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Abstract

Technologies for rapid detection of bacterial pathogens are crucial for securing the food supply. A
light-scattering sensor recently developed for real-time identification of multiple colonies has
shown great promise for distinguishing bacteria cultures. The classification approach currently
used with this system relies on supervised learning. For accurate classification of bacterial
pathogens, the training library should be exhaustive, i.e., should consist of samples of all possible
pathogens. Yet, the sheer number of existing bacterial serovars and more importantly the effect of
their high mutation rate would not allow for a practical and manageable training. In this study, we
propose a Bayesian approach to learning with a nonexhaustive training dataset for automated
detection of unmatched bacterial serovars, i.e., serovars for which no samples exist in the training
library. The main contribution of our work is the Wishart conjugate priors defined over class
distributions. This allows us to employ the prior information obtained from known classes to make
inferences about unknown classes as well. By this means, we identify new classes of informational
value and dynamically update the training dataset with these classes to make it increasingly more
representative of the sample population. This results in a classifier with improved predictive
performance for future samples. We evaluated our approach on a 28-class bacteria dataset and also
on the benchmark 26-class letter recognition dataset for further validation. The proposed approach
is compared against state-of-the-art involving density-based approaches and support vector
domain description, as well as a recently introduced Bayesian approach based on simulated
classes.
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1. INTRODUCTION

Outbreaks of methicillin-resistant Staphylococcus aureus [1], contamination of spinach and
ground beef with Escherichia coli O157:H7 [2,3], presence of Salmonella in peanut butter
[4,5], Listeria monocytogenes in ready-to-eat meats [6], or Clostridium botulinum in canned
chili sauce are just a few examples of recent public-health threats. Serious concerns about
bioterrorism and the possibility of intentional contamination of food products or agricultural
commaodities are not limited to bad science-fiction movies anymore [7-10].

Traditional bacteria recognition methods based on antibodies or genetic matching remain
labor intensive and time consuming, and involve multiple steps. Moreover, samples are
usually destroyed by these types of tests and thus are unavailable for further confirmatory
assessment.

To perform classification of bacteria in a label-free manner (i.e., without use of biochemical
reagents or genetic probes), a prototype system based on optical scattering technology,
called BActeria Rapid Detection using Optical scattering Technology (BARDOT) has
recently been developed [11]. In this system, bacterial colonies consisting of the progeny of
a single parent cell scatter 635-nm laser light to produce unique forward-scatter signatures.
Some examples of these scatter patterns are shown in Fig. 1. These scatter ‘fingerprints,’
which carry distinctive characteristics of bacterial phenotypes, are used for the off-line
training of a supervised classifier. Subsequently this classifier is employed to identify
bacterial colonies obtained from enriched samples submitted for testing. As currently
implemented the system shows remarkable accuracy for bacteria belonging to numerous
strains of Listeria, Staphylococcus, Salmonella, Vibrio, and E. coli.

1.1. Nonexhaustive Training Data

The goal of machine learning is to build robust models that, when deployed in a real-life
application, generalize well to as-yet unseen examples of the sample population. Among the
many factors that influence the generalizability of a learning algorithm, an exhaustive
training dataset is perhaps the most critical. A training dataset is exhaustive if it contains
samples from all classes of informational value. When some of the classes are not yet known
and hence not represented, the resulting training dataset is nonexhaustive. A classifier
trained using this dataset will misclassify a sample of a yet unseen class with probability 1,
making the associated learning problem ill defined.

Generally, in applications with evolving datasets, the existing set of known classes is by
definition nonexhaustive. To relate this to the bacterial detection application considered in
this study, for the purpose of training only the most prevalent serovars of bacteria are used,
as it is impractical to assume the presence of all bacteria types in the tested samples. This is
because the sheer number of serovars would not allow for a practical and manageable
training: Salmonella alone has over 2400 serovars. Additionally, bacteria are characterized
by a high mutation rate, which can influence their pathogenicity, and new emerging
pathogens may be rapidly introduced to a geographical area. Therefore, any training dataset
for bacteria is inherently nonexhaustive and collecting an exhaustive set is impossible. On
the other hand, classifying pathogenic bacteria as nonpathogenic would have unfortunate
consequences. Therefore, the current traditional supervised classifier should be
supplemented with a new rigorous machine-learning approach capable of addressing the
problem of the nonexhaustive nature of available training libraries.

1.2. Proposed Approach and Its Relation to Early Work

One particular area of machine learning that is related to the nonexhaustiveness problem is
anomaly detection [12-15]. Both anomaly detection and the problem of nonex-haustive
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learning aim to detect samples that are not represented in the training data, and in that regard
they can be considered similar. However, an anomaly by definition is something peculiar,
irregular, abnormal, or difficult to classify. Therefore anomalies can be considered outliers,
and as such they could be as different from each other as they are from ‘normal cases’ [15].
More specifically, anomalies do not necessarily have informational value and it is very
difficult if not impractical to model them. In contrast, samples originating from an unknown
class have informational value, and just like any class available in the training set they could
be modeled, were they known during training.

