
Resilience of Perfect Matchings and Hamiltonicity in Random

Graph Processes

Rajko Nenadov∗ Angelika Steger† Miloš Trujić†,‡

Abstract

Let {Gi} be the random graph process: starting with an empty graph G0 with n vertices,
in every step i ≥ 1 the graph Gi is formed by taking an edge chosen uniformly at random
among the non-existing ones and adding it to the graph Gi−1. The classical ‘hitting-time’
result of Ajtai, Komlós, and Szemerédi, and independently Bollobás, states that asymptoti-
cally almost surely the graph becomes Hamiltonian as soon as the minimum degree reaches 2,
that is if δ(Gi) ≥ 2 then Gi is Hamiltonian. We establish a resilience version of this result.
In particular, we show that the random graph process almost surely creates a sequence of
graphs such that for m ≥ ( 1

6 +o(1))n log n edges, the 2-core of the graph Gm remains Hamil-
tonian even after an adversary removes ( 1

2 − o(1))-fraction of the edges incident to every
vertex. A similar result is obtained for perfect matchings.

1 Introduction

The theory of random graphs originated in 1959 with the two seminal papers by Erdős and
Rényi [13] and Gilbert [16]. It is now a well-established research area with many applications
in theoretical computer science, statistical physics, and other branches of mathematics, cf. [6,
14, 19]. Typical questions in random graph theory traditionally concern the existence of certain
(sub)structures. A more recent trend, introduced by Sudakov and Vu [33], is the study of their
resilience properties. Formally, resilience of a graph G with respect to some property P is
defined as follows:

Definition 1.1. Let G = (V,E) be a graph. We say that G is α-resilient with respect to the
property P, for some α ∈ [0, 1], if for every spanning subgraph H ⊆ G such that degH(v) ≤
α degG(v) for every v ∈ V , we have G−H ∈ P.

In other words, α-resilience implies that the property P cannot be destroyed even if an adversary
is allowed to remove an (arbitrary) α-fraction of all edges incident to each vertex. For instance,
Dirac’s celebrated theorem [11] states that Kn is (1/2)-resilient with respect to containing a
Hamilton cycle. The study of resilience of complete graphs is one of the central topics in
extremal combinatorics (see, e.g. [9, 17, 20, 26] for some of the cornerstones).

In this paper we show that two seminal results of random graph theory hold in a resilient fashion.
More precisely, we consider two famous ‘hitting-time’ results—one by Erdős and Rényi [12]
and Bollobás and Thomason [7] regarding perfect matchings, and one by Ajtai, Komlós, and
Szemerédi [1] and, independently, Bollobás [5] regarding Hamiltonicity. Let n ∈ N and consider
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the following process: set G0 to be an empty graph with n vertices and for each i ∈ {1, . . . ,
(
n
2

)
}

form the graph Gi by choosing an edge ei /∈ Gi−1 uniformly at random and adding it to Gi−1.
In this way we obtain a sequence of nested graphs {Gi}Ni=0 for N =

(
n
2

)
, where G0 is an empty

graph and GN is a complete graph. It is an easy exercise to show that for every m ∈ {1, . . . , N}
the graph Gm has the same distribution as the Erdős-Rényi random graph Gn,m, a graph chosen
uniformly at random among all labelled graphs with n vertices and exactly m edges. A necessary
condition for a graph to contain a perfect matching is that the minimum degree is at least 1
(assuming that n is even). Similarly, having minimum degree at least 2 is a necessary condition
to be Hamiltonian. The aforementioned results show that, perhaps surprisingly, these conditions
are also sufficient: as soon as δ(Gm) ≥ 1 the graph Gm contains a perfect matching, and as soon
as δ(Gm) ≥ 2 the graph contains a Hamilton cycle, both asymptotically almost surely1. This
kind of results are usually referred to as hitting-time results.

In this paper we show that, in fact, as soon as the minimum degree reaches 1 the graph does
not only contain a perfect matching, but it does so robustly—meaning it is (1/2− o(1))-resilient
with respect to this property. Similarly, as soon as the minimum degree reaches 2 the graph Gm
becomes robustly Hamiltonian, that is (1/2− o(1))-resilient with respect to being Hamiltonian.
To see why the parameter 1/2 is asymptotically best possible, first recall that every graph G
contains a partition V1 ∪V2 such that every vertex in one part has at least half of its neighbours
in the other. In the case when such a partition is not balanced, deleting all the edges within V1

and V2 clearly prevents the resulting graph from having either a perfect matching or a Hamilton
cycle. Otherwise, both parts have size n/2 and it is an easy exercise to show that if G is a
random graph with m � n edges, which will be the case here, at least one vertex in V1 also
has roughly half of its neighbours in V1. Moving such a vertex to V2 results in an unbalanced
partition, and the rest of the argument is the same as before.

Even though the study of resilience properties of random graphs has attracted considerable
attention over the last years, cf. e.g. [2, 8, 18, 23] and the recent survey [32], this is the first
result which determines precisely when the random graph process becomes resilient with respect
to some well-studied property.

1.1 Results

The classical hitting-time result for perfect matchings by Bollobás and Thomason [7], and a
previously obtained result by Erdős and Rényi [12] which establishes the correspondence between
minimum degree one and perfect matchings in a slightly weaker form, follow quite easily from
well-known sufficient conditions for the existence of perfect matchings. On the other hand, the
hitting time result for Hamiltonicity by Ajtai, Komlós, and Szemerédi [1] and Bollobás [5] is
significantly more intricate and builds on a result of Pósa [31] and subsequent refinements.

The situation is similar for our results. While Hamiltonicity is more interesting and challenging
(and our main result), we use the case of perfect matchings to demonstrate some of our main
ideas and the general approach.

Perfect matchings. Our first result shows a bit more than discussed earlier: as long as the
number of added edges is not too small, removing isolated vertices, an obvious obstacle in
obtaining a perfect matching, results in a graph which is resilient with respect to containing a
perfect matching2.

1An event is said to hold asymptotically almost surely (a.a.s. for short) if the probability that it holds ap-
proaches 1 as n → ∞.

2In order to avoid having to distinguish between an odd and an even number of vertices of the given graph, we
use the term ‘perfect matching’ to indicate that the graph contains a matching that covers all but at most one of
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Theorem 1.2. Let ε > 0 be a constant and consider the random graph process {Gi}. Then
a.a.s. for every m ≥ 1+ε

4 n log n we have that the graph obtained from Gm by deleting all isolated
vertices is (1/2− ε)-resilient with respect to containing a perfect matching.

This improves a result of Sudakov and Vu [33] who showed that a random graph Gn,m is (1/2−ε)-
resilient with respect to containing a perfect matching if m ≥ Cn log n, for some large constant
C(ε) > 100. Note that the bound on m in Theorem 1.2 is asymptotically optimal. The reason
being that for m = 1−ε

4 n log n there exist many cherries (see, e.g. [7]), pairs of vertices of degree
1 which have a common neighbour. Clearly, for each cherry only one vertex can be part of
a matching and a perfect matching thus cannot exist. The standard non-resilience version of
Theorem 1.2 with somewhat more precise lower bound on m was established in [7].

In fact, we obtain a slightly stronger resilience statement. That is, even if we allow the adversary
to delete a graph H that contains almost all the edges incident to ‘atypical’ vertices (vertices
whose degree deviates significantly from the average degree), the resulting graph still contains
a perfect matching. The precise statement can be found in Section 3.

Theorem 1.2 also immediately implies a resilience version of the hitting-time result for perfect
matchings.

Theorem 1.3. Let ε > 0 be a constant. Consider the random graph process {Gi} with an even
number of vertices n and let m1 = min{m : δ(Gm) = 1} denote the step in which the last isolated
vertex disappears. Then a.a.s. we have that Gm1 is (1/2− ε)-resilient with respect to containing
a perfect matching.

Hamiltonicity. Prior to proving that the point when δ(Gm) becomes 2 coincides with the
point when Gm is Hamiltonian, Komlós and Szemerédi [21] showed that if m = n

2 (log n +
log logn+ cn) then Gn,m contains a Hamilton cycle if cn →∞. On the other hand, if cn → −∞
then it is a.a.s. not Hamiltonian (see [21]), precisely because of the existence of a vertex with
degree less than 2. However, something can still be said for such a sparse graph, or rather
its 2-core. Given a graph G we define the 2-core of G to be the graph obtained from G by
successively removing vertices of degree at most 1. In other words, the 2-core of a graph G is its
largest subgraph which satisfies the necessary minimum degree condition for being Hamiltonian.
 Luczak [28] showed that, in the case of a random graph Gn,m, such subgraphs are indeed
Hamiltonian as long as m ≥ 1+ε

6 n log n. Here we extend this by showing that, starting from
that point, the 2-core of every graph Gm is resilient with respect to containing a Hamilton
cycle. Moreover, the bound on m is asymptotically optimal, as a.a.s. the 2-core of Gn,m is not
Hamiltonian for m ≤ 1−ε

6 n log n (see [28]).

Theorem 1.4. Let ε > 0 be a constant and consider the random graph process {Gi}. Then
a.a.s. for every m ≥ 1+ε

6 n log n we have that the 2-core of Gm is (1/2− ε)-resilient with respect
to being Hamiltonian.

