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SUMMARY

Regression testing can be done by re-executing a test suite on different software versions and comparing the
outcome. For functional testing, the outcome of such tests is either pass (correct behaviour) or fail (incorrect
behaviour). For non-functional testing, such as performance testing, this is more challenging as correct and
incorrect are not clearly defined concepts for these types of testing.

In this paper, we present an approach for detecting and analyzing I/O performance regressions. Our method
is supplemental to existing profilers and its goal is to analyze the effect of source code changes on the
performance of a system. In this paper, we focus on analyzing the amount of I/O writes being done. The
open source implementation of our approach, SPECTRAPERF, is available for download.

We evaluate our approach in a field user study on Tribler, an open source peer-to-peer client and its
decentralized solution for synchronizing messages, Dispersy. In this evaluation, we show that our approach
can guide the performance optimization process, as it helps developers to find performance bottlenecks on
the one hand, and on the other allows them to validate the effect of performance optimizations. In addition,
we perform a feasibility study on Django, the most popular Python project on Github, to demonstrate our
applicability on other projects. Copyright © 2013 John Wiley & Sons, Ltd.

Received ...
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1. INTRODUCTION

Regression testing is performed on a modified program to instill confidence that changes are
correct and have not adversely affected unchanged portions of the program [1]. It can be done
by re-executing a test suite on different software versions and comparing the test suite outcome.
For functional testing, the functionality of a program is either correct or incorrect. Hence, the
outcome of such tests is either pass or fail. For non-functional testing, correct and incorrect are
not clearly defined concepts [2], making regression testing even more challenging. An example of
non-functional testing is performance testing. Two possible reasons for performance testing are:

1. To ensure the software behaves within the limits specified in a service-level agreement (SLA)

2. To find bottlenecks or validate performance optimizations
SLA limits are often specified as hard thresholds for execution/response time, i.e., the maximum
number of milliseconds a certain task may take. The main reason for this is that execution time
influences the user-perceived performance the most [3]. For performance optimizations, such a limit
is not precisely defined, but follows from comparison with the previous software version instead, as
the goal is to make a task perform as fast or efficient as possible. Hence, we are interested in finding
out whether a specific version of an application runs faster or more efficiently than its predecessor.

As a result, including performance tests in the regression testing process may provide
opportunities for performance optimization. In fact, in this paper we will show that the outcome
of these tests can guide the optimization process.

Copyright © 2013 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]
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Performance optimization can be done on various metrics. Execution time, which is the most
well-known, can be analyzed using traditional profilers. Other examples of metrics which can be
optimized are the amount of I/O, memory usage and CPU usage. These metrics are difficult to
analyze for software written in higher-level languages, such as Python, due to the lack of tools.
Hence, the understanding of how software written in such languages behaves regarding these metrics
is often low [4]. In addition, understanding the performance of a system in general is difficult
because it is affected by every aspect of the design, code and execution environment [5].

In this paper, we propose a method which helps performance experts understand how the
performance, focusing on the I/O writes metric mentioned above, changes over the different versions
of their software. Performance can be monitored on various levels, for example, on the system
level [?] and on the function level. Profilers can monitor performance on the function level. Our
method is supplemental to existing profilers in the way that it uses the output of these tools to
analyze the effect of source code changes on the performance of a system. We achieve this by
monitoring the execution of a specific test for two versions of an application and comparing the
results. The result of our approach is a report which helps a performance expert to:

1. Understand the impact on write performance of the changes made to the software on a

function-level granularity

2. Identify potential optimization opportunities by finding regressions or validate fixes

We evaluate our approach in a field user study on a decentralized peer-to-peer (P2P) BitTorrent
client, Tribler [6]. In the first part of our study, we analyze the performance history of a component
in Tribler by analyzing its unit test suite. In the second part, we analyze the effect of nondeterminism
on our approach, by analyzing a 10 minute run of Tribler in the wild. Finally, we ensure the external
validity of our approach in a feasibility study on Django, a popular Python web framework.

The outline of this paper is as follows. In the next section, we first give a motivational example
for our approach. In Section 3, we present our problem statement. In Section 4, we introduce
our approach for detecting and analyzing I/O performance regressions. Section 5 details the
implementation of our approach, called SPECTRAPERF. In Section 6, we discuss the setup and
results of our user study on Tribler and Dispersy. Section 7 deals with the results of our feasibility
study on Django. We discuss these results and the limitations of our approach in Section 8. In
Section 9, we discuss related work. We conclude our work in Section 10.