Another line of work that is related to the current research is developed for ‘novelty
detection’ [16-18]. Unlike anomalies, novelties originate from hidden, missing or not yet
known classes and thereby have informational value. Novelty detection is also sometimes
referred to in the literature as ‘novel class detection.” Most of the early work on novelty
detection is developed around one-class classification problems and uses either support
estimation [19, 20] or density-based models to tackle the nonexhaustive nature of training
datasets.

Our earlier work [21] that attempts to discover novelties in the presence of a large number of
classes differs from earlier studies by proposing an empirical Bayesian approach to deal with
nonexhaustive training datasets. In this method, all classes (known and unknown) are
assumed to have Gaussian distributions with a common covariance matrix. A prior is
defined over the mean vectors of the classes and its parameters are estimated using the
training data acquired from the known classes. A large number of samples are generated
from the prior to simulate the space of all classes. A new instance is classified using a
maximum likelihood (ML) classifier and is considered a novelty if it is classified into one of
the simulated classes. This attempt, although looks promising, has certain limitations. First,
the common covariance assumption is quite restrictive. Second, the Gaussian prior defined
for the mean vectors requires a very large number of classes to be available in the training
dataset, to avoid numerical problems in estimating the parameters of the prior. Third, as the
dimensionality increases, the number of simulated classes necessary to achieve higher
specificities increases exponentially.

What we present in the current study is a real-time system that works in a multiclass setting,
incorporates supervised classification and novelty detection together, and evaluates new
samples sequentially. Our approach, which assumes Gaussian distributions for all classes
(known and unknown), is based on Bayesian ML detection of novelties using a dynamically
updated training dataset. The assumption of Gaussianity implies that the resulting sample
covariance matrices are distributed according to a Wishart distribution. Since Wishart and
inverted Wishart are conjugate priors, we define an inverted Wishart distribution over the
covariance matrices as prior. Under this setting, the posterior distribution given the sample
covariance matrices is also an inverted Wishart distribution. Covariance matrices for each
class are estimated using the posterior means. Then, a ML classifier is designed using the
class data in the training set. When a new sample emerges, class-conditional likelihoods are
computed and the sample is classified to the class maximizing the likelihood provided that
the maximum value is above a designated threshold. If the likelihood lies below that value,
the sample is considered a novelty and a new class is created. The mean vector of this new
class is the sample itself, and its covariance matrix is estimated using the posterior mean.
Once the parameters are estimated, the existing set of known classes is augmented with this
newly created class. In this approach, the parameters of the classes known before training
are estimated once in the beginning, whereas those of newly created classes are recursively
updated as more samples are assigned to these classes via sequential classification.
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The proposed nonexhaustive learning algorithm can be confused with other algorithms
developed around the lines of the online/incremental learning concept. The current study
deals with the nonexhaustiveness of the classes and proposes an approach to identify
novelties before they are incorrectly classified into existing classes. On the other hand,
incremental/online learning deals with the issue of learning with the past and present data to
improve the classifier performance in general with no specific emphasis on novelty
detection. The main conceptual difference between our approach and incremental/online
learning is that we consider the initially existing set of classes as definitive. Samples from
these classes are obtained and validated using thorough procedures involving manual
processing. To avoid updating class parameters with potentially incorrectly classified
samples, only newly defined classes for novelties are updated as more samples are classified
into these classes. On the other hand, in incremental/online learning, the present data are
used to update all class definitions.

The rest of the article is organized as follows. Section 2 presents the technical details of our
algorithm. Sectiton 2.1 reviews ML detection and density-based approaches for identifying
novelties. Section 2.2 discusses the Gaussianity assumption for class-conditional
distributions. Section 2.3 presents Wishart and inverted Wishart conjugate priors for prior
modeling and posterior estimation of the covariance matrix. Section 2.4 introduces an
algorithm for detecting novelties and discovering new classes. Finally, experimental results
are included in Section 3. Therein, we first present results for the bacteria detection problem
and then use the benchmark letter recognition dataset for further validation of our approach.
The proposed approach is compared against other density-based approaches as well as
support vector domain description (SVDD) technique [19] and the simulated Bayesian
modeling approach presented by Dundar et al. [21].

2. NOVELTY DETECTION SYSTEM

In this section, we present the details of the proposed approach. Sections 2.1 and 2.2 briefly
review ML detection and its implementation with Gaussian class-conditional distributions.
Sections 2.3 and 2.4 discuss our contributions to novelty detection.

