by Das, Gan

and Sudakov [5] in general. More precisely, the authors of [5] used the permutation method

pioneered by Katona and LYMB3 in order to show that a family with t more elements than

the extremal example above contains Ω
(

tnk−1
)

k-chains. One of the key ideas from [5] will

also play an important role in our proof, see Lemma 3.4 below.

In order to state our balanced supersaturation theorem, we will need a couple of simple

definitions. For each k > 2 and n ∈ N, let Gk = Gk(n) denote the k-uniform hypergraph

on vertex set P(n) whose edges encode k-chains, i.e., {F1, . . . , Fk} ∈ E(Gk) if and only if

F1 ) · · · ) Fk for some ordering of the elements. Given F ⊂ P(n), we write H ⊂ Gk[F ] to

denote that H is a k-uniform hypergraph with vertex set F whose edges are all members of

E(Gk). For each ℓ ∈ [k], we write ∆ℓ(H) for the maximum degree of a set of ℓ vertices of H,

that is

∆ℓ(H) = max
{

dH(A) : A ⊂ V (H), |A| = ℓ
}

,

2This approach allows one to efficiently apply the hypergraph container lemma an unbounded number of

times by combining it with a suitable ‘balanced supersaturation theorem’, such as Theorem 1.2. It was used

in [13], to prove (amongst other things) that the number of C2k-free graphs with n vertices is 2O(n1+1/k).
3The acronym LYMB refers to Lubell [11], Yamamoto [19], Mešalkin [12] and Bollobás [3]. It often causes

spelling confusion due to the silent B.
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where dH(A) =
∣

∣

{

B ∈ E(H) : A ⊂ B
}
∣

∣. We also write I(H) for the collection of indepen-

dent sets of H, and α(H) for the size of the largest member of I(H).

We can now state the key new tool that we will use to prove Theorem 1.1. It says that a

family with slightly more than α(Gk) =
(

k− 1+ o(1)
)(

n
n/2

)

elements not only contains many

k-chains, but that these chains can be chosen to be fairly ‘evenly distributed’ over P(n).

Theorem 1.2. For every k > 2 and α > 0, there exists δ = δ(α, k) > 0 such that the

following holds. Let n ∈ N and F ⊂ P(n) satisfy |F| > (k − 1 + α)
(

n
n/2

)

, and suppose that

δ−1 6 m 6
(

|F |
|G|

)

for every F,G ∈ F with F ) G. Then there exists H ⊂ Gk[F ] satisfying

(a) e(H) > δkmk−1
(

n
n/2

)

,

(b) ∆ℓ(H) 6 (δm)k−ℓ for every 1 6 ℓ 6 k.

We remark that the bounds in Theorem 1.2 are all close to best possible. To see this, set

m = n/3 and consider the k−1 middle layers of the hypercube, together with α
(

n
n/2

)

elements

from the next layer up. Then Gk[F ] has O
(

nk−1
(

n
n/2

))

edges and ∆ℓ

(

Gk[F ]
)

= Ω(nk−ℓ) for

every 1 6 ℓ 6 k. The technical assumption m 6
(

|F |
|G|

)

for every F,G ∈ F with F ) G will

be useful because it will allow us to deduce sufficiently strong bounds both when |F| is close

to α(Gk), and when it is much larger, see Section 2.

The rest of this paper is organised as follows. In Section 2 we outline the hypergraph

container method, in Section 3 we prove Theorem 1.2, and in Section 4 we perform the

necessary technical computations in order to deduce Theorem 1.1.

2. Hypergraph containers

In this section, we will recall the powerful method of hypergraph containers, which was

recently introduced in [1, 16]. Roughly speaking, the method allows us to deduce from a

balanced supersaturation theorem (such as Theorem 1.2) that there exists a relatively small

family of ‘containers’, each not too large, which cover the family I(H) of independent sets

of a k-uniform hypergraph H. The key container lemma (see [1, Proposition 3.1] and [16,

Theorem 3.4]) is as follows.