Similarly to the case of perfect matchings we actually prove a slightly stronger resilience re-
sult that allows deletion of almost all edges incident to ‘atypical’ vertices, cf. Section 4 and
Theorem 4.8 for details.

The question of resilience of random graphs with respect to Hamiltonicity has attracted consid-
erable attention in the last years. Sudakov and Vu [33] showed that Gn,m is (1/2−o(1))-resilient
with respect to Hamiltonicity for m ≥ n log4 n, and conjectured that already m� n log n should
suffice. The lower bound on m was gradually improved in a series of paper: Frieze and Krivele-
vich [15] showed that Gn,m is α-resilient for p ≥ Kn log n, for some small α > 0 and sufficiently
large K; Ben-Shimon, Krivelevich, and Sudakov [3] showed (1/6−o(1))-resilience and soon after

its vertices.
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improved it to (1/3−o(1))-resilience [4] for m ≥ 1+ε
2 n log n; finally, Lee and Sudakov [27] showed

the optimal (1/2− o(1))-resilience for m ≥ Kn log n.

While the last result settles the original conjecture of Sudakov and Vu, the gap between the value
of m for which Gn,m is typically Hamiltonian and for which we know is (1/2−o(1))-resilient with
respect to Hamiltonicity remains. A simple corollary of Theorem 1.4 closes this gap by showing
that the two coincide. More precisely, we obtain that as soon as δ(Gm) ≥ 2 the graph Gm is
resilient with respect to Hamiltonicity. This provides a resilience version of the hitting-time
result of Ajtai, Komlós, and Szemerédi [1] and Bollobás [5].

Theorem 1.5. Let ε > 0 be a constant. Consider the random graph process {Gi} and let
m2 = min{m : δ(Gm) = 2} denote the step in which the last vertex of degree at most one
disappears. Then a.a.s. we have that Gm2 is (1/2−ε)-resilient with respect to being Hamiltonian.

We note that Theorem 1.5 (but not 1.4) was proven independently also by Montgomery [30]
using a different approach.

Structure of the paper. In the next section we give some necessary definitions and tools
used throughout the paper. In addition to providing standard facts, we introduce the notion
of tiny and atypical vertices and a strengthened notion of α-resilience. In Section 3 we prove
(a strengthened version) of Theorem 1.2 that is based on this new version of α-resilience. Even
though the proof strategy is simple on a high level, it requires many intricate details related to
tiny and atypical vertices. In Section 4 we use some of these ideas and combine them with the
Pósa’s rotation-extension technique to prove a strengthened version of Theorem 1.4.

2 Preliminaries

Our graph theoretic notation is standard and follows the one from [10]. In particular, given
a graph G and (not necessarily disjoint) subsets X,Y ⊆ V (G), we denote by eG(X,Y ) the
number of edges of G with one endpoint in X and the other in Y . Note that every edge which
lies in the intersection of X and Y is counted twice. We denote by eG(X) the number of edges
with both endpoints in X. Furthermore, given a vertex v and an integer ` ≥ 1, we denote by
NG(v) its set of neighbours and by N `

G(v) the set of all vertices which are at distance at most
` from v, excluding v. Given graphs G and H with the same vertex set, we define G − H as
the graph with vertex set V (G) and edge set E(G) \ E(H). Moreover, for a graph G and a
set of edges E on the same vertex set, we write G + E to denote the graph on the vertex set
V (G) and edge set E(G) ∪ E. For a positive integer n and a function 0 ≤ p := p(n) ≤ 1 we
let Gn,p denote the probability space of graphs with vertex set [n] = {1, . . . , n} where each pair
of vertices forms an edge of G ∼ Gn,p with probability p, independently of all other pairs. We
make use of the standard asymptotic notation o,O, ω, and Ω. In addition, we write Oε or Ωε

to emphasise that the hidden constant depends on a parameter ε. For two functions a and
b we write a � b to indicate a = o(b) and a � b to indicate a = ω(b). In all occurrences
log denotes the natural logarithm. We mostly suppress floors and ceilings whenever they are
not crucial. Given ε, x, y ∈ R, we write x ∈ (1 ± ε)y to denote (1 − ε)y ≤ x ≤ (1 + ε)y.
Finally, we use subscripts with constants such as C2.5 to indicate that C2.5 is a constant given
by Claim/Lemma/Proposition/Theorem 2.5.

Throughout the paper we make use of the following standard estimate on tail probabilities of a
binomial random variable Bin(n, p) with parameters n and p, see e.g. [14].

Lemma 2.1 (Chernoff bounds). Let X ∼ Bin(n, p) and let µ := E[X]. Then for all 0 < δ < 1:

• Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
3 , and
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• Pr[X ≤ (1− δ)µ] ≤ e−
δ2µ
2 .

Remark 2.1. This result remains true if X has a hypergeometric distribution, cf. [19, Theorem
2.10].

2.1 Tiny and atypical vertices

Even though our main results concern the random graph process rather than the binomial
random graph Gn,p, in the course of the proof we extensively rely on some of its properties. For
small values of p, in particular those which give rise to a number of edges as in Theorem 1.2 and
Theorem 1.4, a random graph Gn,p contains many vertices whose degrees deviate significantly
from the average degree. In our proofs those vertices require special attention. The following
definition captures them formally.

Definition 2.2. Given δ, p ∈ [0, 1] and a graph G with n vertices, we define the following sets
of vertices:

TINYp,δ(G) = {v ∈ V (G) : degG(v) < δnp} ,
ATYPp,δ(G) = {v ∈ V (G) : degG(v) /∈ (1± δ)np} .

We refer to the vertices in TINYp,δ(G) as tiny and to the vertices in ATYPp,δ(G) as atypical.

Note that in the above definition G is an arbitrary graph, not necessarily a Gn,p. This is the
reason why p appears in the index as well. In our applications p is usually chosen such that np
is roughly (but not necessarily exactly) the average degree of G. Thus, as the names indicate,
tiny vertices have a degree significantly smaller than the average degree and atypical ones are
bounded away from the average by a small constant factor. If G ∼ Gn,p then both of these
sets become empty as soon as p is large enough: for p ≥ (1 + ε) log n/n there are a.a.s. no tiny
vertices for sufficiently small δ (depending on ε), and similarly for p ≥ C log n/n there are a.a.s.
no atypical vertices if C is sufficiently large (depending on δ).

With this definition in mind we refine the notion of α-resilience.

Definition 2.3. Given a graph G = (V,E), a graph property P, constants α, δt, δa ∈ [0, 1], and
integers Kt,Ka ∈ N, we say that G is (α, δt,Kt, δa,Ka)-resilient with respect to P if for every
spanning subgraph H ⊆ G such that

degH(v) ≤


degG(v)−Kt, if v ∈ TINYp,δt(G),

degG(v)−Ka, if v ∈ ATYPp,δa(G) \ TINYp,δt(G),

α degG(v), otherwise,

for every v ∈ V , where p = |E|/
(|V |

2

)
, we have G−H ∈ P.

Under some natural conditions, one easily sees that (α, δt,Kt, δa,Ka)-resilience implies α-resilience.

Lemma 2.4. Let G = (V,E) be a graph with n vertices and α, δt, δa ∈ [0, 1] and Kt,Ka ∈ N0

constants such that (1− α)δtnp ≥ Ka ≥ Kt, where p = |E|/
(
n
2

)
. If the minimum degree d of G

is such that d− bαdc ≥ Kt, then (α, δt,Kt, δa,Ka)-resilience of G implies α-resilience of G.

In particular, in our applications we have that Kt is either 1 (for perfect matchings) or 2 (for
Hamilton cycles) and Ka is a (large) constant. A random graph Gn,p with p� 1/n then a.a.s.
trivially fulfils the first condition in the lemma above. In addition, for α = 1/2− ε, the second
condition is also satisfied if we constrain Gn,p to the subgraph induced by vertices with degree
1 (perfect matchings) resp. the 2-core (Hamilton cycles).

Next, we establish a couple of properties of tiny and atypical vertices in random graphs.
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Lemma 2.5. Given δ > 0, if p ≥ log n/(3n) then G ∼ Gn,p a.a.s. satisfies:

|ATYPp,δ(G)| ≤ n/(log n)3.

Proof. The left hand side consists of all vertices v ∈ V (G) with degree deg(v) /∈ (1 ± δ)np. By
Chernoff bounds, we have that

Pr[deg(v) /∈ (1± δ)np] ≤ e−Ωδ(np) ≤ (log n)−4,

with room to spare. Thus, Markov’s inequality implies that the probability that there are at
least n/(log n)3 vertices with degree not in (1± δ)np is at most (log n)−1 = o(1), as claimed.

The crucial observation in our proof strategy is that tiny and atypical vertices cannot be clumped.
In particular, no vertex has too many atypical vertices in its proximity.