2. MOTIVATIONAL EXAMPLE

In a database system, some queries cause the creation of a temporary table*. The creation of such a
table is often done silently by the database system itself, but may be intensive in terms of I/O usage.
For example, SQLite creates a temporary file to store the table in. Finding out which function causes
the temporary table creation can help reduce the I/O footprint of an application. Because I/O takes
time, we can detect this behaviour using a traditional profiler, which is based on execution time.
However, there is no information available about whether the function resulted in the creation of a
temporary table, or that the high execution time was caused by something else. This makes the issue
hard to diagnose and optimize. In addition, if a developer has found the cause of the temporary table
generation, a fix is difficult to validate due to the same reason: it is difficult to verify whether the
temporary file was indeed not created, or that it was simply created and deleted. Using an approach
which can automate this process, we can see if a function has started generating temporary tables
since the previous version. Then, after fixing it, we can validate if our optimization had the desired
effect.

*For example, for SQLite: http://www.sglite.org/tempfiles.html

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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3. PROBLEM STATEMENT

By including performance testing in the regression testing process, developers can get feedback
about the way their changes to the code impact the performance of the application. This feedback
can be used to 1) be warned of undesired negative effects or 2) validate the positive effect of a
performance bug fix. To give this feedback, we must do the following:

1. Define which metrics we want to analyze and combine this set of metrics into a performance

profile, which describes the performance behaviour of a revision

2. Generate such a performance profile for every source code revision

3. Compare the most recent profile with the profile(s) of the preceding revision(s)

4. Analyze which source code change(s) caused the change(s) in performance

In this paper, we focus on the following research question:

Main RQ: How can we guide the performance optimization process by doing
performance regression tests?

To answer this research question, we divide it into the subquestions discussed in the remainder of
this section.

RQ 1: How can we monitor performance data and generate a comparable profile out of
this data?

Depending on which metric we want to analyze, we must find a suitable monitor to record
performance data. Ideally, we want to be able to monitor without needing to change the source
code of the application. An additional challenge is that an application may use libraries written in
different programming languages, making it more difficult to get fine-grained information about,
for example, I/O.

A challenge is formed by the fact that monitoring the same test twice may result in slightly
different performance profiles, due to variations in, for example, data contents and current memory
usage [7], or other applications running on the same machine. As such, we must devise a method
for comparing these profiles:

RQ 2: How can we compare the generated performance profiles?

Finally, we must be able to analyze the differences between profiles and report on the functions
most likely to cause the change in performance:

RQ 3: How can we analyze and report on the differences between profiles?

In this paper, we investigate an approach which helps us to detect and analyze performance
regressions. In this study, we focus on detecting and analyzing performance regression caused by
write I/O. We expect that our approach can be adapted to work for other performance metrics, which
we will verify in future work.

4. APPROACH

The goal of our approach is to analyze the effect of source code changes on the performance of a
system. Ideally, we would like to be able to generate a report explaining per function how much
a performance metric changed, compared to the previous source code revision. In this section, we
explain our approach for generating such a report. The idea of our approach is that we summarize
the behaviour of an application during the execution of a test execution in a profile. After an update,
we compare the behaviour of our application during the execution of the same test using that profile.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOI: 10.1002/smr
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Table I. Illustration of the profile generation idea

Revision: 1 Avg. # bytes written per call Profile

Function to t1 to t3 tq

flushToDatabase() 900 1000 1200 1100 1500 [900-1500]
generateReport() 1200 1500 1359 1604 1300 [1200-1604]

4.1. Profile Generation

To be able to report on a function-level granularity, we must also monitor data on this granularity.
Therefore, we first automatically instrument (see Section 5) all functions in our application that
perform writes. The instrumentation code writes an entry to the log for every write action, containing
the number of bytes written, the name of the function and the location of the file being written to.

Second, we let the instrumented code execute a test, which generates a log of all write actions
made during that execution. This test can be any existing, repeatable test (suite), for example, a unit
test or integration test suite. The write actions made to the log are filtered out from this process.

To lessen the effect of variation within the program execution [7], for example, due to data content
and current memory usage, we execute the test several times for each revision and combine the
logged data into a performance profile. The number of times the test must be executed to get an
accurate profile is defined by a tradeoff between accuracy and test execution time. Ideally, we would
like to run the test many times to get a more precise profile, but this may be impractical, depending
on the execution time. A profile is generated by doing the following for every function:

e Calculate the average number of bytes a function writes per call during a test execution (hence:
divide the total number of bytes written by that function during the test execution by the total
number of calls to that function during the test execution)

o For every test execution, define the highest and lowest values for this average number of bytes
written per call as the accepted range for that revision for that function

Table 1 demonstrates this idea. The profile can be read as: ‘During revision 1,
flushToDatabase () wrote an average of 900 to 1500 bytes per call and
generateReport () wrote an average of 1200 to 1604 bytes per call.’

4.2. Profile Analysis

In order to assess the changes in performance of a revision, we compare its profile with the profile
of the previous revision. While this can be done manually, this is a tedious process and prone to
mistakes. We propose to automate the comparison using a method inspired by spectrum-based
fault localization (SFL) [8]. SFL is a technique which closely resembles the human diagnosis
process, making the diagnosis easy to interpret. Another advantage of automating this comparison,
is that we can use the technique in automated testing environments, such as continuous integration
environments. To the best of our knowledge, we are the first to propose a method which is inspired
by spectrum-based analysis for performance regression detection.