The Hypergraph Container Lemma. For every k ∈ N and c > 0, there exists a δ > 0

such that the following holds. Let τ ∈ (0, 1) and suppose that H is a k-uniform hypergraph

on N vertices such that

(2) ∆ℓ(H) 6 c · τ ℓ−1 e(H)

N

for every 1 6 ℓ 6 k. Then there exist a family C of subsets of V (H), and a function

f : P
(

V (H)
)

→ C such that:

(a) For every I ∈ I(H) there exists T ⊂ I with |T | 6 k · τN and I ⊂ f(T ) ∪ T ,

(b) |C| 6 (1− δ)N for every C ∈ C.
3



We first apply this lemma to the hypergraph Gk, to obtain a large family C1 of containers,

each of size at most (1 − δ)2n. We then apply the lemma again, for each F ∈ C1 with

|F| > (k − 1 + α)
(

n
n/2

)

(for some small α > 0), to the hypergraph H ⊂ Gk[F ] given by

Theorem 1.2. We repeat this process until all containers have size at most (k − 1 + α)
(

n
n/2

)

.

The conditions (a) and (b) in Theorem 1.2 allow us to check that (2) holds for a suitable

value of τ , and hence to count the containers in our final collection. See [13] for a similar

application of the container lemma in the context of C2k-free graphs.

In order to further motivate the statement of Theorem 1.2 (and the technical condition

m 6
(

|F |
|G|

)

for every F,G ∈ F with F ) G), we will next deduce from it the following two

lemmas, which we will use to check the condition (2). The first shows that we can take

τ = 1/n when F is slightly larger than α(Gk).

Lemma 2.1. For every k > 2 and α > 0, there exists c = c(α, k) > 0 such that the following

holds. Let n ∈ N be sufficiently large and F ⊂ P(n) satisfy (k−1+α)
(

n
n/2

)

6 |F| 6 3k
(

n
n/2

)

.

Then there exists H ⊂ Gk[F ] satisfying

∆ℓ(H) 6
c

nℓ−1
·
e(H)

|F|

for every 1 6 ℓ 6 k.

Proof. First, observe that (by adjusting α slightly) we may assume that |F | > n/3 for

every F ∈ F , since the number of sets smaller than this is much smaller than
(

n
n/2

)

. Thus,

applying Theorem 1.2 with m = n/3, it follows that there exists a hypergraph H ⊂ Gk[F ]

and a constant δ = δ(α, k) > 0 with e(H) > δkmk−1
(

n
n/2

)

and ∆ℓ(H) 6 (δm)k−ℓ for every

1 6 ℓ 6 k. It follows that

∆ℓ(H) 6 (δm)k−ℓ =
3ℓk

δℓnℓ−1
·
δkmk−1

(

n
n/2

)

3k
(

n
n/2

) 6
c

nℓ−1
·
e(H)

|F|
,

where c = k · (3/δ)k, as required. �

The next lemma shows that if |F| is larger, then we can in fact take τ much smaller.

Lemma 2.2. For every k > 2, there exists c = c(k) > 0 such that the following holds. Let

n ∈ N be sufficiently large and F ⊂ P(n) satisfy |F| > 3k
(

n
n/2

)

. Then there exists H ⊂ Gk[F ]

satisfying

∆ℓ(H) 6
c

n3ℓ−3
·
e(H)

|F|
for every 1 6 ℓ 6 k.

Proof. First, choose an arbitrary partition F = F0∪F1∪· · ·∪Ft such that |Fi| = 3k
(

n
n/2

)

for

every i ∈ [t] and |F0| < 3k
(

n
n/2

)

. Fix i ∈ [t], and observe that, by the pigeonhole principle,

there are at least k
(

n
n/2

)

elements of Fi whose sizes have the same remainder modulo 3. Let

F ′
i be a collection of

(

k − o(1)
)(

n
n/2

)

such elements, all of size at least n/3, and note that
(

|F |
|G|

)

>
(

n/3
3

)

for every F,G ∈ F ′
i with F ) G. Thus, applying Theorem 1.2 with m =

(

n/3
3

)

,
4



it follows that there exists a hypergraph Hi ⊂ Gk[F
′
i ] and a constant δ = δ(k) > 0 such that

e(Hi) =
⌈

δkmk−1
(

n
n/2

)⌉

and

∆ℓ(Hi) 6 (δm)k−ℓ 6
c′

n3ℓ−3
·
δkmk−1

(

n
n/2

)

k
(

n
n/2

) 6
c′

n3ℓ−3
·
e(Hi)

|F ′
i |

for some c′ = c′(k) and every 1 6 ℓ 6 k. Setting H = H1 ∪ · · · ∪ Ht, it follows that