2.1. Bayesian Maximum Likelihood Detection

Density-based approaches use class-conditional likelihoods of samples to detect novelties. In
short, if the maximum of the class-conditional likelihoods is above a designated threshold,
then the sample belongs to one of the classes in the training library and is assigned the
corresponding class label; otherwise the sample is identified as belonging to an
unrepresented class, hence a novelty.

More formally, let Q, A, and T" denote the set of all, known, and unknown bacteria classes,
respectively, with Q. = AUT; A, K, and M are their corresponding cardinalities with A = K
+ M. The decision that minimizes the Bayes risk under the 0/1 loss-function assumption
assigns a new sample x* to the class with the highest posterior probability. More
specifically,

X" € wj sit. p?(Hil_x*)=m;jix{p,-(6,~|x*)}, )

where i = {1,..., A}. Here oj represents the ith class and 0i the parameters of its distribution.
The classifier obtained by evaluating this decision rule is known as a maximum a posteriori
classifier (MAP) [22].

Using Bayes’ rule, the above decision rule can be rewritten as follows:

Stat Anal Data Min. Author manuscript; available in PMC 2011 December 6.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Akova et al.

Page 5

fi(x*16)mi(6;) }

X' ew st pf((),-]x*):max{ —
i px*)

(2

where fi(x*| 6;) is the likelihood of x*, n(6;) is the prior, and p(x*) is the evidence. The
evidence p(x*) is the same for all classes, and hence can be removed from the above
formulation. When all classes are assumed a priori likely, (6i) can be dropped from (2) as
well. This leaves us with the ML decision function for classifying x*:

X" € W st f7(x"19)=max{fi(x"6,)}, @

where x* is considered a novelty if w! € T, and a sample of a known class if ; € A,

Since the set of classes is nonexhaustive fj(x*| 6;) cannot be computed for all classes and as a
result the decision function in (3) cannot be evaluated explicitly. We can express (3) in

terms of )} and rewrite it by separating fi(x*| 8;) of known and unknown classes as

h(x*)= x*is known  ifyy > v,
T\ xtisnovelty ify<y, @

where y = maXgi.oieay {fi (xX*107)} and v = maxi.;ery {fi (21 6)}-

Since no data are available for unknown classes, y cannot be explicitly estimated. In our
experiments, we consider y as a tuning parameter to optimize sensitivity at a desired
specificity or vice versa. In other words, y is the parameter to adjust for the compromise
between sensitivity and specificity of the system.

To summarize, if the conditional likelihood of a known class for a sample x* is less than v,
then x* is a sample from an unrecognized class; otherwise x* is a sample from a known class
and thus can be assigned a known class label.

2.2. Gaussianity Assumption and Covariance Estimation

The most common and effective way to treat data of unknown nature is to assume Gaussian
distributions for all classes, mj ~ N(j, Zi), 0; = {U;, Zi}-

With this assumption in place, Eq. (4) becomes

hx) x'isknown  if ming.,,en8i(x™) <7,
1(x")= . e
X"is novelty if min..,ea8i(x*)>v, (5)

where g;(x")=log(|Zi)+(x* — ;)" £ (x*y;) is the negative log-likelihood of class wj given x*
and |Zj| is the determinant of X;. For {i : wj € A}, H4j and Z; can be estimated from class-
conditional data available in the training set.

When dealing with datasets containing limited numbers of training samples and high
dimensionality, the covariance estimator plays an important role in the modeling of the
class-conditional distributions. The sample covariance can be obtained using the following
formula:
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Bm— (-l (X ]

n,-—l

(6)

where n; is the number of samples in class j, ey, is a vector of ones of size nj and y; are the
mean vectors estimated as

1
i= _Xien,-
K n; (7)

Here for notational simplicity all samples belonging to class w; are denoted in the matrix
form as Xj = [Xj; ... Xin;]-

When the number of samples available for a given class is less than d + 1, where d is the
dimensionality, the sample covariance becomes ill conditioned, i.e., the inverse does not
exist. In practice, a robust sample covariance requires many more samples thand + 1
because the number of parameters to estimate in a covariance matrix increases as the square
of the dimensionality. This phenomenon is known as the curse of dimensionality [23].

Although the research in covariance estimators using a limited number of samples with high
dimensionality has a long history with relatively well-established techniques, two main
approaches dominate the field. These are, regularized discriminant analysis (RDA) [24] and
empirical Bayes estimators [25]. RDA considers the mixture of sample and pooled
covariance and an identity matrix as an estimator, with their weights empirically estimated
by cross-validation. On the other hand, the Bayesian approach defines a pair of conjugate
prior distributions over the sample and true covariance matrices, and uses the mean of the
resulting posterior distribution as an estimator. In RDA, multiple samples from each class
are required to estimate the mixing weights by cross-validation, and thus to estimate the
covariance matrix, whereas in the Bayesian approach, the covariance estimator is a function
of the parameters of the prior distribution, which are estimated using samples of the known
classes.