For every test execution ¢;, we record the write data as described in Section 4.1. We verify for
every function whether the recorded average number of bytes written falls in (1) or outside (0) the
accepted range of the profile of the previous revision. As a result, we get a binary vector in which
every row represents a function. If we place those vectors next to each other, we get a matrix. Table II
shows sample data and the resulting matrix for three test executions t;, after comparing them with
the profile of Table I. We use three executions here for brevity, but this may be any number. As an
illustration, we describe the formation of the (¢o) vector in Table II:

1. The value monitored for flushToDatabase () at tg is 1000. This value falls inside the
accepted range (900-1500) for this function. Hence, the first value of (¢g) is 1.

2. The value monitored for generateReport () at g is 2200. This value falls outside the
accepted range (1200-1604) for this function. Hence, the second value of () is 0.

3. The value monitored for writeCache () at tg is 10000. This function does not have an
accepted range defined in the profile. Hence, the third value of (¢) is 0.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOI: 10.1002/smr
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Table II. Illustration of profile comparison

Revision: 2 Average # bytes written Matrix SC
Function to t1 to (to) (t1) (t2)
flushToDatabase() 1000 1200 1100 1 1 1 1
generateReport() 2200 2000 1600 0 O 1 058
writeCache() 10000 12000 8000 0 0 O 0
Output vector 1 1 1

Repeating this process for ¢; and ¢, results in vectors (¢1) and (¢2).

The analysis step now works as follows. When performance did not change after the source code
update, all monitored values for all functions should fall into the accepted ranges of the profile of
the previous revision. For three test executions, this is represented by the row [1 1 1] for every
function. Any deviations from this mean that the average number of bytes written for that function
was higher or lower than the accepted range. By calculating the similarity coefficient SC for each
row and the ‘ideal’ vector [1 1 1], we can see whether the average number of bytes written for that
function has changed (SC close to 0) or that it is similar to the previous profile (SC close to 1). As
the similarity coefficient, we chose to use Ochiai following advice from literature [9]. The Ochiai
similarity coefficient (SC') for two binary vectors v; and v, is defined as:

a a

SC = *
a+b a+c

O]

with a the number of positions occupied by 1 in both vectors, b the number of positions occupied
by 1 in v; and by 0 in v2 and ¢ the number of positions occupied by 1 in v and by 0 in v;. Using
the SC, we can make a ranking of the functions most likely to have been affected by the update.
When all SC’s are close or equal to 1, the average number of bytes written did not change for any
function after the update. The functions with SC closer to O are likely to have been affected by the
update. As an illustration, we demonstrate how SC' is calculated for generateReport ():

vy =[001]
vg=[111]
a=1
b=0
c=2

1
SC = \/;—0.58

In Table II, from the SC column we can conclude that the performance of the
generateReport () and writeCache () functions were likely to have been affected by the
changes made for revision 2.

While the SC allows us to find which functions were affected by the update, it does not tell us how
they were affected. For example, we cannot see if writeCache () started doing I/O in this version,
or that the amount of I/O increased or decreased. Therefore, we append the report with the average
number of bytes the monitored values were outside the accepted range (Impact). We also display
the average number of calls and the Total Impact, which is calculated by the average number of
calls to that function multiplied with Impact. This allows us to see if the performance decreased
or increased and by how much. In addition, we display the difference of the highest and lowest
value in the range (RangeD1i £ £). The goal of this is to help the performance expert understand the
ranking better. For example, when a monitored value is 100 bytes outside the accepted range, there
is a difference whether the range difference is small (e.g., 50 bytes) or larger (e.g., 50 kilobytes).

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOI: 10.1002/smr
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Table III. Similarity report for Table 11

Revision: 2

Function SC #calls Impact TotalImpact RangeDiff Runs
flushToDatabase() 1 50 0 0 600 3/3
generateReport() 0.58 50 496 B 24.8 KB 404 3/3
writeCache() 0 500 10 KB 5MB N/A 3/3

Additionally, we display the number of test executions out of the total number of test executions for
this revision during which this function wrote bytes. This is important to know, as a function does
not necessarily perform I/O in all executions. For example, an error log function may be triggered
in only a few of the executions. A final extension we make to our report is that we collect data for a
complete stack trace instead of a single function. We do this because 1) the behaviour of a function
may be defined by the origin from which it was called (e.g., a database commit ()) and 2) this
makes the optimization process easier, as we have a preciser description of the function behaviour.

Summarizing, the final report of our analysis contains a ranking of stack traces. In this ranking,
the highest ranks are assigned to the traces of which the write behaviour most likely has changed
due to the source code changes in this revision. The ranking is made based on the SC (low to high)
and the TotalImpact (high to low). In this way, the stack traces which were impacted the most,
and were outside the accepted range in most test executions, are ranked on top. These stack traces
are the most likely to represent performance regressions.