∆ℓ(H) 6 max
16i6t

{

∆ℓ(Hi)
}

6
c′

n3ℓ−3
·
maxi e(Hi)

mini |F ′
i|

6
c

n3ℓ−3
·
e(H)

|F|

as claimed, since e(H) =
∑t

i=1 e(Hi) = t · e(Hi) and |F| 6 7t · |F ′
i | for every i ∈ [t]. �

Motivated by the above bounds, fix τ : P(n) → R to be the function defined by

(3) τ(A) :=

{

n−1 if |A| 6 3k
(

n
n/2

)

n−3 otherwise.

We can now specialize the Hypergraph Container Lemma to our application by combining

it with Lemma 2.1 and Lemma 2.2. The following corollary will be used in Section 4 to

count the containers of a given size produced by repeated applications of the Hypergraph

Container Lemma, see Theorem 4.2.

Corollary 2.3. For every 2 6 k ∈ N and α > 0, there exists δ = δ(α, k) > 0 such that the

following holds. Let n ∈ N be sufficiently large and C ⊂ P(n) with |C| > (k − 1 + α)
(

n
n/2

)

.

Then there exists a collection C ⊂ P(C) and a function f : P(C) → C such that

(a) For every I ∈ I(Gk[C]), there exists T with |T | 6 k · τ(C)|C| and T ⊂ I ⊂ f(T )∪T .

(b) |C ′| 6 (1− δ)|C| for every C ′ ∈ C.

Proof. Apply the Hypergraph Container Lemma to the hypergraph H ⊂ Gk[C] given by

Lemma 2.1 (if |C| 6 3k
(

n
n/2

)

), or by Lemma 2.2 (otherwise), and observe that (for a suitable

choice of the constant c) the inequality (2) holds with τ = τ(C) for every 1 6 ℓ 6 k. It

follows immediately that there exist a family C of subsets of C, and a function f : P(C) → C

such that (a) and (b) hold, as required. �

3. Balanced supersaturation

In this section, we will prove Theorem 1.2 by constructing H one edge at a time. More

precisely, starting with H = ∅, we will repeatedly apply the following lemma, adding new

edges to H until the conditions of Theorem 1.2 are satisfied.

Lemma 3.1. For every k > 2 and α > 0, there exists δ = δ(α, k) > 0 such that the

following holds. Let n ∈ N and F ⊂ P(n) satisfy |F| > (k − 1 + α)
(

n
n/2

)

, and suppose that

δ−1 6 m 6
(

|F |
|G|

)

for every F,G ∈ F with F ) G. If H ⊂ Gk[F ] is a hypergraph satisfying

(a) e(H) 6 δkmk−1
(

n
n/2

)

,

(b) ∆ℓ(H) 6 (δm)k−ℓ for every ℓ ∈ [k],
5



then there exists an edge f ∈ Gk[F ] \ H for which ∆ℓ({f} ∪ H) 6 (δm)k−ℓ for every ℓ ∈ [k].

We remark that this approach to proving balanced supersaturation theorems – adding the

edges of H one by one – was also used in [13], and is likely to have further applications.

The rest of this section will be dedicated to proving the Lemma 3.1, so from now on let

us fix α > 0 and k > 2, and choose δ > 0 sufficiently small and m > δ−1. Moreover, let us

fix n ∈ N, a family F ⊂ P(n) and a hypergraph H ⊂ Gk[F ] satisfying the conditions of the

lemma. The degree function of H will simply be denoted by d, for simplicity.

We say that a non-empty family A ⊂ P(n) is saturated if d(A) = ⌊(δm)k−|A|⌋, that is, if

no edge of F containing this family can be added to the hypergraph H without violating

condition (b). A family B ⊂ P(n) is bad if it contains a saturated sub-family A ⊂ B.

Otherwise we say that B is good. With this terminology, the conclusion of Lemma 3.1 is

that Gk[F ] contains a good edge. Indeed, since a good edge f ∈ Gk[F ] is not saturated, then

d(f) < 1, and so f 6∈ H.