Creating a new class for each detected novelty and defining the class by its mean and
covariance matrix form the core component of the proposed approach. The Bayesian
approach assumes a common prior for all classes (known and unknown) and estimates the
covariance matrix using the posterior mean. In that regard, the use of the Bayesian approach
makes intuitive sense in the nonexhaustive setting, mainly because we assume that there is a
common pattern among the class distributions of all classes and that it can be captured with
known classes only, provided that a sufficiently large number of them are available for
training. In the bacterial detection problem, although our training dataset represents only a
small portion of a potentially very large number of bacterial serovars, unlike traditional
machine learning problems, the number of available classes is still large enough to allow for
a reasonably robust estimation of the prior distribution. This facilitates the estimation of the
covariance matrices for the new classes, which is especially important when defining a class
for the first time using the sample detected as novelty. In the following section, we will
present a special family of conjugate priors for covariance estimation under the Bayesian
framework.

2.3. Family of Wishart and Inverted-Wishart Conjugate Priors

The assumption of Gaussian samples, i.e., o;j ~ N(i;, Z;), implies that, the sample covariance
matrices Sj, i = {1,...,K}, where K is the number of known classes, are mutually independent
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with f;S; ~ W(Z;, f;). Here f; = nj — 1 and W(Z;, f;) denotes the Wishart distribution with f;
degrees of freedom and a parameter matrix Z;. The inverted Wishart distribution is conjugate
to the Wishart distribution and thus provides a convenient prior for %;.

We assume that X; is distributed according to an inverted Wishart distribution with m
degrees of freedom as:

X~ W_}((m —d - 1)¥Y,m), m>d+1. (8)

The scaling constant (m — d — 1) before ¥ is chosen to satisfy E {Z;} = ¥. Under this
setting, the posterior distribution of X;| {S,..., Sk} is obtained as described by Anderson
[26]:

TS 1, S) ~ W (S i+ —d = )Y, fi+m). )

The mean of this posterior distribution is

L(¥.m)= LS,

m—d—1
tromsd-1 F- (10)

Under squared-error loss, the posterior mean is the Bayes estimator of X;. The estimator is a
weighted average of Si and P, and it shifts toward S; for large f; and approaches ¥ for large
m. For a class with just one sample, the estimator returns ¥, which implies that no matter
what the dimensionality is, a nonsingular covariance estimate can be obtained using this
estimator, provided that W is nonsingular. The estimator is a function of ¥ and m, which are
the parameters of the inverted Wishart prior for X;. The closed-form estimates for ¥ and m
do not exist. Greene and Rayens [25] suggest estimating ¥ by the unbiased and consistent
estimate Sp, i.e., the pooled covariance, and maximizing the marginal likelihood of S for m
>d + 1 numerically to estimate m. In this study, we set ¥ to Sp but estimate m to maximize
the classification accuracy for the known classes by cross-validating over the training
samples. Here, Sy is the pooled covariance matrix defined by

=f1S]+ﬁSQ+---+ﬂ,SK
P N-K ’ (11)

where N is the total number of samples available in the training dataset.

Figure 2 illustrates the effect of m on the modeling of the classes. In this example, ten
classes are generated. Their mean vectors are chosen randomly from a normal distribution
with mean at the origin and covariance matrix equal to 101, where | denotes the 2D identity
matrix. The covariance matrices of the classes are obtained from an inverted Wishart
distribution with the first parameter ¥ = 0.31, which is designed to yield relatively circular
distributions. The parameter m, the degree of freedom, takes the values 3, 5, 10, and 20,
respectively, in the four cases shown in Fig. 2. As m increases, initially the classes transform
from more elongated distributions to more circular ones but only slight changes in shape and
orientation are observed beyond a certain m value.

So far, we have discussed a framework for detecting novelties in real time based on ML
evaluation of samples using known classes. Our approach employs a pair of conjugate
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Wishart priors to estimate the covariance matrices of known classes and detects novelties by
thresholding the ML evaluated with known classes. We will refer to this approach as ML-
Wishart. In traditional novelty detection algorithms, no immediate action is taken for
novelties. Once detected, they are left for a follow-up analysis. However, novelties originate
from classes of informational value which were not known at the time of training. Pooling
novelties showing similar characteristics to individual clusters may potentially recover some
of these classes, and as more classes of informational value are introduced, the training
dataset becomes more representative. This helps improve the predictive performance of the
system not only for detecting novelties but also for classifying future samples of newly
discovered classes. Our proposed algorithm, referred as BayesNoDe, combines novelty
detection with new class discovery and will be presented next.

2.4. Real-time Discovery of New Classes

As formulated in Eq. (5), a new sample x* ¢ RY is detected as a novelty if MiNgi:iea3i(X*)
>v. In other words, if the negative log-likelihoods of known classes given x* are all greater
than the designated threshold vy, then the sample is considered a novelty.