In the graph process {Gi} the property of being tiny or atypical is not monotone. Nevertheless,
we expect that these vertices only change slightly over short periods of time. In order to capture
this formally, we make use of the fact that one can generate a subsequence of the graph process
as follows: choose p0 such that G− ∼ Gn,p0 has a.a.s. just a bit less than m edges, and choose p′

such that Gn,p′ has just a bit more than εm edges. Then the union G+ = G− ∪Gn,p′ contains
all graphs from {Gi} with m ≤ i ≤ (1 + ε)m. Moreover, as p′ � p0 we expect that the tiny
and atypical vertices of G− are still scattered, even if we include all the edges from G+. The
following lemma makes this precise.

Lemma 2.6. Let k ≥ 2 be an integer and ε > 0 a constant. There exist positive constants δ(ε)
and L(ε, k), such that if p0 ≥ (1 + ε) log n/(kn) and p′ ≤ εp0 then a.a.s. the following holds. Let
G− ∼ Gn,p0 and set G+ = G− ∪Gn,p′ and p1 = 1− (1− p0)(1− p′). Then:

(i) for every v ∈ V (G+) we have
∣∣N3

G+(v) ∩ (TINYp0,δ(G
−) ∪ TINYp1,δ(G

+))
∣∣ ≤ k − 1,

(ii) for every v ∈ V (G+) we have
∣∣N3

G+(v) ∩ (ATYPp0,δ(G
−) ∪ATYPp1,δ(G

+))
∣∣ ≤ L,

(iii) for every cycle C ⊆ G+ with v(C) ≤ 2k we have∣∣V (C) ∩ (TINYp0,δ(G
−) ∪ TINYp1,δ(G

+))
∣∣ ≤ k − 2.

Proof. Throughout the proof we assume that V (Kn) = V (G+). We make use of the fact that
G+ is distributed as Gn,p1 .

(i) We prove a more general statement: if T ⊆ G+ is a tree with k ≤ v(T ) ≤ 4k vertices, then
it contains at most k − 1 vertices from TINYp0,δ(G−) ∪ TINYp1,δ(G

+). Suppose that this is the
case. Let v ∈ V (G+) be an arbitrary vertex and assume, towards a contradiction, that there are
k vertices u ∈ TINYp0,δ(G

−)∪TINYp1,δ(G
+) in N3

G+(v). Choose T to be a tree which contains
v and a shortest path between v and every such vertex u. Then T has at least 1 + k and at
most 1 + 3k vertices, and contains k vertices from TINYp0,δ(G

−) ∪ TINYp1,δ(G
+), which is a

contradiction.

Let T ⊆ Kn be a tree with k ≤ v(T ) ≤ 4k vertices and consider a subset S ⊆ V (T ) of size
exactly k. Let ET denote the event that T ⊆ G+ and ET,S the event that every vertex in S
has at most δnp0 neighbours in G− which are outside of V (T ), or at most δnp1 neighbours in
G+ outside of V (T ). Note that ET and ET,S are independent events. Moreover, if there exists a
tree T ⊆ G+ which contains at least k vertices from TINYp0,δ(G

−)∪TINYp1,δ(G
+) then clearly

both events ET and ET,S happen for S being a subset of size k of such vertices. We show that
the probability that ET ∧ ET,S happens for any T, S is o(1), which implies the statement.

First, note that for a fixed tree T ⊆ Kn we have Pr[ET ] = p
v(T )−1
1 . Next, in order for ET,S to

happen, for each vertex in S we need it to have at most δnp0 edges incident to it in G−, or at
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most δnp1 edges in G+, with the other endpoint being in V (G+) \ V (T ). The probability that
this happens is at most

Pr[Bin(n− v(T ), p0) ≤ δnp0] + Pr[Bin(n− v(T ), p1) ≤ δnp1].

Elementary calculations show that this sum can be bounded by e−(1−ε/4)np0 , for sufficiently
small δ depending on ε. As the probabilities are independent for different vertices in S, we get

Pr[ET,S ] ≤ (e−(1−ε/4)np0)k.

For each k ≤ t ≤ 4k there are at most
(
n
t

)
tt−2 different trees T ⊆ Kn with exactly t vertices,

and for each such tree
(
t
k

)
choices for S ⊆ V (T ). Therefore, using union bound over all values of

t and all such pairs (T, S) we estimate the probability that some ET ∧ ET,S happens as follows:

Pr[
⋃

(T,S)

(ET ∧ ET,S)] ≤
4k∑
t=k

(
n

t

)(
t

k

)
tt−2 · Pr[ET ∧ ET,S ] ≤

4k∑
t=k

nttt · pt−1
1 · e−k(1−ε/4)np0 .

As p1 ≤ (1 + ε)p0 and ntpt−1
0 · e−k(1−ε/4)np0 is decreasing in p0, this implies

Pr[
⋃

(T,S)

(ET ∧ ET,S)] = Oε,k(n · (log n)4k · n−1−ε/2) = o(1).

(ii) Similarly to the previous case, we prove a statement for trees that implies the desired
result. Let T ⊆ Kn be a tree with L ≤ v(T ) ≤ 4L and let S ⊆ V (T ) be a set of L vertices.
Let ET denote the event that T ⊆ G+ and ET,S the event that every vertex v ∈ S satisfies
either |NG−(v) \ V (T )| /∈ (1 ± δ/2)np0 or |NG+(v) \ V (T )| /∈ (1 ± δ/2)np1. If there exists
T ⊆ G+ with at least L vertices belonging to ATYPp0,δ(G

−) ∪ ATYPp1,δ(G
+), both ET and

ET,S happen (where once again S is any subset of L such vertices). For a fixed vertex v ∈ S,
Chernoff bounds show that the probability that v satisfies |NG−(v) \ V (T )| /∈ (1 ± δ/2)np0 or
|NG+(v) \ V (T )| /∈ (1± δ/2)np1 is at most

Pr[ET,S ] ≤ Pr[Bin(n− v(T ), p0) /∈ (1± δ/2)np0] + Pr[Bin(n− v(T ), p1) /∈ (1± δ/2)np1] ≤ e−γnp0 ,

for some γ = γ(ε) > 0 (for δ = δ(ε) sufficiently small). Note that these events are independent
for different vertices in S and therefore

Pr[ET,S ] ≤ (e−γnp0)L.

Analogous union bound analysis as in part (i) yields

Pr[
⋃

(T,S)

(ET ∧ ET,S)] = Oε,k(n · (log n)4L · e−Lγnp0) = o(1),

for L large enough depending on ε and k.

(iii) Let C ⊆ Kn be a cycle with 3 ≤ v(C) ≤ 2k vertices and consider a subset S ⊆ V (C) of size
exactly k− 1. Let EC and EC,S denote the events as in (i) with T replaced by C. Assuming that
there exists a cycle C ⊆ G+ with at least k − 1 vertices from TINYp0,δ(G

−) ∪ TINYp1,δ(G
+),

both events EC and EC,S happen (again, for S being any subset of k−1 such vertices). Analogous
analysis as before shows

Pr[EC,S ] ≤ (e−(1−ε/4)np0)k−1,

On the other hand, we have Pr[EC ] = p
v(C)
1 . For each 3 ≤ ` ≤ 2k there are less than n`

cycles C ⊆ Kn with exactly ` vertices, and for each such cycle at most
(
`

k−1

)
many choices for
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S ⊆ V (C). A union bound over all values of ` and all possible pairs (C, S), shows that the
probability that the property (iii) fails is at most

Pr[
⋃

(C,S)

(EC ∧ EC,S)] ≤
2k∑
`=3

n`
(

`

k − 1

)
· Pr[EC ∧ EC,S ] ≤

2k∑
`=3

n``k · p`1 · e−(k−1)(1−ε/4)np0 .

We once again obtain

Pr[
⋃

(C,S)

(EC ∧ EC,S)] = Oε,k((log n)2k · n−(k−1)(1+ε/2)/k) = o(1),

and the property follows.

We note that the proof actually shows that we could replace N3
G+(v) with N `

G+(v) for any
constant ` ∈ N. For our purposes, the third neighbourhood suffices.

2.2 Properties of random graphs

In this subsection we establish some further, more general properties of random graphs which
we rely on in the later sections. The following is a well known bound on the number of edges
between sets of vertices in random graphs (see, e.g. [25, Corollary 2.3]).

Lemma 2.7. Let p = p(n) ≤ 0.99. Then G ∼ Gn,p a.a.s. has the property that for every two
(not necessarily disjoint) subsets X,Y ⊆ V (G) the number of edges with one endpoint in X and
the other in Y satisfies:

|eG(X,Y )− |X||Y |p| ≤ c
√
|X||Y |np,

for some absolute constant c > 0.

Lastly, we show that if p is not too large then the neighbourhood of every two vertices is almost
disjoint.

Lemma 2.8. If p = o(n−5/6) then G ∼ Gn,p a.a.s. has the property that every two distinct
vertices have at most two common neighbours, i.e. |NG(u) ∩ NG(v)| ≤ 2 for all distinct u, v ∈
V (G).

Proof. It is sufficient to show that there are no two vertices with a common neighbourhood of
size three. The probability that there exists a pair of vertices u, v ∈ V (G) violating this property
is at most (

n

2

)(
n− 2

3

)
p6 ≤ n5p6 = o(1).

This completes the proof.