The following easy lemma will be a crucial tool in the proof of Lemma 3.1. It says that

there are not too many ways to turn a good family bad.

Lemma 3.2. For any good A ⊂ P(n), there are at most 2|A| ·2δkm sets F ∈ P(n) for which

{F} ∪ A is bad and {F} is not saturated.

Proof. The result follows from a simple double-counting argument, which we spell out below.

Since A is good, any saturated sub-family of {F} ∪ A must contain F . In other words, any

F such that {F} ∪ A is bad belongs to

S(B) :=
{

F ∈ P(n) : d
(

{F} ∪ B
)

=
⌊

(δm)k−|B|−1
⌋}

for some B ⊂ A. Moreover, if {F} is not saturated, then B cannot be empty. Therefore, it

is enough to bound the size of S(B) when B is non-empty. We do so by noting that

|S(B)|
⌊

(δm)k−|B|−1
⌋

=
∑

F∈S(B)

d
(

{F} ∪ B
)

6 kd(B) 6 k(δm)k−|B|,

where the first inequality is true because each edge of H containing B contributes at most k

to the sum. Since m > δ−1, we obtain |S(B)| 6 2δkm. The claimed bound now follows by

summing over all choices of B. �

Similarly, noting that S(∅) =
{

F ∈ P(n) : {F} is saturated
}

, we have

|S(∅)|⌊(δm)k−1⌋ 6 k · e(H).

By condition (a) and the bound m > δ−1, it follows that |S(∅)| 6 2δk
(

n
n/2

)

. Thus, by

adjusting α slightly if necessary, we can remove the elements of S from F . Therefore, from

now on we will assume that F contains no saturated sets.

We will next sketch the proof of Lemma 3.1. The key idea is that if we choose F1 to be of

minimal cardinality such that the “density” of k-chains below F1 (see Definition 3.3) is bigger

than α/k (see Lemma 3.6), then only few of those k-chains will be bad, and hence at least one

of them will be good. In order to bound the density of bad k-chains below F1, let us define
6



a chain F1 ) · · · ) Fℓ to be critical if {F1, . . . , Fℓ−1} is good but {F1, . . . , Fℓ} is not. We will

use Lemma 3.2 to show that the density of critical ℓ-chains is small (see Lemma 3.7). We

will then use the minimality of F1 to deduce that the operation of extending critical ℓ-chains

to bad k-chains only increases the density by a bounded factor.

In order to make the above sketch more precise, let us next formalize the notion of density

that we will use. This definition is inspired by the work of Das, Gan and Sudakov [5], see

Lemma 3.4 below. We remark that, despite its name, the ℓ-chain density of a set is not

bounded above by 1, and in fact can be as large as Ω(nℓ−1).

Definition 3.3. The ℓ-chain density of a set F1 ∈ F , denoted by cℓ(F1), is given by

cℓ(F1) :=
∑

F2,...,Fℓ∈F
F1)F2)···)Fℓ

(

|F1|

|F2|

)−1

· · ·

(

|Fℓ−1|

|Fℓ|

)−1

In particular, c1(F ) = 1 for all F ∈ F .

The following lemma is essentially due to Das, Gan and Sudakov [5]. Since it was not

explicitly stated in their paper, we will give the proof for completeness.

Lemma 3.4 (Das, Gan and Sudakov). For any fixed 1 6 i < j 6 k, we have

∑

F∈F

1
(

n
|F |

)

(

ci(F )− cj(F )
)

6 max
s∈N

(

s

i

)

−

(

s

j

)

.

Proof. Following the permutation method, say a permutation π of [n] contains a set F if

F = {π(1), . . . , π(|F |)}. Moreover, say it contains a chain if it contains all sets of the chain.

Note that the number of permutations containing a given chain F1 ) · · · ) Fℓ is

(n− |F1|)! · |F1 \ F2|! · · · |Fℓ−1 \ Fℓ|! · |Fℓ|! = n! ·

(

n

|F1|

)−1(|F1|

|F2|

)−1

. . .