When a new sample is detected as a novelty, a new class is generated and defined by the
parameters, (W, X), *****where p is the mean vector of this class and X is the covariance
matrix, both of which are not known. With just one sample, since S is not defined and f = 0,
the posterior mean in Eq. (10) is equivalent to ¥ and thus the Bayesian estimator for =
becomes £ = ¥. The mean vector, p is estimated by {1 = x*, i.e. the sample itself, which
follows from Eq. (7).

The set of known classes is augmented with this new class. So for the next sample available,
the decision function in Eq. (5) is evaluated for classes known initially as well as for the
newly created classes. If the sample is detected as a novelty, the above procedure is repeated
to generate another class. Otherwise, if the sample is classified into one of the existing
classes, then we check for the class that minimizes the negative log-likelihood. If the sample
is assigned to a previously discovered class, then we update the class parameters p and
using Eqg. (7) and Eqg. (10) for that class. Since, there is more than one sample available now,
% becomes a mixture of the sample covariance and . If, on the other hand, the sample is
assigned to a class known initially, then no class update is necessary.

Pseudocode for the algorithm capable of detecting novelties and discovering new classes is
presented in Algorithm 1.

Algorithm 1

BayesNoDe: An Algorithm for Bayesian Novelty Detection and Class Discovery

INITIALIZATION
Initialize A with the set of initially known classes
K & |A| {Define K as the number of initially known classes}
for each class i in the set of known classes do
Estimate S;, 1, =i
end for
¥ < S, {estimate ¥ by the pooled covariance matrix}

m < m O pt {estimate m by cross-validation from a prede-
fined range of m values}

¢ < 0 {initialize the counter for the newly created classes}
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ONLINE DETECTION & DISCOVERY
while there exists a new sample x* do

for i from 1 to (K + c) do {each i in the current set of
known classes}

Compute g;(x*) {compute the negative log-likelihood
for class i}

end for

j < argmin; {gi(x*)} {find the class that minimizes the
negative log-likelihood for x*}

if gj(x*) >y then
Increment c, generate a new class .
Mark x* as novelty and assign it to the new class wyu¢
Hiksc & x* {initialize the mean vector}

Lkic € ¥ {initialize the covariance matrix with P,
note S; =0}

else {g;j(x*) is less than the threshold}
if j > K then {o; is a newly generated class}
Mark x* as novelty and assign it to class o;
Update S;, pj, £
else {j is an initially known class}
Assign x* to class o, it is not a novelty
NO update is done to class parameters
end if
end if

end while

It is important to note that the Gaussianity assumption made throughout the study is not
much of a limitation for either the set of initially known classes or the newly discovered
ones, for the following reason. The theory of finite mixture models [27] states that given
enough components and under fairly weak assumptions, a mixture model can approximate a
given density arbitrarily closely, allowing great flexibility. In other words, even if the
initially known classes are not Gaussian, the class-conditional distributions can still be
estimated arbitrarily closely, using a mixture of Gaussians. A mixture of Gaussian
subclasses can be learned for each class data through a process involving expectation
maximization [28] and model selection. Once the Gaussian subcomponents are identified for
each class data, the proposed approach can be implemented at the subclass level by
considering each subclass as an independent Gaussian class.

Similarly, when discovering new classes, only clusters with Gaussian patterns will be
created for novelties. However, true classes with informational value can still be recovered
by grouping newly discovered clusters under a higher-level class using domain/expert
knowledge.

Next, we present an illustrative example demonstrating the proposed algorithm detecting
novelties and creating classes with a 2-D simulated dataset. Similar to our previous example
we generate ten classes with their covariance matrices obtained from an inverted Wishart
distribution with parameters ¥ = 0.31 and m = 10 and their mean vectors are chosen
randomly from a normal distribution with mean at the origin and covariance matrix equal to
101. Here, | denotes the 2-D identity matrix.
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1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Akova et al.

Page 10

Panel (a) of Fig. 3 shows all ten classes. Known classes are depicted by solid lines, unknown
classes by dashed lines. The square sign locates the mean of each class. The ellipses
represent the class boundaries as defined by the three standard deviation distance from the
class means. A total of 80 samples are generated from the ten classes: 5 from each of the
known classes and 20 from each of the unknown classes. Test samples are classified
sequentially using the proposed BayesNoDe algorithm. Panels (b)-(d) of Fig. 3 illustrate
cases where 16/80, 48/80, and 80/80 samples are classified, respectively. Red solid lines
indicate the estimated distribution contours for newly discovered classes in each subfigure
with the diamond signs locating their estimated means. The blue + signs and red x signs in
each subfigure show the samples classified to known and unknown classes, respectively.
Panel (e) of Fig. 3 demostrates novelty detection using ML-Wishart, i.e., with a fixed set of
classes in the training dataset, and panel (f) of Fig. 3 illustrates the case where no novelty
detection is performed at all. In these two figures, the samples marked with red circles
indicate samples from the unknown classes misclassified as known. Also in panel (e) of Fig.
3, blue solid lines correspond to g(z) = y as defined in Eq. (5) and indicate the classification
boundaries for the unknown samples.