Table IIT shows the extended report. Throughout this paper, we will refer to this type of report as
the similarity report for a revision. From the similarity report, we can see that the average number
of bytes written by generateReport () has increased relatively a lot compared to revision 1:
the value for Impact is larger than the difference of the range in the profile. However, as SC and
TotalImpact indicate, this was not the case for all test executions and the average total impact
was low. Additionally, we can immediately see from this report that writeCache () was either
added to the code, or started doing I/O compared to the previous version, as there was no accepted
range defined for that function. In this case, Impact represents the average number of bytes written
by that function. We can also see that the TotalImpact of the additional write traffic is SMB,
which may be high or low, depending on the test suite and the type of application.

5. IMPLEMENTATION

In this section, we present the implementation of our approach called SPECTRAPERF.
SPECTRAPERF is part of the open-source experiment runner framework GUMBY ™, and is available
for download from the GUMBY repository. Our implementation consists of two parts, the data
collection and the data processing part.

(begin)

=> python. function.entry
=> syscall .open.entry
<= syscall.open.return
=> syscall.write.entry
<= syscall.write.return

<= python. function.return

(end)

0NN AW —

Listing 1. Set of available probe points in a writing Python function.

*http://www.github.com/tribler/gumby

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOI: 10.1002/smr
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5.1. Data Collection

To collect data on a function-level granularity, we must use a profiler or code instrumentation.
In our implementation, we use Systemtap [10], a tool to simplify the gathering of information
about a running Linux system. The difference between Systemtap and traditional profilers is that
Systemtap allows dynamic instrumentation of both operating system (system calls) and application-
level functions. Because of the ability of monitoring system calls, we can monitor applications
which use libraries written in different languages. In addition, by instrumenting system calls, we
can monitor data which is normally hidden from higher-level languages such as the number of bytes
written or allocated.

These advantages are illustrated by the following example. We want to monitor the number of
bytes written by application-level functions of an application that uses libraries written in C and in
Python, so that we can find the functions that write the most during the execution of a test. Libraries
written in C use different application-level functions for writing files than libraries written in Python.
If we were to instrument these libraries on the application level, we would have to instrument all
those functions. In addition, we would have to identify all writing functions in all libraries. However,
after compilation or interpretation, all these functions use the same subset of system calls to actually
write the file. Hence, if we could instrument those system calls and find out from which application-
level function they were called, we can obtain the application-level information with much less
effort.

By combining application-level and operating system-level data with Systemtap, we can get a
detailed profile of the writing behaviour of our application and any libraries it uses. Systemtap
allows dynamic instrumentation [10] by writing probes which can automatically instrument the
entry or return of functions. Listing 1 shows the workflow through (a subset of) the available probe
points in a Python function which writes to a file. Note that, if we want to monitor other metrics
such as network traffic, we must probe other system calls*.

probe begin{/+« Print the CSV headers =/}

probe python.function.entry{/+« Add function name to the stack trace x/}

probe syscall.open.return{/« Store the filehandler and filename of the
opened file x/}

probe syscall.write.return{/x Add the number of bytes written x/}

probe python. function.return{/« Print the python stack trace and the number
of bytes written =/}

W N =

[

Listing 2. Description of probes for monitoring Python I/O write usage.

The subject system of our user study (see Section 6), Tribler, is written in Python. Therefore, we
implemented a set of probes to monitor the number of bytes written per Python function. Listing 2
shows the description of this set of probes . By running these probes together with any Python
application, we can monitor write I/O usage on a function-level granularity. Files may be written by
other system calls such as sys_writev and sys_sendfile. Likewise, system calls other than sys_open
may open files or get file descriptors. We have counted the number of calls to various system calls
for writing files during an execution of the Django test suite described in Section 7. sys_write was
called 292,000,000 times, sys_writev was called 236 times and the other functions were not called.
In addition, the total number of bytes written by those 236 calls to sys_writev was 39K. Therefore,
for clarity of this text, we have only probed the sys_write and sys_open system calls during our
studies.

While Systemtap natively supports C, C++ and Java, it does not include native support for probing
Python programs. Therefore, we use a patched version of Python, which allows Systemtap to probe
functions. This version of Python can be automatically installed using GUMBY.

*See http://man7.org/linux/man-pages/man2/syscalls.2.html for Linux system calls.
TSee the GUMBY source code for the exact implementation.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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To monitor write actions, we count the number of bytes written per stack trace. To maintain a
stack trace, for every Python function we enter (python.function.entry), we add the function name to
an array for that thread. This allows us to distinguish multiple threads of the application. Then, for
all the writes done during the execution of that function, we sum the total number of bytes written
per file (syscall.open.entry and syscall. write.entry). We use the probe on the open system call only
to map the file descriptors with a filename (per thread). We do this so that we can probe functions
which use the file descriptor. As a result, the open system call does not have to be made from
within the function. After returning from the Python function (python.function.return), we output
the number of bytes written per file for the function and the stack trace to that function in CSV
format. As a result, we have a CSV file with the size and stack traces of all write actions during the
test execution.