(

|Fℓ−1|

|Fℓ|

)−1

,

and so, denoting by Xℓ(π) the number of ℓ-chains contained in π, the expected value of Xℓ

with respect to the uniform probability measure on the set of permutations is

E(Xℓ) =
∑

F1,...,Fℓ∈F
F1)...)Fℓ

(

n

|F1|

)−1(
|F1|

|F2|

)−1

. . .

(

|Fℓ−1|

|Fℓ|

)−1

=
∑

F1∈F

cℓ(F1)

/(

n

|F1|

)

.

On the other hand, since sets contained in a single permutation always form a chain, Xℓ(π)

equals
(

s
ℓ

)

, where s is the number of elements of F contained in π. We deduce that

Xi(π)−Xj(π) 6 max
s∈N

(

s

i

)

−

(

s

j

)

,

and the conclusion follows by taking the expected value of both sides. �

A very useful feature of Lemma 3.4 is that the upper bound it provides does not depend

on n. We will next use this to show that ℓ-chain densities cannot decrease too quickly as

a function of ℓ, and hence that it is enough to upper bound the k-chain density of a set

whenever we want an upper bound for all of its lower densities.
7



Lemma 3.5. For every F ∈ F and 1 6 ℓ < k, we have cℓ(F ) 6 ck(F ) + 4k.

Proof. The result is trivial for ℓ = 1, as c1(F ) = 1. For ℓ > 2, we can use the identity

cℓ(F ) =
∑

F2∈F
F)F2

(

|F |

|F2|

)−1
∑

F3,...,Fk∈F
F2)···)Fℓ

(

|F2|

|F3|

)−1

· · ·

(

|Fℓ−1|

|Fℓ|

)−1

=
∑

F)F2∈F

cℓ−1(F2)

/(

|F |

|F2|

)

together with Lemma 3.4 (applied to the hypercube of subsets of F ) to obtain

cℓ(F )− ck(F ) =
∑

F)F2∈F

1
(

|F |
|F2|

)(cℓ−1(F2)− ck−1(F2)) 6 max
s∈N

(

s

ℓ− 1

)

−

(

s

k − 1

)

.

Since the function being maximized is negative for all s > 2k − 1, the right side is at most
(

2k−1
ℓ−1

)

6 4k, which proves the result. �

Lemma 3.4 also allows us to deduce that at least one element of our family has large

k-chain density, as we show in the following pigeonhole-like observation.

Lemma 3.6. If 0 6 α 6 1 and |F| > (k − 1 + α)
(

n
n/2

)

, then maxF ck(F ) > α/k.

Proof. By Lemma 3.4 with i = 1 and j = k, and since c1(F ) = 1, we have

∑

F∈F

1
(

n
|F |

)(1− ck(F )) 6 max
s∈N

(

s

1

)

−

(

s

k

)

= k − 1.

However, if the desired conclusion were not true, we would have
∑

F∈F

1
(

n
|F |

) (1− ck(F )) >
∑

F∈F

1
(

n
n/2

)

(

1−
α

k

)

> (k − 1 + α) ·
k − α

k
> k − 1,

where, for the last step, note that equality holds when α ∈ {0, 1}. �

Finally, we will need the following lemma, which bounds the density of critical ℓ-chains. It

is a simple consequence of Lemma 3.2 and our assumption that m 6
(

|F |
|G|

)

for every F,G ∈ F

with F ) G.

Lemma 3.7. For every F1 ∈ F and 1 6 ℓ < k,

(4)
∑

F2,...,Fℓ+1∈F
F1)···)Fℓ+1 critical

(

|F1|

|F2|

)−1

· · ·

(

|Fℓ|

|Fℓ+1|

)−1

6 2ℓ · 2δk · cℓ(F1)

Proof. Recall that if F1 ) · · · ) Fℓ+1 is critical, then {F1, . . . , Fℓ} is good but {F1, . . . , Fℓ+1}

is not. By Lemma 3.2, it follows that the left-hand side of (4) is at most

∑

F2,...,Fℓ∈F
F1)···)Fℓ

(

|F1|

|F2|

)−1

· · ·

(

|Fℓ−1|

|Fℓ|

)−1

· 2ℓ · 2δkm · max
Fℓ)Fℓ+1∈F

(

|Fℓ|

|Fℓ+1|

)−1

.