As panels (b)—(d) of Fig. 3 demonstrate, the algorithm gradually recovers the unknown
classes as more test samples are introduced, converging to almost ideal distributions after all
80 test samples are classified.

Comparing panels (d) and (e) of Fig. 3 shows the improvement achieved by the BayesNoDe
algorithm over the ML-Wishart as a result of the dynamically updated training dataset.
When no novelty detection is used, all samples are misclassified as illustrated in panel (f) of
Fig. 3.

3. EXPERIMENTS

3.1. Experiment 1: Bacteria Detection

A total of 28 strains (subclasses) from five different bacteria species were considered in this
study. The species available are E. coli, Listeria, Salmonella, Staphylococcus and Vibrio.
Table 1 shows the list of 28 strains from 5 species considered in this study together with the
number of samples collected for each one using the BARDOT system described in Section
1. In our experiments, we treated each strain as a separate class and used the number of
samples listed in Table 1 from each class for training.

3.1.1. Feature selection—Scatter patterns of the bacteria are characterized by a total of
50 features involving moment invariants and Haralick texture descriptors. Details of the
feature extraction process are available in Ref. [29].

3.1.2. Classifier design—The classification methods considered are the SVDD [19],
which is the benchmark technique for detecting anomalies and novelties, ML using common
covariance (ML-Common), ML using common covariance with simulated subclass
generation (MLS) [21], ML with the covariance matrix estimated by the posterior mean of
the inverted-Wishart distribution (ML-Wishart), and the BayesNoDe algorithm. The ML
classifier using sample covariance is not considered here, because sample covariances were
ill conditioned for most classes.

As explained in Sections 2.1 and 2.2, the general idea of ML classifiers is based on the ML
decision function in Eq. (3) and works according to the formulation in Eq. (4). ML-Wishart
and ML-Common are the special cases of ML. They differ in estimating the covariance
matrices of the training classes. Corresponding mean vectors, ;, are all calculated by (7).
More specifically, ML-Common implements (5), where Z; = X for all i, and X represents the
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common covariance matrix estimated by the average of the sample covariances. As
described in Ref. [21], MLS extends ML-Common by simulating the space of all classes.
This approach assumes a Gaussian prior for the mean vectors, and its parameters are
estimated using the estimates of the mean vectors for each class. Lastly, for the proposed
ML-Wishart and BayesNoDe, the covariance matrices are estimated for each class using the
posterior mean defined in Eq. (10). The parameters m and ¥ are estimated as described in
Section 2.3.

As for the SVDD algorithm, optimization involves two sets of parameters. These are C, the
cost of leaving a training sample outside the support, and o, the width of the Gaussian radial
basis function (RBF) kernel. These parameters are estimated by 10-fold cross-validation at
the class level. When optimizing parameters for a given class, the training samples of the
given class are considered positive and the samples of remaining classes are considered
negative. At each fold of the cross-validation algorithm, SVDD is trained using positive
samples only but tested on both positive and negative samples. The parameter set (Cx, o+)
that optimizes the area under the receiver operating characteristic (ROC) curve is chosen as
the optimum set for the given class. This process is repeated for all classes.

3.1.3. Classifier validation and evaluation—Since the training dataset is
nonexhaustive, the goal is to design a classifier that accurately detects samples of known
classes as known and those of unknown classes as novelty. In this framework, classifiers can
be more properly evaluated using ROC curves. Here sensitivity is defined as the number of
samples from known classes classified as known divided by the total number of samples
from known classes. Specificity is defined as the number of samples from unknown classes
detected as novelty, divided by the total number of samples from unknown classes. Multiple
sensitivity and specificity values are obtained for each classifier to plot the ROC curves. For
the ML-based approaches, different operating points are obtained by varying the threshold y
in Eq. (5). For SVDD, the distances from the center of each class is normalized by the radius
of the corresponding sphere. For a new sample, the minimum of the normalized class
distances is computed and thresholded to obtain different operating points.

To evaluate the classifiers the 2054 samples are randomly split into two sets, as train and
test, with 80% of the samples going into the training set and the remaining 20% into the test.
Stratified sampling is used to make sure that each subclass is represented in both sets. This
process is repeated ten times to obtain ten different pairs of train-test sets. Then, one
subclass from each of the five bacteria species is randomly selected, so a total of 5
subclasses out of the 28 available are identified. All samples of these five classes are
removed from the training datasets making these classes unknown. The classifiers are
trained with the resulting nonexhaustive training sets and tested on the corresponding test
sets. For each data split, the area under the ROC curve, i.e., Az value is computed. The Az
values averaged over the ten different train-test splits are recorded along with the standard
deviation.