5.2. Data Processing

After collecting the data, we import it into a SQLite* database using Rf and Python. From this
database, we generate a report for each test execution (the test execution report) which shows:

1. The stack traces with the largest total number of bytes written.

2. The stack traces with the largest number of bytes written per call.

3. The filenames of the files to which the largest total number of bytes were written.
The test execution report helps with locating the write-intensive stack traces for this execution.
In addition, when we have monitored all test executions for a revision, we generate a profile as
described in the previous section. We use this profile as a basis to analyze test executions for the
next revision.

6. FIELD USER STUDY: DISPERSY AND TRIBLER

We evaluate our approach in a field user study. The goal of our study is to determine whether I/O
performance regressions can be found and optimizations can be verified using our approach. In
particular, we focus on these research questions:

Eval RQ 1: Does our approach provide enough information to detect performance
regressions?

Eval RQ 2: Does our approach provide enough information to guide the performance
optimization process?

Eval RQ 3: Does our approach provide enough information to verify the effect of made
performance optimizations?

Eval RQ 4: How does our approach work for test executions which are influenced by
external factors?

In this section, we present the experimental setup of our field user study.

Field Setting: The subject of our study is Tribler [6], a fully decentralized open source BitTorrent
client. Since its launch in 2006, Tribler was downloaded over a million times. Tribler is an academic
prototype, developed by multiple generations of students, with approximately 100 KLOC. Tribler
uses Dispersy [11] as a fully decentralized solution for synchronizing messages over the network.
Tribler has been under development for 9 years. One of the goals for the next version is to make
it run better on older computers. Therefore, we must optimize the resource usage of Tribler. In the
first part of our study, we analyze the unit test suite of Dispersy. In the second part, we analyze a
10 minute idle run of Tribler, in which Tribler is started without performing any actions in the GUI.

*http://www.sglite.org/
Thttp://www.r-project.org/

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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However, because of the peer-to-peer nature of Tribler, actions will be performed in the background
as the client becomes a peer in the network after starting it.

Participant Profile: The questionnaire was filled in by two participants. Participant I is a PhD
student with 4 years of experience with Tribler. Participant Il is a scientific programmer with 5 years
of experience with Tribler, in particular with the Dispersy component. Both participants describe
their knowledge of Tribler and Dispersy as very good to excellent.

Experimental Setup: Tribler and Dispersy are being maintained through GitHub *. We
implemented a script in GUMBY which does the following for each of the last n commits:

1. Execute the required test 5 times together with the Systemtap probes (this number was chosen
based on the execution time of the tests - we have no statistical evidence that this is indeed an
optimal value)

2. Load the monitored data into a SQLite database

. Generate a test execution report for each test execution as explained in Section 5.2

4. Compare the output of each run with the previous revision and add this result to the activity
matrix m

5. Calculate SC for every row in m

6. Generate a similarity report from the activity matrix as displayed in Table III

7. Generate a profile to compare with the next revision

After all commits have been analyzed, the data is summarized in an overview report. The overview
report shows a graph (e.g., Figure 1) of the average number of total bytes written for the test
executions of a revision/commit and allows the user to drill down to the reports generated in step 3
and 6, i.e., each data point in the graph acts as a link to the similarity report for that commit. Each
similarity report contains links to the test execution reports for that commit. In addition, we added
a link to the GitHub diff log for each commit, so that the participants could easily inspect the code
changes made in that commit.

In the Dispersy case study, we will analyze the unit test suite of Dispersy for the last 200 revisions.
In the Tribler case study, we will analyze a 10 minute idle run of Tribler for the last 100 revisions.
Tribler needs some time to shutdown. If for some reason, Tribler does not shutdown by itself, the
instance is killed after 15 minutes using a process guard. Note that these numbers were chosen based
on the execution time of the tests. We have no statistical evidence that these are indeed optimal
values.

All experiments were conducted on a dual Intel Xeon CPU 2.40GHz with 12 cores and 8GB of
memory, running Debian with a custom’ compiled kernel 3.12.

Questionnaire: To evaluate our approach, we asked two developers from the Tribler team to rate
the quality and usefulness of the reports. We presented them with the reports for the Dispersy and
Tribler case study and asked them to do the following:

1. To select the 3 most interesting areas (5-10 data points) on the graphs and rate them 1 (first to
investigate) to 3 (third to investigate)

2. To mark with 1-3 the order of the points they would investigate for each area

Then, for each area/phenomenon and each selected data point, we asked them to answer the
following:

1. Which position shows the stack trace you would investigate first/second/third, based on the
report?

2. Does this lead to an explanation of the phenomenon, and if so, which one?

3. If not, please drill down to the separate test execution reports. Do these reports help to explain
the phenomenon?

w

*http://www.github.com/tribler

TSystemtap requires the uprobes kernel module for userspace probing, which is not available by default in
all kernels. For more information, see https://sourceware.org/systemtap/SystemTap_Beginners_
Guide/userspace-probing.html.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOI: 10.1002/smr