The result then follows from our upper bound on m and the definition of cℓ(F1). �

We are now ready to carry out the plan outlined above, and prove Lemma 3.1.
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Proof of Lemma 3.1. We may assume, without loss of generality, that 0 < α < 1. Let F1

be of minimal cardinality such that ck(F1) > α/k (note that at least one such F1 exists, by

Lemma 3.6). We claim that

(5)
∑

F2,...,Fk∈F
F1)···)Fk bad

(

|F1|

|F2|

)−1

· · ·

(

|Fk−1|

|Fk|

)−1

6
ck(F1)

2
,

which immediately implies that the total k-chain density of good chains is positive, and

therefore that at least one good chain exists. In order to prove (5), notice that every bad

k-chain F1 ) · · · ) Fk is associated with a unique 1 6 ℓ < k such that F1 ) · · · ) Fℓ+1 is

critical. As such, we can write the left side of (5) as

k−1
∑

ℓ=1

(

∑

F2,...,Fℓ+1∈F
F1)···)Fℓ+1 critical

(

|F1|

|F2|

)−1

· · ·

(

|Fℓ|

|Fℓ+1|

)−1

· ck−ℓ(Fℓ+1)

)

.

We will proceed by bounding each term of the outer sum separately, so fix 1 6 ℓ < k. By

Lemma 3.5 and the minimality of F1, we have ck−ℓ(Fℓ+1) 6 ck(Fℓ+1) + 4k < α/k + 4k < 5k.

Using this bound and Lemma 3.7, we obtain

(6)
∑

F2,...,Fℓ+1∈F
F1)···)Fℓ+1 critical

(

|F1|

|F2|

)−1

· · ·

(

|Fℓ|

|Fℓ+1|

)−1

· ck−ℓ(Fℓ+1) 6 2ℓ · 2δk · cℓ(F1) · 5
k.

Using Lemma 3.5 once again for the bound cℓ(F1) 6 ck(F1) + 4k and summing (6) over

1 6 ℓ < k, we conclude that

∑

F2,...,Fk∈F
F1)···)Fk bad

(

|F1|

|F2|

)−1

· · ·

(

|Fk−1|

|Fk|

)−1

= δ · 2O(k) · (ck(F1) + 4k) =
δ · 2O(k)

α
· ck(F1),

since ck(F1) > α/k. The right side can be made less than ck(F1)/2 by choosing δ to be small

(only as a function of α and k), and so the proof is complete. �

4. Proof of Theorem 1.1

In this section we will deduce Theorem 1.1 from the results of the previous two sections.

More precisely, we will use Corollary 2.3 to prove a ‘fingerprint theorem’ (Theorem 4.2,

below), which easily implies Theorem 1.1. A coloured vertex set is simply a family A ⊂ P(n)

together with a function c : A → N. Recall that Gk denotes the k-uniform hypergraph whose

edges encode k-chains. We will need the following definition.

Definition 4.1. A fingerprint of Gk is a family S of coloured vertex sets, together with:

(a) A fingerprint function T : I(Gk) → S with T (I) ⊂ I for every I ∈ I(Gk).

(b) A container function C : S → P(V (Gk)) such that I ⊂ C(T (I)) for every I ∈ I(Gk).

9



Each S ∈ S should be thought of as a sequence of subsets of V (H) given by repeated

application of the Hypergraph Container Lemma. The container function is obtained by

applying the sequence of functions f given by these repeated applications. We will prove the

following theorem.

Theorem 4.2. For every k > 2 and ε > 0, there exist a constant K = K(ε, k) > 0 and a

fingerprint (S, T, C) of Gk such that the following hold:

(a) Every S ∈ S satisfies |S| 6 K
n

(

n
n/2

)

;

(b) The number of members of S of size s is at most

(

K
(

n
n/2

)

s

)s

exp

(

K

n

(

n

n/2

))

;

(c) |C(T (I))| 6 (k − 1 + ε)
(

n
n/2

)

for every I ∈ I(Gk).

Before proving Theorem 4.2, let us see how it implies Theorem 1.1.