3.1.4. Results and analysis—To account for the possible bias introduced by the set of
removed classes the above process is repeated 20 times each time removing a randomly
selected set of five classes from the training set. Each such repetition involves running the
same experiment with a different nonexhaustive subset of the original data. Az values
achieved for each classifier are included in Table 2 for all 20 experiments. As described
earlier, these values are the average of the ten runs each executed with a different train-test
split and the values in parantheses indicate standard deviations. The mean Az values across
all 20 runs are listed in Table 3. These results clearly favor the proposed BayesNoDe
algorithm, which generated the best area under the curve (AUC) in all 20 repetitions.
Standard deviations indicate that the differences are statistically significant in most of the 20
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experiments. The BayesNoDe algorithm is an extension of the ML-Wishart algorithm, both
of which are proposed in this study. ML-Wishart ranked second, but the results indicate that
creating new classes and augmenting the set of known classes with these new classes makes
a considerable impact on the prediction accuracy of the classifier and gives the BayesNoDe
algorithm a significant advantage over the ML-Wishart. SVDD ranked third along with ML-
Common and MLS.

Next, we picked four sample cases out of the 20 using the overall Az values achieved by the
classifiers as the selection criteria. Largest Az value among all 20 repetitions is recorded in
repetition 10 (Fig. 4, panel (2)). Repetitions 13 and 16 represent two average cases (Fig. 4,
panels (b) and (c)). Repetition 20 is included to show results for a relatively poor case (Fig.
4, panel (d)). The ROC curves corresponding to the proposed BayesNoDe algorithm
dominate the other curves in all cases. We also analyzed the classification accuracy of the
known samples and observed that the known samples are assigned to classes with over 95%
accuracy across all operating points for all four cases considered here. These results indicate
that the proposed approach not only performs well in identifying samples of the unknown
classes as novelties but yields promising results in classifying samples of the known classes
as well.

3.2. Experiment 2: Letter Recognition

To show that improvements achieved by the proposed BayesNoDe algorithm is not specific
to the Bacterial detection application that motivated this research, we used the benchmark
letter recognition dataset from the UCI repository [30] for further validation of the proposed
approach for novelty detection. This dataset is mainly selected for its large number of
classes. The dataset contains 20 000 samples for 26 classes, one for each letter of the
alphabet. Each sample is characterized using 16 features.

This dataset is different than the bacteria detection dataset in that, it is not susceptible to the
curse of dimensionality as much. There is an average of 770 samples for each class as
opposed to an average of 80 samples for each bacteria subclasses. The dimensionality of the
data (d = 16) is also much lower than the 50 features used in the bacteria detection dataset.

We followed an experiment design similar to the bacteria detection experiment. The 20 000
samples are randomly splitted into train and test sets, with 80% of the samples going into the
training set and the remaining 20% in the test. Stratified sampling is used to make sure each
class is represented in both the training and the test sets. This process is repeated five times
to obtain five different pairs of train-test sets. Then, five classes are randomly selected and
their samples are removed from the training datasets. The classifiers are trained with the
resulting nonexhaustive training sets, and tested on the corresponding test sets. For each
case, Az value is computed. The Az values averaged over the five different train-test splits
are recorded along with the standard deviation.

3.2.1. Classifier design—The same set of classifiers considered in Experiment 3.1 are
also considered here. SVDD and MLS are trained the same way as in Experiment 3.1. For
the ML-based classifiers, since classes contain a relatively larger number of samples, a
single Gaussian might not fit class data well. In this case, as discussed in Section 2.4, the
actual class distributions can be modeled more effectively using a mixture of Gaussians. We
fit up to five components for each class distribution using standard expectation
maximization algorithm [28] with the optimum number of components selected using the
Bayesian Information Criterion [31]. Once mixture models are obtained, each subclass is
considered as an independent class and all ML-based classifiers are run with the new set of
known classes. On the average for each class data mixture fitting returned three subclasses.
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3.2.2. Results and analysis—The experiment is repeated twice each time removing a
randomly selected set of five classes from the training set. The ROC curves are plotted in
panels (a) and (b) of Fig. 5. For this experiment SVDD seems to model the data well and
becomes the sole competitor to BayesNoDe and ML-Wishart. ML-Wishart performs slightly
better than SVDD. The detection accuracy of BayesNoDe is almost perfect and as the error
bars indicate the improvements achieved over other methods are statistically significant.