TUD-SERG-2014-010 9



Bezemer et al. — Detecting and Analyzing I/O Performance Regressions SE

10 C. BEZEMER, E. MILON, A. ZAIDMAN, J. POUWELSE

Table IV. Overview of Dispersy evaluation results

Phenomenon Participant # Ranking Helpful?
A I 1 Yes
B 11 84 No
test execution reports No
C 1I 1 Partly
18 Yes
D I(areal) 1 Yes
I(area2) 1 Partly
1I 1 Yes

Finally, we asked them general questions about the reports concerning the usability and whether
they expect to find new information about Tribler and Dispersy using this approach. In the next
section, we present the results of our study. The reports can be found online [12].

00000000
@ Participant |
600000000 1

500000000

400000000 ‘
300000000 A B

200000000 3

SRR | s | A

Revisions / commits {old to new) D

Bytes written

100¢

Figure 1. Average number of bytes written during an execution of the Dispersy unit test suite for each commit

6.1. Case Study I: Dispersy Unit Test Suite

Every run of the Dispersy unit test suite took approximately 10 minutes. As a result, the experiment
for 200 revisions and 5 iterations ran for 10000 minutes, approximately 7 days. While we did not
do this, it is possible to run these executions in parallel, reducing the total running time. The unit
test suite had a coverage™ of 73%. During a test suite execution, an average of 130 different stack
traces doing writes were monitored. The average length of a stack trace was 9. Figure 1 contains
the graph generated during the Dispersy study. In the graph, we highlighted the areas marked by
the participants (including their rankings for the most interesting ones). Both participants selected
phenomenon D as the most interesting to investigate, due to the increased writes of over 400 MB.
Participant I considered the peaks as separate phenomena, while participant II considered them as
one event. Furthermore, participant II expected that the cause of phenomenon A was the addition of
test cases which resulted in more I/0, hence he selected different phenomena to investigate. Next,
we discuss each phenomenon and the way the participants investigated them. Table IV gives an
overview of which ranked position the participants analyzed and whether the information provided
was useful.

Phenomenon A: The increase was caused by a bugfix. Before this bugfix, data was not committed
to the database.

Participant’s Analysis: Participant I indicated that our ranking correctly showed that the database
commit function started doing I/O or was called since the previous commit.

Phenomenon B: The drop in writes is due to the order in which the Git commits were traversed.
Git allows branching of code. In this case, the branch was created just before phenomenon A and
merged back into the main branch in phenomenon B. In Git, a pull request can contain multiple

*Calculated with http: //nedbatchelder.com/code/coverage/

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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subcommits. When requesting the Git log, Git returns a list of all commits (including subcommits)
in topological order. This means that every merge request is preceded directly by its subcommits in
the log. Hence, these commits were traversed by us first. Figure 2 shows an example for the traversal
order of a number of commits.

C3 Cy
4 o g hain
C1 Cz Cs

Figure 2. Order of traversal of commits in Git log (C; to C5)

Likewise, the drop during phenomenon B was caused by testing ‘old’ code, which lead to a
confusing report. For the Tribler and Dispersy projects, short-living feature branches are used. As a
result, we can avoid the traversal order problem by testing only merge requests on the main branch,
without subcommits. However, this would also make the analysis of the cause more difficult as
the number of changes to the code is larger when subcommits are combined (‘“‘squashing” in Git
terminology). In other projects, which use large long-living branches, it may be better to follow all
commits within the branch. Hence, the traversal should be selected depending on the way branches
are used in the project. In future work, we will investigate in more projects how the traversal order
affects the analysis results.

Participant’s Analysis: Participant II was not able to explain this effect from the report. However,
after explaining this effect, the phenomenon was clear to him.

Phenomenon C: In the updated code, a different test class was used which logged more info.

Participant’s Analysis: Participant II indicated that he inspected the similarity reports for the
highest and the lowest point of the phenomenon. From the report for the highest point, he suspected
the #1 ranked stack trace caused the phenomenon. However, as he was not convinced yet, he used the
report for the lowest point to verify his suspicions, in which this stack trace was ranked #18. From
the combination of the reports, he concluded the number of calls changed from 270 to 400, causing
the phenomenon. After inspecting the code changes using the GitHub diff page, he concluded that
the different test class was the cause for the increase in the number of calls.

Because the participant was not convinced by the #1 ranked stack trace by itself, we marked this
stack trace as ‘partly useful’ in Table IV. Following the advice from Participant II, the reports were
extended with the CallsDiff metric after the user study. This metric shows the difference in the
number of calls to each stack trace, compared to the previous revision.

Phenomenon D: A new test case creates 10k messages and does a single commit for every one of
these messages, introducing an additional 435 MB of writes.