3 Perfect matchings

Let {Gi} denote the random graph process. Recall that Theorem 1.2 states that a.a.s. for every
m ≥ 1+ε

4 n log n we have that the subgraph of Gm obtained by removing isolated vertices is
resilient with respect to containing a perfect matching. As remarked earlier, Gm has the same
distribution as Gn,m thus an obvious way to prove this statement would be to estimate for each
m the probability that Gn,m has the resilience property and apply a union bound. Unfortunately,
this probability is roughly 1 − e−α·2m/n, for some small constant α > 0, which is too weak to
cover all the values of m which are of order n log n. This is not surprising as typically random
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graphs fail to satisfy a property involving spanning subgraphs with a probability that is only
exponential in the average degree. We go around this issue by using the following strategy:
rather than handling each graph individually, we bundle consecutive graphs in groups of size
roughly εn log n. The following proposition shows that almost surely all graphs in such a group
have the desired property. A union bound over constantly many groups thus implies that the
theorem holds for all m ∈ {1+ε

4 n log n, . . . , Cn log n}, for some large constant C of our choice.
The remaining values of m can then be treated one at a time using a result of Sudakov and
Vu [33], which gives a probability of at least 1− 1/n3 for all m ≥ Cn log n.

Proposition 3.1. For every constant ε > 0 and integer 1+ε
4 n log n ≤ m0 ≤ n(log n)2, there exist

positive constants δt(ε), δa(ε), and K(ε) such that the random graph process {Gi} a.a.s. has the
following property: For any integer m0 ≤ m ≤ (1 + ε/4)m0 the graph obtained by removing
all isolated vertices from Gm is (1/2 − ε, δt, 1, δa,K)-resilient with respect to having a perfect
matching.

We remark that the fact that we use the same ε in the lower bound for m0 as we do for the
resilience is without loss of generality, as we can always choose the smaller of the two for both.

Proof overview. The proof itself is somewhat technical, so let us first give a brief overview
before we dive into the details. To handle all graphs Gm for m ∈ [m0, (1+ε/4)m0] simultaneously
we change the way Gm is generated (akin to what has been indicated prior to Lemma 2.6).
Instead of generating Gm starting from an empty graph, we obtain it as follows: sample G− ∼
Gn,p0 and Gn,p′ , and choose a random ordering π of the edges in Gn,p′ . In particular, we choose
p0 and p′ such that almost surely G− has less than m0 edges (but not too much less) and
G+ = G− ∪ Gn,p′ has more than (1 + ε/4)m0 edges (again, not too much more). Now we can
generate each Gm as a union of G− and the first m− e(G−) edges according to π; it is a simple
exercise to show that this is the same as generating Gm from ‘scratch’.

It is crucial that all the properties of G− and G+ that we use (e.g. upper bound on the number
of edges between certain sets in G+, tiny and atypical vertices being far apart in both G− and
G+, etc.), are such that they are also satisfied by all graphs ‘squeezed’ in between them. While
this is a standard technique in showing hitting-time results, it raises problems in the resilience
setting. For example, vertices can be tiny or atypical in Gm without being tiny or atypical in
G− or G+.

We circumvent this by defining tiny vertices to be those vertices that are tiny in at least one
of G− or G+ with respect to a parameter δ′t which is somewhat larger than the value of δt in
the definition of (1/2− ε, δt, 1, δa,K)-resilience in Proposition 3.1. In this way we can guarantee
that every vertex in G that is tiny with respect to δt is also tiny in G− or G+ with respect to
δ′t. If we thus allow an adversary to remove all but one incident edge for all vertices that are
tiny in G− or G+ with respect to δ′t, this may result in the removal of more edges than allowed
by the definition of (1/2 − ε, δt, 1, δa,K)-resilience. Nevertheless, Lemma 2.6 still guarantees
that all those vertices are sufficiently far apart in G+ and thus also in G ⊆ G+. This, in turn,
implies that all these vertices can be covered in the matching even though they all have only one
edge left. Atypical vertices are handled similarly by considering atypical vertices in G− or G+

with respect to a parameter δ′a that is somewhat smaller than the value of δa in the definition
of (1/2 − ε, δt, 1, δa,K)-resilience. The rest of the proof then follows standard arguments for
finding a perfect matching in sparse random graphs (see, e.g. [19, 29]): greedily match all tiny
and atypical vertices, in that order, and show that the remaining graph can be equipartitioned
in a way that the resulting bipartite graph satisfies Hall’s matching criteria.

Proof. Let p0 = (1−ε/16)m0/
(
n
2

)
, p′ = (ε/2)p0, and let G+ be the union of independent random

graphs G− ∼ Gn,p0 and Gn,p′ . Then G+ is distributed as Gn,p1 , where p1 = 1− (1− p0)(1− p′).
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By Lemma 2.7 we have that the number of edges in G− is a.a.s. at most m0 and the number of
edges in G+ is a.a.s. at least (1 + ε/4)m0.

Let δ′t = δ2.6(ε/2), δ′a = min{ε/64, δ2.6(ε/2)}, c = c2.7, L = max{L2.6(ε/2), L3.2(ε)}. With this
at hand, we set the constants given in the statement of the proposition as follows: δt = δ′t/40,
δa = max{ε/4, 16δ′a}, and K = 2L.

For the rest of the proof consider some m0 ≤ m ≤ (1+ε/4)m0, and let G ⊆ Gm be the subgraph
obtained by removing all isolated vertices from Gm. Let V = V (G) denote its vertex set and let
TINY and ATYP be sets of vertices defined as:

TINY := (TINYp0,δ′t
(G−) ∪ TINYp1,δ′t

(G+)) ∩ V,
ATYP := (ATYPp0,δ′a(G−) ∪ATYPp1,δ′a(G+)) ∩ V.

By Lemma 2.5 there are at most n/ log3 n isolated vertices in G−, thus there are at most that
many in Gm as well. Our choice of constants then implies that for all m0 ≤ m ≤ (1 + ε/4)m0

we have

TINYp,δt(G) ⊆ TINY and ATYPp,δa(G) ⊆ ATYP,

where p = m/
(
v(G)

2

)
denotes the density of G (note that E(G) = E(Gm) as we only remove

isolated vertices). As noted in the discussion before the proof, if we show that for every graph
H of the form

degH(v) ≤


degG(v)− 1, if v ∈ TINY,

degG(v)−K, if v ∈ ATYP \ TINY,

(1/2− ε)np1, otherwise,

(1)

the graph G−H contains a perfect matching, then this implies that G is (1/2− ε, δt, 1, δa,K)-
resilient with respect to having a perfect matching. Note that this follows from the fact that
typical vertices in G have degree at most (1 + δa)np and thus removing an (1/2 − ε)-fraction
of their degree is less than removing (1/2− ε)np1 incident edges, since p1 > (1 + ε/4)p. In the
remainder of the proof we show that the graph G−H indeed contains a perfect matching.

First, note that G satisfies a series of properties:

(M1) the maximum degree of G is at most ∆(G) ≤ log3 n,

(M2) for all X,Y ⊆ V we have eG(X,Y ) ≤ |X||Y |p1 + c
√
|X||Y |np1,

(M3) for all v, u ∈ V we have |NG(v) ∩NG(u)| ≤ 2,

(M4) for all v ∈ V we have |N2
G(v) ∩ TINY| ≤ 1 and |N2

G(v) ∩ATYP| ≤ L.

(M5) |ATYP| ≤ 2n
log3 n

.

We show that the properties hold in G+, and hence in any subgraph G ⊆ G+. Indeed, we
have p ≤ 10 log2 n/n (by our assumptions on m0) thus (M1) follows from simple bounds on the
binomially distributed random variable and a union bound over all vertices. Property (M2) is
given by Lemma 2.7 and (M3) by Lemma 2.8. Next, (M4) holds by our choice of L and by
Lemma 2.6 applied with k = 2 and ε/2 as ε. Note that we can indeed apply Lemma 2.6 with
these parameters as p0 ≥ (1 + ε/2) log n/(2n). Lastly, (M5) holds by Lemma 2.5.

Consider graph H which satisfies (1), and let G′ = G − H and U := V \ ATYP. If G has an
odd number of vertices then we remove a vertex v ∈ TINY which is incident to u /∈ TINY, and
if such a vertex does not exist, then we remove one from V \ TINY. Owing to the property
(M4) this does not decrease the degree of any vertex from TINY and decreases the degree of a
vertex from V \ TINY by at most one. Note that all vertices v ∈ U have degree in G− at least
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(1− δ′a)np0, hence by (M4) we have:

degG′(v, U) ≥ degG−(v)− degH(v)− degG(v,ATYP)− 1

≥ (1− δ′a)np0 − (1/2− ε)np1 − L− 1

≥ (1/2− δ′a + ε/2)np1 − L− 1

≥ (1/2 + ε/4)np1,

as δ′a ≤ ε/64 and p0 ≥ p1/(1 + ε/2).

Due to property (M4) it is straightforward to greedily find a matching saturating all vertices
from TINY. Next, we match all remaining vertices from ATYP. Again we proceed greedily.
Consider an arbitrary, still unmatched vertex w ∈ ATYP \TINY. Note that degG′(w) ≥ K − 1
(here −1 comes from the fact that we might have removed one vertex from G to achieve an
even number of vertices). By (M4) and our choice of K we have |N2

G′(w) ∩ATYP| ≤ L ≤ K/2.
Therefore, at most K/2 neighbours of w have been matched so far, thus there is an available
one.