Proof of Theorem 1.1. Let k > 2 and ε > 0 be arbitrary, and let K = K(ε, k) > 0 and

(S, T, C) be the constant and fingerprint given by Theorem 4.2. Let n ∈ N be sufficiently

large, and note that pn > Kε−1, since pn → ∞. If I ⊂ P(n, p) is an independent set of Gk

of size at least (k − 1 + 3ε)p
(

n
n/2

)

, then it follows that T (I) ⊂ P(n, p) and

∣

∣C(T (I)) ∩ P(n, p)
∣

∣ >
(

k − 1 + 3ε
)

p

(

n

n/2

)

.

Let X be the number of elements of S for which these two properties hold. Then

E(X) 6
∑

A∈S

P
(

A ⊂ P(n, p)
)

· P

(

∣

∣(C(A) \ A) ∩ P(n, p)
∣

∣ > (k − 1 + 2ε)p

(

n

n/2

))

,

where we used that |A| 6 εp
(

n
n/2

)

by the lower bound on pn and Theorem 4.2 (a). Hence,

by the properties of (S, T, C) guaranteed by Theorem 4.2, and Chernoff’s inequality,

E(X) 6

K
n (

n
n/2)
∑

s=1

(

K
(

n
n/2

)

s

)s

exp

(

K

n

(

n

n/2

))

· ps · exp

(

−
ε2p

3

(

n

n/2

))

6
K

n

(

n

n/2

)

exp

(

K log(pn)

n

(

n

n/2

)

+
K

n

(

n

n/2

)

−
ε2p

3

(

n

n/2

))

,

since the summand is increasing in s on the interval
(

0, (Kp/e)
(

n
n/2

))

, and K/n ≪ Kp/e.

Therefore, by Markov’s inequality, and since pn ≫ log(pn) ≫ 1, we have

P

(

α
(

P(n, p)
)

>
(

k − 1 + 3ε
)

p

(

n

n/2

))

6 exp

(

−
ε2p

6

(

n

n/2

))

→ 0

as n → ∞, as required. �

It only remains to prove Theorem 4.2. We will use a straightforward but technical lemma.
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Lemma 4.3. Let M > 0, s > 0 and 0 < δ < 1. For any finite sequence (a1, . . . , am) of real

numbers summing to s such that 1 6 aj 6 (1− δ)jM for each j ∈ [m], we have

s log s 6

m
∑

j=1

aj log aj +O(M).

We remark that this lemma is especially easy to prove if m = O(1), which will be the case

in our application. However, it is not much harder to prove in general, and this more general

version is necessary for other applications, cf. [13, Section 6].

Proof of Lemma 4.3. Fix m ∈ N and note that, by compactness, we can assume that the

sequence (a1, . . . , am) achieves the minimum of
∑m

j=1 xj log xj subject to the given conditions.

Let

J1 = {j ∈ [m] : aj < (1− δ)jM}

and J2 = [m] \ J1; define also si =
∑

j∈Ji
aj for i ∈ {1, 2}. The convexity of x log x implies

that all of the elements of the subsequence (aj)j∈J1 are equal and that J1 = [t] for some

t ∈ {0, . . . , m}, so that s1 6 t(1− δ)tM . Note that s =
∑

j aj = O(M) and

s2 logM −
∑

j∈J2

aj log aj =
∑

j∈J2

aj log
M

aj
6

∞
∑

j=1

(1− δ)jM log
1

(1− δ)j
= O(M).

We are done if t = 0, so assume t > 1. By convexity, s log s 6 s1 log s1 + s2 log s2 + s log 2.

Hence, recalling that a1 = . . . = at = s1/t, we have

s log s 6 s1 log
s1
t
+ s1 log t+ s2 log s2 +O(M)

6
∑

j∈J1

aj log aj + t(1− δ)tM log t +
∑

j∈J2

aj log aj +O(M)

=

m
∑

j=1

aj log aj +O(M),

as claimed. �

We are now ready to prove the ‘fingerprint theorem’, and thus complete the proof of

Theorem 1.1.

Proof of Theorem 4.2. Let k > 2 and ε > 0 be arbitrary, let δ = δ(ε, k) > 0 be given by

Corollary 2.3, choose a large constant K = K(ε, k, δ), and let n ∈ N be sufficiently large.