Participant’s Analysis: Participant I marked this phenomenon as two separate events, for the same
reason as explained for phenomenon B. Both participants were able to explain and fix the issue based
on the highest ranked stack trace in the report. This was the trace in which a commit is made to the
database, which had a SC of 0 and a TotalImpact of 435MB. As the number of calls was 10k,
the participants fixed the issue by grouping the commits. The fix was verified using our approach.
From the graph, we could see that the total writes decreased from 635MB to 200MB. From the
similarity report, we found that the number of calls to the stack trace decreased from 10k to 8.

6.2. Case Study II: Tribler Idle Run

During a 10 minutes idle run, an average of 130 different stack traces doing writes was monitored.
The average length of a stack trace was 14. Figure 3 contains the graph generated during the Tribler
case study. We have marked the areas selected by the participants. It is obvious that this graph is less
stable than the Dispersy graph. The reason for this is that the behaviour during the idle run (i.e., just
starting the application) is influenced by external factors in Tribler. Due to its decentralized nature,
an idle client is still facilitating searches and synchronizations in the background. As a result, the
resource usage is influenced by factors such as the number of peers in the network. Despite this, the
participants both selected phenomena C and D as interesting. Participant I explained later that the

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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Figure 3. Average number of bytes written during a 10 minutes Tribler idle run for each commit

Table V. Overview of Tribler evaluation results

Phenomenon Participant # Ranking Helpful?

A I 45 Partly
B I - No
C I 1 No
I 65 Partly
I - No
D I 1 Partly
I 24,26,27 No
I 17,31,2  Partly

difference in the choice for A and B was because he preferred investigating more recent phenomena,
as their cause is more likely to still exist in the current code. In the remainder of this section, we
discuss the phenomena and the participants’ evaluations. Table V summarizes the results for the
Tribler study.

Phenomenon A: During 2 out of 5 test executions, Tribler crashed for this commit. Hence, less
messages were received, resulting in a lower average of bytes sent. The actual explanation for this
crash cannot be retrieved from these reports, but should be retrieved from the application error logs.

Participant’s Analysis: From the reports, participant I was able to detect that less messages were
received, but he was not able to detect the actual cause for this. Therefore, he granted the behaviour
to noise due to external factors. Because the participant was able to analyze the symptom correctly
from our reports, but could not make the correct diagnosis, we classify this report as ‘partly helpful’
in Table V.

Phenomenon B: No significant changes were found, the variation was due to external factors.

Participant’s Analysis: Participant II correctly diagnosed this as noise due to external factors.

Phenomenon C: There was no clear explanation for the drop in resource usage. It was probably
due to less active users in the network during the test execution.

Participant’s Analysis: Both participants concluded that less messages were received and that the
phenomenon did not require further investigation.

Phenomenon D: The reason for the large increase in writes is that the committed code made part
of Tribler crash. As a result, the idle run had to be killed after 15 minutes by the process guard. This
allowed the part of Tribler that still was running to collect data longer than during the other runs,
with the high peak in the graph as the result.

Participant’s Analysis: Both participants correctly indicated that more messages were received
and they could both identify the function which caused the large number of writes. They did not
directly indicate the partial crash as the cause. Both participants advised to include 1) the actual
duration of the execution and 2) a link to the application logs in the report, in order to be able to
diagnose such cases better in the future.

In addition, the participants agreed that the function causing the large number of writes used
too much resources. This resulted in a performance optimization, which was validated using our
approach. From the reports of the validation we could see that the total number of written bytes

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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Table VI. Summary of field user study results

Dispersy Participant Correct?‘Tribler Participant Correct?

A 1 Yes A I Partly
I - I -

B I - B I -
I No I No

C 1 - C I Partly
I Yes I No

D 1 Yes D I Partly
11 Yes 11 Partly

decreased by 340MB after the fix and from the similarity reports, we could see that the stack trace
disappeared from the report. This means that the function stopped doing write I/O.

6.3. Evaluation Results

From our evaluation, we get an indication that our approach is useful for finding performance
regressions. Especially in the case of a test which is repeatable, such as the Dispersy test suite,
our approach leads to detection of performance regressions, which themselves point in directions
for optimization. For test suites which are influenced by external factors, such as the Tribler idle run,
our analysis results require deeper investigation and may show more phenomena which are either
difficult to explain using our reports, or simply are not performance regressions.

Even so, the participants were able to correctly analyze and diagnose 3 out of 4 phenomena in the
Dispersy report. In addition, they were able to partly analyze 2 out of 4 phenomena in the Tribler
report. The participants indicated, that with little more information, they would have been able to
correctly diagnose all phenomena. These results are summarized in Table VI. Together with the
participants, we concluded that the reports miss the following information:

1. The CallsDiff metric, which displays the difference in the number of calls to a function
via the path showed in the stack trace between two commits

2. A link to the application log, so that the user of the report can check for the exit code and

whether any exceptions occurred during the test execution

3. The total duration of the test execution

4. An explanation of (or solution to) the ‘Git log order’ effect, explained in Section 6.1
After the user study, one phenomenon (Dispersy phenomenon D) was optimized based on our
reports. In addition, one regression (Tribler phenomenon D) was fixed. While this was not directly a
performance optimization, investigation was triggered by our reports. Both the optimization and
the fix could be validated using our approach after they were made. During the case study, a
phenomenon was also correctly explained to be a validation of a performance bugfix. Finally,
according to the participants, four out of the five phenomena which did not represent a performance
regression, were easy to diagnose.