Let V (M) be the set of all vertices saturated in this partial matching. In particular V (M)
contains all vertices of ATYP. Set U1 := U \ V (M) and let G′′ := G′[U1] be the subgraph
induced by the remaining vertices. Observe that by property (M4) the degree of any vertex in
U1 decreases by at most 2L with respect to its degree in G′, hence for all vertices v ∈ U1 we
have

degG′′(v) ≥ degG′(v, U)− degG′(v, V (M)) ≥ (1/2 + ε/4)np1 − 2L ≥ (1/2 + ε/5)np1.

Take U1 = A ∪ B to be a uniformly at random chosen balanced bipartition of the set U1. We
now define the set of all vertices which have significantly less than the expected degree in either
A or B as

D := {v ∈ U1 : degG′′(v,A) < (1/2 + ε/7)|A|p1 or degG′′(v,B) < (1/2 + ε/7)|B|p1}

and call all such vertices degenerate.

Firstly, we show that there are not many degenerate vertices. As |A|, |B| ≥ (1/2 − o(1))n
by property (M5), we have from Chernoff bounds for hypergeometrically distributed random
variables that a fixed vertex v is degenerate with probability

Pr[v is degenerate] ≤ 2 Pr [degG′′(v,A) < (1/2 + ε/7)|A|p1] ≤ e−2γnp1 ≤ n−2γ ,

for some γ = γ(ε) > 0. Consequently, by Markov’s inequality there are at most n1−γ degenerate
vertices, i.e. |D| ≤ n1−γ . Next we show that the degenerate vertices cannot be ‘too close’ in G′′.

Claim 3.2. There exists a positive constant L(ε) such that a.a.s. for every v ∈ U1 we have
|N2

G′′(v) ∩D| < L.

Proof. Consider some vertex v ∈ V (G′′) and a subset Dv ⊆ N2
G′′(v) of size L. What is the

probability that a random equipartition A∪B of V (G′′) makes all the vertices in Dv degenerate?

First, by property (M3) we know that for every vertex u ∈ Dv there are at least

(1/2 + ε/5)np1 − 2L ≥ (1/2 + ε/6)np1 (2)

vertices in its neighbourhood in G′′ which do not belong to the neighbourhood of any other
vertex in Dv \ {u}. Let us denote such vertices with N∗u .

If all vertices in Dv are degenerate, then there has to exist a subset D′v ⊆ Dv of size at least L/2
such that all vertices in D′v either have too few neighbours into A or too few neighbours into B.
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By symmetry we may assume that this set is A. That is, we have |A ∩N∗u | ≤ (1/2 + ε/7)|A|p1

for every u ∈ D′v. Therefore,∣∣∣A ∩ ⋃
u∈D′v

N∗u

∣∣∣ ≤ (1/2 + ε/7)|A|p1|D′v|.

Let ED′v denote the event of this happening. From (2) we have∣∣∣ ⋃
u∈D′v

N∗u

∣∣∣ ≥ (1/2 + ε/6)np1|D′v|.

Thus, as A is a randomly chosen subset of linear size, Chernoff bounds for hypergeometrically
distributed random variables show

Pr[ED′v ] ≤ e
−γLnp1 , (3)

for some γ = γ(ε) > 0 not depending on L. To summarise, we can bound the probability that all
the vertices in Dv are degenerate by applying (3) together with a union bound over all possible
choices for D′v. Finally, we take a union bound over all vertices v and sets Dv. There are n

choices for v and at most
((log3 n)2

L

)
choices for Dv ⊆ N2

G′′(v) of size L (which follows from (M1)).
The expected number of vertices for which there exists a set Dv of size L consisting solely of
degenerate vertices is then at most

n · (log n)6L · 2L · e−γLnp1 = o(1),

for L > 0 sufficiently large. In other words, for L large enough no such set exists with probability
1− o(1), as claimed.

Similarly as before, we greedily construct a partial matchingMD that saturates all the degenerate
vertices. For an arbitrary degenerate vertex v ∈ D we have degG′′(v) ≥ (1/2 + ε/5)np1 and as
there cannot be more than L degenerate vertices in N2

G′′(v) by Claim 3.2, there is a vertex
available to match v to.

Let V (MD) be the set of all vertices saturated in this partial matching and let A′ := A\V (MD)
and B′ := B \ V (MD). Again by Claim 3.2, for all v ∈ (A ∪B) \ V (MD) we get

degG′′(v,A
′) ≥ (1/2 + ε/7)|A|p1 − 2L ≥ (1/4 + ε/16)np1,

and analogously

degG′′(v,B
′) ≥ (1/2 + ε/7)|B|p1 − 2L ≥ (1/4 + ε/16)np1,

as |A|, |B| > (1/2− o(1))n. However, we might not have |A′| = |B′| any more. Assume w.l.o.g.
that |A′| > |B′| and note that |A′| ≤ |B′| + |V (MD)|. In order to find a balanced bipartition
we thus need to redistribute at most |D| ≤ n1−γ vertices, for some γ > 0. To achieve this we
build a 2-independent set in A′, i.e. an independent set in which no two vertices have a common
neighbour, of size at least n1−γ . Recall, from property (M1) we have ∆(G) ≤ log3 n, thus a
straightforward greedy construction shows that there exists a 2-independent set of size at least
n/ log7 n ≥ n1−γ in A′, which is more than enough for our purposes.

Let A′′ and B′′ be the two sets after moving the vertices belonging to the 2-independent set into
B′. Then |A′′| = |B′′| (by construction) and vertices in A′′ (respectively, B′′) have degree at least
(1/4 + ε/16)np1 − 1 ≥ (1/4 + ε/17)np1 in B′′ (respectively, A′′), as we moved a 2-independent
set.

It remains to find a perfect matching in the bipartite graph G′′[A′′, B′′]. This is easily achieved
through Hall’s matching criteria (see, e.g. [10]). Recall its statement: if each subset S ⊆ A′′ of
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size at most |A′′|/2 has at least |S| neighbours in B′′ (and similarly for S ⊆ B′′), then G′′[A′′, B′′]
contains a perfect matching. We now verify that this is indeed the case.

Let S ⊆ A′′ be an arbitrary subset of size s. The number of edges between any two disjoint
subsets of G′′ of size s ≤ n/4 is at most s(np1/4 + c

√
np1), by property (M2). On the other

hand however, the minimum degree condition in G′′ yields that the number of edges between S
and B′′ is at least s(1/4 + ε/17)np1, which implies |N(S)| > s. This completes the proof of the
proposition.

Having Proposition 3.1 at hand we now complete the proof. Let us first, as promised in the
introduction, restate Theorem 1.2 in terms of stronger resilience.

Theorem 3.3. Let ε > 0 be a constant and consider the random graph process {Gi}. There
exist positive constants δt(ε), δa(ε), and K(ε) such that a.a.s. for every m ≥ 1+ε

4 n log n we have
that the graph obtained from Gm by deleting all isolated vertices is (1/2− ε, δt, 1, δa,K)-resilient
with respect to containing a perfect matching.

Proof. Let C be a sufficiently large constant. If m ≥ Cn log n then the random graph Gn,m does
not contain atypical vertices. Therefore, by [33, Theorem 3.1] the statement holds for every
such (fixed) m with probability at least 1 − e−α·C logn, for some small constant α > 0, thus a
union bound implies that it holds for all m ≥ Cn log n simultaneously. As for the rest, consider
intervals of the form [

1 + iε

4
n log n,

1 + (i+ 1)ε

4
n log n

)
for i ∈ {1, . . . , Cε}, where Cε is such that the last interval contains Cn log n. For each interval
the conclusion of Proposition 3.1 holds with probability 1−o(1), thus a union bound shows that
it a.a.s. holds for all intervals. This concludes the proof.

Proof of Theorem 1.2. The assertion follows directly from Lemma 2.4 and Theorem 3.3.

4 Hamiltonicity

The so-called Pósa’s rotation-extension method introduced in [31] is nowadays a standard ap-
proach for constructing Hamilton cycles in random graphs, cf. also [4, 14, 15, 22, 24]. The
problem with having edge probabilities near (or even below) the connectivity threshold, is that
then the random graph does not satisfy the expansion properties needed to apply the method.
We go around this by partitioning the vertex set into typical and atypical vertices. The subgraph
induced by the vertices of typical degree satisfies the expansion properties required to apply the
rotation-extension technique and we thus get a Hamilton cycle in this subgraph by a standard
approach. Our new contribution is to show how to extend this cycle to also contain all atypical
vertices.

Towards this goal we make use of the facts given by Lemma 2.6, that is that atypical vertices
do not clump. This allows us to modify the rotation-extension procedure from [27] such that it
only uses the expansion properties of typical vertices. In the next section we review some basic
notions and state necessary lemmas which are then used in the subsequent section to derive
Theorem 1.4.