4. CONCLUSION

The current research is mainly motivated by the impracticality of the exhaustiveness
assumption in defining the number of classes in a training dataset. In this study, we propose
a novelty detection scheme, which makes two distinct contributions: novelty detection and
modeling. Evaluated samples are identified either as novelty or classified into one of the
known classes.

The proposed technique is based on the Bayesian modeling of the distribution of the classes
via a pair of conjugate Wishart priors. The resultant posterior distribution is used to obtain
robust estimates of the covariance matrices of the class-conditional distributions for known
as well as newly created classes with limited number of samples. Novelties are detected by
evaluating the ML with known classes. Samples are labeled as novelty or known based on
whether the ML is smaller or larger than a predefined threshold. Effective modeling of the
prior distribution of the classes in this approach requires a relatively large number of known
classes. Our research is motivated by a biodetection application. We have performed
experiments with a 28-class bacteria dataset and presented results favoring the proposed
algorithm over the state-of-the-art for novelty detection. Additional experiments are
performed with a 26-class benchmark dataset to further validate the proposed approach and
show that improvements are not application specific.

Future research will focus on modeling of the known classes by nonparametric Bayesian
approaches involving Gaussian processes, which we believe will allow for more robust
modeling of the classes and will improve prediction performance of the proposed novelty
detection algorithm.
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Fig. 1.

(a) Sample scatter pattern for Salmonella Typhimurium (Copenhagen). (b) Sample scatter
pattern for Vibrio orientalis CECT629. (c) Sample scatter pattern for Listeria seeligeri V45.
(d) Sample scatter pattern for Staphylococcus aureus S-41.
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Fig. 2.
Simulated classes illustrating the impact of the degree of freedom, m, in the inverted Wishart
distribution.
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Fig. 3.

[llustration of the proposed algorithm with an artificial dataset. Pink dashed lines indicate
unknown classes with 20 samples each. Black solid lines indicate known classes with five
samples each. Red solid lines indicate newly discovered classes. Mean vectors for the
original classes are depicted by the blue squares. Mean vectors for the newly discovered
classes are depicted by the red diamonds. Blue + signs, indicate samples from known
classes, red x signs indicate samples from unknown classes. Encircled + signs indicate
samples from unknown classes incorrectly classified as known. (a) Classes with dashed lines
are assumed unknown; (b) 16 out of 80 samples are classified; (c) 48 out of 80 samples are

Stat Anal Data Min. Author manuscript; available in PMC 2011 December 6.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Akova et al.

Page 19

classified; (d) all samples are classified—BayesNoDe; (e) all samples are classified—ML-
Wishart; (f) all samples are classified—no novelty detection.
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(a) Repetition 10. Removed subclass ids are: 6, 12, 15, 18, and 27. (b) Repetition 13.
Removed subclass ids are: 1, 11, 16, 22, and 23. (c) Repetition 16. Removed subclass ids
are: 2, 8, 16, 21, and 28. (d) Repetition 20. Removed subclass ids are: 5, 8, 15, 22, and 26.
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(a) Removed subclass ids are: 7, 9, 12, 14, and 24. (b) Removed subclass ids are: 2, 9, 11,
12, and 22.
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Table 1

The 28 subclasses from five species (classes) considered in this study.

Species ID  Strain (Subclass) # Samples
1 025:K98:NM ETEC 67
2 O78:HI11ETEC 58
E. Coli sp. 3 0157:H701 64
4 0157:H7 6458 87
5 0157:H7 G5295 68
6 K12 ATCC 29425 65
7  L.innocua F4248 59
8 L.ivanovii 19119 81
Listeria spp. 9 L. monocytogenes 94
19118 (4e)
10 L. monocytogenes 91
7644 (1/2c)
11 L. monocytogenes 98
V7 (1/2a)
12 L. welshimeri 35897 47
13 S. Typhimurium 95
(Copenhagen)
Salmonella spp. 14  S. Enteritidis 13096 89
15 S. Enteritidis PT28 90
16  S. Tennessee 825-94 78
17 S.aureus 13301 46
18 S. aureus PS103 50
Staphylococcus spp. 19  S. aureus S-41 67
20 S. epidermidis 31
PS302
21  S. epidermidis 35547 45
22 S. hyicus T6346 69
23 V. alginolyticus 88
CECT521
24 V. campbellii 71
CECT523
Vibrio spp. 25 V. cincinnatiensis 89
CECT4216
26 V. hollisae 79
CECT5069
27 V. orientalis 96
CECT629
28 V. parahaemolyticus 92
CECT511
Total 2054

Notes: The last column lists the number of samples collected for each strain using the Bardot system.
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Table 3

Average Az values over 20 experiments.

Methods Avg. AUC
BayesNoDe 0.94
(0.05)
ML-Wishart 0.91
(0.06)
ML-Common 0.83
(0.04)
MLS 0.83
(0.04)
SvDD 0.82
(0.05)
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