For a given I ∈ I(Gk), we will apply Corollary 2.3 a certain number of times, which we will

denote by m = m(I), to construct two sequences C1, . . . , Cm+1 and T1, . . . , Tm of subsets of

V (Gk). The construction will inductively maintain the following properties:

(i) I ⊂ Ci+1 ∪ T1 ∪ · · · ∪ Ti,

(ii) The sets Ci+1, T1, . . . , Ti are pairwise disjoint,

(iii) Ci+1 only depends on Ci and Ti,

(iv) |Ci+1| 6 (1− δ)|Ci|.
11



To do this, first set C1 := P(n). As long as |Ci| > (k− 1+ ε)
(

n
n/2

)

, let Ti ⊂ I ∩Ci and fi be

given by Corollary 2.3 applied to Ci, and set Ci+1 := fi(Ti) \ Ti ⊂ Ci \ Ti. We stop when we

can no longer apply Corollary 2.3, that is, when |Cm+1| < (k − 1 + ε)
(

n
n/2

)

.

We define our fingerprint (S, T, C) of Gk by setting

T (I) := (T1, . . . , Tm) and C(T (I)) := Cm+1 ∪ T1 ∪ · · · ∪ Tm,

and letting S := {T (I) : I ∈ I(Gk)}. Note that Property (iii) implies C is well-defined,

while Property (i) guarantees that it is a container function.

In order to check that the constructed fingerprint satisfies the conditions of the theorem, we

first bound the sizes of the fingerprints and the number of iterations of the above procedure.

To do so, let 2 6 m0 6 m be minimal such that |Cm0
| 6 3k

(

n
n/2

)

, and observe that, by

Property (iv) and the definition (3) of τ(A),

(7) τ(Ci)|Ci| 6

{

n−3 · 2n if i < m0,

n−1 · (1− δ)i−m0 · 3k
(

n
n/2

)

otherwise.

The geometric decay of |Ci| moreover immediately implies that m = O(logn). We thus

obtain

(8)
m0−1
∑

i=1

τ(Ci)|Ci| 6
m · 2n

n3
≪

1

n2

(

n

n/2

)

and
m
∑

i=m0

τ(Ci)|Ci| =
O(1)

n

(

n

n/2

)

.

Since |T (I)| =
∑m

i=1 |Ti| 6
∑m

i=1 kτ(Ci)|Ci|, adding the two bounds immediately proves (a).

Also, since n is sufficiently large,

|C(T (I))| = |Cm+1|+ |T1 ∪ · · · ∪ Tm| 6 (k − 1 + 2ε)

(

n

n/2

)

,

which proves (c), since ε > 0 was arbitrary.

It only remains to prove (b), which follows using Lemma 4.3. The first step is to partition

the collection of s-sets in S into subfamilies S(m̂0, t), where for given m̂0 ∈ N and t =

(t1, . . . , tm̂) ∈ Nm̂, we define S(m̂0, t) to be set of all (T1, . . . , Tm̂) ∈ S such that m̂0 is the

smallest integer for which |Cm̂0
| 6 3k

(

n
n/2

)

and moreover |Ti| = ti for each i ∈ [m̂].

In order to bound the number of elements of S(m̂0, t) of size s, set s1 =
∑m̂

i=m̂0
ti, and

observe that

(9)

m̂
∑

i=m̂0

ti log
1

ti
6 s1 log

1

s1
+

O(1)

n

(

n

n/2

)

,
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by Lemma 4.3 and the second bound in (7). Since each Ti is a subset of the corresponding

Ci, we can use the trivial bound |Ci| 6 2n and the definition of m̂0 to write

∣

∣S(m̂0, t)
∣

∣ 6

m̂0−1
∏

i=1

(

2n

ti

) m̂
∏

i=m̂0

(

3k
(

n
n/2

)

ti

)

6

(

m̂0−1
∏

i=1

2tin

)(

[

3ek ·

(

n

n/2

)]s1 m̂
∏

i=m̂0

(

1

ti

)ti
)

6

(

K
(

n
n/2

)

s1

)s1

exp

(

K

n

(

n

n/2

))

where the final step follows from the first sum in (8) and from applying the exponential

function to (9). Finally, note that the right-hand side is monotone in s1 on the interval
(

0, K
(

n
n/2

)

/e
)

, and we can therefore replace s1 by s. Summing over the (at most nO(n))

choices of t, m̂0 and m̂, the claimed bound follows. �
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