4.1 Backbone graphs and boosters

The central notion of the rotation-extension method is that of boosters. A booster is a non-edge
in a graph G whose existence would increase the length of a longest path in G or close a Hamilton
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path to a Hamilton cycle. The idea behind the rotation-expansion technique is that a graph
which is not Hamiltonian contains so many boosters that adding a few random edges is highly
likely to contain one of them. The name ‘rotation-extension’ comes from the way how boosters
are obtained (rotation) and the fact that a longest path of every non-Hamiltonian graph can be
increased by adding an edge in place of a booster (extension). We now make this precise.

Definition 4.1 (Boosters). Given a graph Γ, we say that a non-edge {u, v} /∈ E(Γ) is a booster
with respect to Γ, if either Γ + {u, v} is Hamiltonian or adding {u, v} to Γ increases the length
of a longest path. For a vertex v ∈ V (Γ), we denote by BΓ(v) the set of boosters associated
with v:

BΓ(v) = {u ∈ V (Γ) \ (NΓ(v) ∪ {v}) : {v, u} is a booster}.

A standard strategy for implementing the rotation-extension technique is to split the given
graph into two graphs: a ‘backbone’ graph responsible for obtaining boosters, and the remainder
responsible for finding real edges corresponding to boosters. As we are dealing with subgraphs
of random graphs, rather than random graphs themselves, it is convenient to capture the main
pseudorandom properties which are used.

Definition 4.2 (Backbone graph). Given α, q ∈ (0, 1) and an integer K ≥ 1, we say that a
graph Γ with n vertices is an (α,K, q)-backbone graph if there exists a partition of its vertex set
V (Γ) = U ∪W1 ∪W2 such that the following holds:

(P1) |W1 ∪W2| ≤ n
log2 n

,

(P2) for every v ∈W1 we have degΓ(v) = 2 and for every u ∈W2 we have degΓ(u) ≥ 2K,

(P3) for every v ∈W1 we have N2
Γ(v) ∩W1 = ∅,

(P4) for every v ∈ V (Γ) we have |N2
Γ(v) ∩W1| ≤ 2 and |N2

Γ(v) ∩W2| ≤ K, and

(P5) for all S ⊆ U we have

|NΓ(S)| ≥

{
|S|√nq, if |S| < K/q,

(1/2 + α/2)n, if |S| ≥ K/q.

The role of the sets W1 and W2 and properties (P1)–(P4) is to capture properties of tiny and
atypical vertices in a random graph with density q. Property (P5) states that the subgraph
induced by typical vertices has good expansion properties.

The next lemma shows that a backbone graph contains many boosters. It can be proven similarly
as [27, Lemma 3.2], with slight modifications which allow us to deal with the vertices in W1 and
W2. We defer the proof to Section 4.3.

Lemma 4.3. For every α, δ > 0, there exists a positive constant K(α) such that the following
holds for q ≥ δ log n/n. Let Gq be a graph with n vertices satisfying the property of Lemma 2.7
for q (as p) and some constant c′ (as c), and Hq ⊆ Gq a graph with ∆(Hq[U ]) ≤ (1/2− 2α)nq,
for some U ⊆ V (Gq). Then an (α,K, q)-backbone graph Γ with a witness partition V (Γ) =
U ∪ W1 ∪ W2, such that Γ[U ] = Gq[U ] − Hq[U ], is either Hamiltonian or there are at least
(1/2 + α)n vertices v ∈ U such that |BΓ(v) ∩ U | ≥ (1/2 + α)n.

Note that rather than asking for Γ = Gq −Hq, we only require the subgraph of Γ induced by U
to be given by Gq[U ]−Hq[U ]. The way we exploit such a weaker requirement becomes apparent
in the next section. As the notation q in the previous lemma already indicates, we obtain an
(α,K, q)-backbone graph Γ by considering a random subgraph with density q of some graph G.

The next lemma states that given a sufficiently sparse graph Γ with many boosters, a random
graph with appropriate density is likely to contain plenty of edges corresponding to them.
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Lemma 4.4. For every α > 0 there exists a positive constant µ(α) such that for p ≥ log n/(3n),
the random graph G ∼ Gn,p a.a.s. satisfies the following. Let Γ be a graph with e(Γ) ≤ µn2p
and U ⊆ V (G) a subset of vertices such that Γ[U ] ⊆ G. If there are at least (1/2 + α)n
vertices v ∈ U such that |BΓ(v) ∩ U | ≥ (1/2 + α)n, then there exists a vertex v ∈ U satisfying
|NG(v,BΓ(v) ∩ U)| > np/2.

The proof of the lemma is fairly standard and goes along the lines of the proof of [27, Lemma
3.5]; we include it for completeness in Section 4.3.

4.2 Proof of Theorem 1.4

Similarly as in the case of perfect matchings, instead of proving Theorem 1.4 directly, we first
show a proposition which considers only a small range of m, until m = Cn log n.

Proposition 4.5. For every constant ε > 0 and integer m0 ≥ (1 + ε)n logn
6 there exist positive

constants δt(ε), δa(ε), and K(ε) such that the random graph process {Gi} a.a.s. has the following
property: For every integer m0 ≤ m ≤ (1 + ε/6)m0, the 2-core of Gm is (1/2 − ε, δt, 2, δa,K)-
resilient with respect to having a Hamilton cycle.

The general strategy of the proof is similar as in the case of perfect matchings. We first sample
two random graphs G− ∼ Gn,p0 and Gn,p′ and look at their union G+ = G− ∪Gn,p′ . The choice
of densities p0 and p′ is such that for all values of m ∈ [m0, (1 + ε/6)m0] the graph Gm is a.a.s.
‘in between’, that is G− ⊆ Gm ⊆ G+.

Let G denote the 2-core of Gm and let H be a graph removed by the adversary, as in Defini-
tion 2.3. We split the graph G − H into a sparse graph Γ′ which mostly contains edges from
G−−H (edges outside of G− are borrowed to handle atypical vertices), and the rest G−H−Γ′.
Ideally, we would like that Γ′ is a backbone graph. For m close to n log n/6, the graph G contains
short paths between two tiny vertices, some of which exist in Γ′ as well preventing it from satis-
fying (P3). We circumvent this by constructing a new graph Γ from Γ′ by contracting all paths
of length at most two between tiny vertices. As tiny vertices do not clump, this has only a mild
impact on the structure of the graph and all the other properties remain satisfied. Due to these
contractions the graph Γ is not a subgraph of G−H any more, however, the subgraph induced
by typical vertices which are not a part of contracted paths, is. This allows us to apply Lemma
4.3 to conclude that such Γ is either Hamiltonian in which case we are done by ‘unrolling’ the
contracted vertices, or contains many boosters between ‘real’ vertices of G. Using Lemma 4.4,
we subsequently show that many such boosters appear in G−H which allows us to complete a
Hamilton cycle.

We point out that by requiring m just a bit larger, that is m ≥ (1+ε)n log n/4, would be enough
for (P3) to hold already in Γ′ and the contraction process would not be necessary.

Proof. Let p0 = (1−ε/16)m0/
(
n
2

)
, p′ = (ε/2)p0, and let G+ be the union of independent random

graphs G− ∼ Gn,p0 and Gn,p′ . Then G+ is distributed as Gn,p1 , where p1 = 1− (1− p0)(1− p′).
By Lemma 2.7 we a.a.s. have both e(G−) ≤ m0 and e(G+) ≥ (1 + ε/6)m0.

Let δ′t = δ2.6(ε/2), δ′a = min{ε/64, δ2.6(ε/2)}, c = c2.7, L = max{L2.6(ε/2), L4.6(ε)}, µ =
µ4.4(ε/4), c′ = c′(c, µ) sufficiently large (cf. (4)), and set the constants given in the statement of
the proposition as follows:

δt = δ′t/40, δa = max{ε/4, 16δ′a}, and K = max{40L,
(
64c′/ε

)2}.
For the rest of the proof consider some m0 ≤ m ≤ (1 + ε/6)m0. Let G be the 2-core of Gm
and set V = V (G). Note that G can be obtained using the following procedure: initially set
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G = Gm, and as long as G contains a vertex of degree at most one, remove it. Let R denote
the set of removed vertices. The definition of the procedure then implies that there are at most
|R| edges incident to R in Gm. By Lemma 2.6 applied to G+ (with k = 3), each vertex has at
most two neighbours in TINYp0,δ′t

(G−) thus no vertex which is not in TINYp0,δ′t
(G−) can ever

be removed. This also implies that the degree of every vertex decreases by at most 2. As thus
R ⊆ TINYp0,δ′t

(G−), Lemma 2.5 implies |R| = O(n/ log3 n).

Similarly as in the proof of Proposition 3.1, we define TINY and ATYP as follows:

TINY := (TINYp0,δ′t
(G−) ∪ TINYp1,δ′t

(G+)) ∩ V,
ATYP := (ATYPp0,δ′a(G−) ∪ATYPp1,δ′a(G+)) ∩ V.

Using the previous observation on the number of removed vertices and edges, it is easy to see
that for all m0 ≤ m ≤ (1 + ε/6)m0 we have

TINYp,δt(G) ⊆ TINY and ATYPp,δa(G) ⊆ ATYP,

where p = e(G)/
(
v(G)

2

)
. Consider a graph H ⊆ G such that

degH(v) ≤


degG(v)− 2, if v ∈ TINY,

degG(v)−K, if v ∈ ATYP \ TINY,

(1/2− ε)np1, otherwise.

We show that G − H contains a Hamilton cycle, which in turn implies that G is (1/2 −
ε, δt, 2, δa,K)-resilient with respect to Hamiltonicity (as in the case of perfect matchings).

The key to our proof is the fact that tiny and atypical vertices cannot be clumped up in G,
captured by the following properties:

(H1) for all v ∈ V we have |N3
G(v) ∩ TINY| ≤ 2 and |N2

G(v) ∩ATYP| ≤ L,

(H2) every cycle C ⊆ G of size at most 6 contains at most one vertex from TINY.

By Lemma 2.6 applied for k = 3 and ε/2 as ε, one easily checks that properties (H1) and (H2)
hold in G+, and hence in any subgraph G ⊆ G+. Note that we can indeed apply Lemma 2.6
with such parameter, as p0 ≥ (1 + ε/2) log n/(3n).

In the first step of the proof we carefully construct a backbone graph Γ. Set q = (µ/4)p0, where
µ = µ4.4(ε/4), and consider a graph Gq obtained by keeping every edge of G− independently with
probability µ/4. Moreover, remove from Gq all vertices which are not in V . By the discussion
from the beginning of the proof, removing such vertices decreases the degree of every vertex in
Gq by at most 2. We now show that Gq a.a.s. has certain properties.

As G− a.a.s. satisfies the assertion of Lemma 2.7, we also have that Gq a.a.s. satisfies

|eGq(X,Y )− |X||Y |q| ≤ c′
√
|X||Y |nq, (4)

for every two subsets X,Y ⊆ V , for some sufficiently large constant c′ depending on c and µ.
Next, we claim that most of the vertices in V \ATYP have degree at least (1− 2δ′a)nq in Gq, as
well as degree at most (1/2− ε/2)nq in Hq = Gq ∩H. Fix v ∈ V \ATYP. By Chernoff bounds
we get

Pr[degGq(v) < (1− 2δ′a)nq] + Pr[degHq(v) > (1/2− ε/2)nq] ≤ e−Ωε(nq) ≤ n−2γ ,

for some γ = γ(ε) > 0. Therefore, by Markov’s inequality there are at most n1−γ vertices which
satisfy at least one of these two conditions. We call all such vertices degenerate and denote them
by D. Similarly as atypical vertices, such vertices cannot be clumped in G, and thus neither in
Gq. This is formalised in the following claim.
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Claim 4.6. There exists a positive constant L(ε) such that a.a.s. for every v ∈ V we have
|N2

G(v) ∩D| < L.

Proof. The proof goes along the lines of that of Claim 3.2. We omit the details.

In conclusion, Gq a.a.s. satisfies (4), every vertex in V \(ATYP∪D) has degree at least (1−2δ′a)nq
in Gq and at most (1/2 − ε/2)nq in Hq, and no vertex has more than L vertices from D in its
second neighbourhood. From now on we choose one such graph Gq. In particular, (4) implies
e(Gq) ≤ (µ/4)n2p0.

We now construct a graph Γ′ which is ‘almost’ a backbone graph, and then convert it into a
true backbone graph, thereby overcoming the issue of two tiny vertices being on a short path, as
discussed previously. Let W ′1 := TINY, W ′2 := (ATYP ∪D) \ TINY, and U ′ := V \ (W ′1 ∪W ′2).
Take Γ′ to be a graph on the vertex set V obtained by taking all edges in Gq[U

′]−Hq[U
′] and

adding some of the edges of G−H incident to vertices in W ′1 ∪W ′2 such that for every v ∈ W ′1
we have degΓ′(v) = 2, and for every u ∈ W2 we have degΓ′(u) ≥ K − 2 (by requiring that all
v ∈W1 have degΓ′(v) = 2 we potentially remove at most two incident edges to a vertex u ∈W ′2).
Note that e(Γ′) ≤ (µ/2)n2p0. Recall that property (P3) does not necessarily hold in Γ′, thus
we cannot claim it is a backbone graph. We take care of this issue as follows: let Γ be a graph
obtained from Γ′ by contracting every uv-path of length at most two, where u, v ∈ W ′1, and
keeping exactly two edges incident to the newly obtained vertex, namely the ones incident to
u resp. v in Γ′ that are not a part of the uv-path. We also remove all multi-edges and loops.
Observe that Γ is well-defined since there cannot exist a vertex w ∈ V which belongs to two
such paths uv-paths, due to property (H1).

In order to show that Γ is a backbone graph, we first define a witness partition U ∪W1 ∪W2.
Let X be the set of vertices of Γ obtained by contractions, Y be the set of all vertices in W ′2∪U ′
that are inner vertices of some contracted path, and Z the set of all vertices of W ′1 that are the
endpoints of such paths. We now define

W1 := (W ′1 \ Z) ∪X, W2 := W ′2 \ Y, and U := U ′ \ Y.

In other words, W1 consists of all newly formed vertices (obtained by contractions) as well as
all remaining vertices of W ′1, and W2 and U consist of all vertices in W ′2 resp. U ′ that are not a
part of any contracted path.

We are now ready to show that Γ is an (ε/4,K/10, q)-backbone graph. Recall that |V | ≥
n− n/ log2 n. For every vertex v ∈ U ∪W2 we have

degΓ(v) ≥ degΓ′(v)− 1, (5)

by using property (H1). We now check all the requirements of Definition 4.2:

(P1) follows by Lemma 2.5 and an upper bound on the size of D:

|W1 ∪W2| ≤ |ATYP|+ |D| ≤ 2n

log3 n
+ n1−γ ≤ n

2 log2 n
.

(P2) follows by construction. Indeed, if for any v ∈ W1 we have degΓ(v) < 2, then one easily
checks that we arrive to a contradiction with either (H1) or (H2). The second part of the
property follows from (5).

(P3) also holds by construction: if there still exists a path of length at most two between two
vertices from W1, then this would contradict (H1).

(P4) follows from (H1), Claim 4.6, and our choice of K, since all the edges incident to the
vertices in W1 already exist in Γ′ and as the number of vertices from W2 that are in N2

G(v) of
any vertex v can at most double in Γ.
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Lastly, we show the expansion properties of vertices in U , i.e. property (P5). By (5) and the
fact that NΓ′(S) ⊆ NΓ′(S

′) whenever S ⊆ S′, it suffices to show

|NΓ′(S)| ≥

{
|S|√nq + |S|, if |S| < K/(10q),

(1/2 + ε/8)n+ |S|, if |S| = bK/(10q)c.

For every v ∈ U we have

degΓ′(v, U) = degGq(v)− degHq(v)− degGq(v,W1 ∪W2)

≥ (1− 2δ′a)nq − (1/2− ε/2)nq −K/10− 2

≥ (1/2 + ε/4)nq,

by (H1), Claim 4.6, and our choice of K and δ′a. Take S ⊆ U to be an arbitrary subset of size
|S| ≤ K/(10q) and let T := NΓ′(S) ∩ U . From the previously obtained bound on degΓ′(v, U),
we have

eΓ′(S, T ) ≥ |S|(1/2 + ε/4)nq.

Assume towards a contradiction that |T | < 2|S|√nq. Then, from Γ′[U ] ⊆ Gq[U ] and (4) we
derive

|S|(1/2 + ε/4)nq ≤ eΓ′(S, T ) ≤ |S||T |q + c′
√
|S||T |nq ≤ 2|S|2(nq)1/2q + 2c′|S|(nq)3/4,

which is a contradiction. On the other hand, if |S| = bK/(10q)c then, assuming |T | < (1/2 +
ε/8)n+ εn/16, again from (4) we have

|S|(1/2 + ε/4)nq ≤ eΓ′(S, T ) ≤ |S||T |q + c′
√
|S||T |nq < |S|(1/2 + 3ε/16)nq + ε|S|nq/16,

where the last inequality follows from our choice of K. We have a contradiction once again.

To conclude, we obtained an (ε/4,K/10, q)-backbone graph Γ with the witness partition V (Γ) =
U ∪W1 ∪W2 and at most (µ/2)n2p0 edges, and graphs Gq and Hq applicable by Lemma 4.3.

Note that, by the construction of Γ, the following is now true: if for any subset of edges
E′ ⊆ E(G−[U ] − H) the graph Γ + E′ is Hamiltonian, then G − H is Hamiltonian as well.
Indeed, let xuv ∈ X be some vertex obtained by contracting a uv-path in Γ′. The two edges
incident to xuv in Γ + E′ necessarily lie on a Hamilton cycle. Moreover, as they correspond to
two edges in Γ′ ⊆ G −H, one incident to u and the other to v, by splitting every such vertex
xuv back into the uv-path we obtain a Hamilton cycle in G−H.

The following claim, akin to [4, Lemma 3.4], allows us to complete the proof.

Claim 4.7. [4] If for every subset E′ ⊆ E(G−[U ]−H) of |E′| ≤ n edges such that Γ +E′ is not
Hamiltonian there is a vertex v ∈ U satisfying

|NG(v) ∩BΓ+E′(v)| > degH(v),

then G−H is Hamiltonian.

Let E′ ⊆ E(G−[U ] − H) be a set of edges of size at most |E′| ≤ n. It is not too difficult to
see that Γ + E′ is an (ε/4,K/4, q)-backbone graph. Indeed, none of the properties (P1)–(P3)
can be violated by adding edges with both endpoints in U . Similarly, the expansion property
(P5) is not affected by addition of edges. Lastly, property (P4) holds as Γ + E′ ⊆ G−[U ] −H
and by referring to (H1). By Lemma 4.3 applied with Gq (for ε/4 as α) we get that the set
of vertices v ∈ U such that |BΓ+E′(v)| ≥ (1/2 + ε/4)n is of size at least (1/2 + ε/4)n. As
e(Γ+E′) ≤ µn2p, by Lemma 4.4 applied with ε/4 as α and G− as G, there exists a vertex v ∈ U
with |NG−(v)∩BΓ+E′(v)| > np0/2 > degH(v). Finally, Claim 4.7 implies that the graph G−H
is Hamiltonian.
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Having Proposition 4.5, the proof of the following theorem and Theorem 1.4 are identical to the
proofs of Theorem 3.3 and Theorem 1.2, using [27, Theorem 1.1] instead of [33, Theorem 3.1]
to handle m ≥ Cn log n.

Theorem 4.8. Let ε > 0 be a constant and consider the random graph process {Gi}. There
exist positive constants δt(ε), δa(ε), and K(ε) such that a.a.s. for every m ≥ 1+ε

6 n log n we have
that the 2-core of Gm is (1/2− ε, δt, 2, δa,K)-resilient with respect to being Hamiltonian.

4.3 Proof of Lemma 4.3 and Lemma 4.4

Let us first give a brief outline of how to apply Pósa’s rotation-extension technique to backbone
graphs with the goal of constructing long paths.

Assume Γ is a backbone graph and let P = v0, . . . , v` be a path in Γ. If {v0, v`} is an edge in
Γ then such a path can be closed into a cycle. If the obtained cycle does not cover all vertices,
then one easily checks that properties (P2)–(P5) imply connectivity of Γ and we can thus extend
P into a path longer than P .

Suppose that P cannot be extended and let {v0, vi} be an edge in Γ for some 2 ≤ i ≤ `−1. Then
the path P ′ = vi−1, . . . , v0, vi, . . . , v` is another path in Γ of the same length `. We say that P ′

is obtained from P by a rotation around the endpoint v0, with pivot point vi, and broken edge
{vi−1, vi} (see, Figure 1). Observe that by performing a rotation we can now possibly obtain
a cycle by adding the edge {vi−1, v`} as well. Otherwise, we perform more rotations to obtain
more boosters. The rotation is repeated until we find a closing edge in Γ.

v0 v1 vi−1 vi vi+1 v`−1 v`

P

v0 v1 vi−1 vi vi+1 v`−1 v`

P ′

Figure 1: Rotation of the the path P around the fixed endpoint v0, with pivot point vi, and the broken
edge {vi−1, vi}. Pairs of red vertices denote the endpoints of the paths, i.e. boosters.

In our setting, we have to be careful with vertices of low degree. This is why we need properties
(P2)–(P4). We illustrate in particular why we need property (P3). Suppose P = v0, . . . , v`
is a longest path in Γ such that v0, vi−1 ∈ W1 for some vi which is the only neighbour (other
than v1) of v0 on the path P . Rotating around v0 with pivot point vi yields a path P ′ =
vi−1, . . . , v0, vi, . . . , v`. Now, the only rotation that can be performed around vi−1 brings the
path P ′ back to where we started from. In conclusion, in such a situation we cannot prove that
Γ contains many boosters. Property (P3) guarantees that this cannot occur.

Proof of Lemma 4.3. Let P = v0, . . . , v` be a longest path in Γ. For a subset of vertices Z ⊆
V (P ) we write Z+ := {vi+1 : vi ∈ Z} and Z− := {vi−1 : vi ∈ Z}. For a vertex z we abbreviate
{z}+ to z+ and {z}− to z−.

We first show that there exists a longest path with both endpoints in U . Suppose v0 ∈ W2.
Then by (P2) and (P4) we know that there are at least K neighbours u ∈ NΓ(v) on the path P
which have u− ∈ U . Thus, by performing a single rotation around v0 with pivot point u we get a
path P ′ with an endpoint in U . Similarly, if v0 ∈W1 its only other neighbour on the path u has
u− belonging to either U or W2, by (P3). In any case, by performing at most two rotations we
reach a path P ′ with an endpoint in U . Repeating the same argument for v` yields the claimed
path P ∗ with both endpoints in U .

Phase 1: Initial rotations

The first phase consists of repeatedly rotating the first endpoint as in [27, Lemma 3.2 Step 1]
in order to obtain a set of at least n/4 new endpoints of paths of length ` that all contain the
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same vertices and all end in v`. Compared to [27], the only difference in our argument is that
we ignore all pivot points u with at least one of u, u+, and u− not belonging to U . As every
vertex can have at most K such neighbours u, one easily sees that all the calculations of [27]
essentially remain the same. Indeed, starting with X0 = {v0} and denoting by Xi the set of
endpoints obtained by exactly i rotations, we get

|Xi+1| ≥
1

2

(
|NΓ(Xi)| −K|Xi| − 3

i∑
j=0

|Xi|
)
.

Using identical calculations as in [27] yields |Xi+1| ≥ (nq/4)(i+1)/2, for all i ≥ 0 with |Xi| ≤ K/q.
Once we reach a set |Xm| = max{1, bK/qc}, which is easily observed to happen after at most
O(log n/ log log n) many steps, the above bound on the size of Xi+1, together with property
(P5), immediately implies |Xm+1| ≥ n/4.

Phase 2: Terminal rotation

At the end of the first phase we have a set X of at least n/4 possible endpoints. Let Y denote
the set of endpoints that can be generated by exactly one more rotation starting from X.

In [27, Lemma 3.2 Step 2] it is shown that by partitioning the path P into appropriately many
intervals, denoted by Pi, one can define pairs of vertex sets (Xi, Yi) such that there is no edge
between Xi and Yi in Gq − Hq, for every i. From Lemma 2.7 we know lower bounds on the
number of edges in EGq(Xi, Yi) and thus all these need to belong to Hq. In [27, Lemma 3.2 Step
2] it is shown that |Y | < (1/2 + α)n implies a contradiction to the degree assumption of Hq.
The only difference in our case is that we again need to ignore all pivot points v+ ∈ Pi with
v /∈ U (which should belong to Yi now), and similarly v−. However, as every interval Pi (in line
4 of the proof of Step 2) is of size at least n(log log n)1/2/(4 log n) and by (P1) each interval Pi
has at most o(|Pi|) such ‘bad’ vertices, we can simply ignore them since this contributes o(n2q)
many edges. All remaining calculations from [27, Lemma 3.2] remain the same and we obtain a
set of new endpoints of size at least (1/2 + α)n.

Phase 3: Rotating the other endpoint

Exactly as in [27, Lemma 3.2 Step 3] for every of the newly obtained (1/2 +α)n endpoints, we
analogously rotate the other endpoint to obtain the intended result.

We wrap-up by giving a proof of Lemma 4.4.

Proof of Lemma 4.4. Consider a graph Γ with at most µn2p edges and a subset U ⊆ V (G) such
that Γ[U ] ⊆ G and

A := {v ∈ U : |BΓ(v) ∩ U | ≥ (1/2 + α)n}

is of size |A| ≥ (1/2 + α)n. Take A′ ⊆ A to be a set of size |A′| = αn/2, and for every v ∈ A′
let B′(v) := (BΓ′(v) ∩ U) \ A′ and note that |B′(v)| ≥ (1/2 + α/2)n. By Chernoff bounds we
have that the probability of a fixed vertex v ∈ A′ having fewer than np/2 neighbours inside of
the set B′(v) in the graph G is at most e−Ωα(np). Since A′ is disjoint from all the sets B′(v),
these events are independent for different vertices v, u ∈ A′. Therefore, the probability that no
vertex v ∈ A′ has more than np/2 neighbours inside its respective set B′(v) in G is bounded by
e−Ωα(n2p). Hence, the probability of failure is upper bounded by

Pr ≤ e−Ωα(n2p) ·
∑

e(Γ′)≤µn2p

Pr[Γ′ ⊆ G].

The probability for a fixed graph with t edges to be a subgraph of G is pt and thus by a union
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bound over all such graphs, we get

Pr ≤ e−Ωα(n2p) ·
µn2p∑
t=1

((n
2

)
t

)
pt ≤ e−Ωα(n2p)

µn2p∑
t=1

(
en2p

t

)t
.

One easily sees that for 0 < µ ≤ 1 the right hand side is increasing for 1 ≤ t ≤ µn2p and hence
we may substitute t = µn2p to conclude

Pr ≤ e−Ωα(n2p) · (µn2p) ·
(
e

µ

)µn2p

= e−Ωα(n2p) · eO(µ log (1/µ)n2p) = o(1),

for sufficiently small µ depending on α.
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