In Table IV and V, we see that in the Dispersy study the problem was indicated by the top ranked
stack trace in most cases. In the Tribler study, this is not the case, but the lower ranked stack traces
were selected because of their high negative impact. If we would rank the traces by the SC and
absolute value of TotalImpact (instead of exact value), the traces would have had a top 3 rank
as well. Hence, we can conclude that the ranking given by our approach is useful after a small
adjustment. An observation we made was that the participants all used the TotalImpact as a
guideline for indicating whether the change in behaviour of a stack trace was significant enough to
investigate further. After this, they checked the SC to see in how many test executions the behaviour
was different. This indicates that the ranking should indeed be made based upon a combination of
these two metrics, and not by the SC or TotalImpact alone.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
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7. FEASIBILITY STUDY: DJANGO

To ensure the external validity of our approach and to show that our approach works for projects
developed outside our laboratory, we have applied it to Django*. Django is a web framework which
allows for rapid development and clean design of web applications. Django is used by large web
sites such as Instagram and Pinterest’. Django is written in Python and is currently the most popular
Python project on Github?. The Django Git repository® contains over 15k commits since 2005.
For this feasibility study, we have analyzed the write behaviour of the test suite of Django of the
following revisions:
1. All (20) revisions of which the commit message contains the word ‘performance’

2. The last 100 ‘merge’ commits

3. 33 (sub)commits causing the phenomenon found during the ‘merge’ commits traversal

In contrast to the study described in Section 6, we did not conduct a user study but have conducted
the analysis of Django ourselves. The setup for this feasibility study was equal to the setup described
in Section 6, with the addition that we show a warning in the similarity report if a revision contained
one or more crashing test suite executions. The reports can be found online [12].

The unit test suite had a coverage of 91%. During a test suite execution, an average of 426 different
stack traces doing writes was monitored. The average length of a stack trace was 13.

Every run of the Django unit test suite took approximately 11 minutes. As a result, the experiment
for 100 revisions and 5 iterations ran for 5500 minutes, approximately 3.5 days. Configuring
GUMBY to run the Django experiment took 2 hours.

7.1. 20 ‘Performance’ Commits

Figure 4 shows the overview report of the revisions of which the commit message contains the
word ‘performance’. In total, there were 45 performance commits, but we were only able to run the
latest 20, mostly due to dependency problems as the older commits were more than two years old.
Therefore, we only graphed the latest 20 performance commits.
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Figure 4. Average number of MB written during execution of the Django test suite (‘performance’ commits)

Figure 4 shows 3 regressions. Because the commits were made over a period of two years,
spanning 4346 commits in total, these regressions are likely due to growth of the application and of
the unit test suite. In the next two sections, we will analyze the largest regression, phenomenon C, in
more detail. We have analyzed phenomenon C only because of the large number of test executions
required to analyze all subcommits. In a production situation, this would not be an issue, as it is
possible to run the tests in parallel with the development.

*https://www.djangoproject.com/
fhttp://www.instagram.com/ and http://www.pinterest.com
thttp://pythonhackers.com/open-source/
Shttp://www.github.com/django/django
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7.2. 100 Merge Commits

Figure 5 shows the overview report of the last 100 ‘merge’ commits made to the Django repository.
We analyzed only the merge commits to avoid the Git traversal order problem, as seen in
the Dispersy case study. Note that this commit range was selected to include the commits of
phenomenon C in Figure 4.

Phenomenon C.1 and C.2 were caused by crashing revisions and we have marked them manually
as such in the similarity report. In the next section, we will investigate phenomenon C.3 in more
detail. Note that this is the same phenomenon as phenomenon C in Figure 4.
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Figure 5. Average number of MB written during execution of the Django test suite (last 100 merge commits)

7.3. 33 Subcommits Causing the Phenomenon of Section 7.2

Because Figure 5 contains merge commits only, we must analyze all commits made between the
two commits of phenomenon C.3 to precisely pinpoint the code causing the increase in writes.

Figure 6 shows the overview report of the 33 commits made between the two commits
surrounding phenomenon C.3 of Figure 5. From Figure 6, the results of Section 6 and the Git
commit messages we can deduce that phenomenon C.3.2 is caused by the Git traversal order: the
last commit we analyzed was the commit in which the commit causing the drop of C.3.2 was
merged into the main branch. Hence, we could verify that the commit causing the drop was using
code from the main branch that was written before phenomenon C.3.1. After this observation, it
is obvious that the increase in writes was caused by the code changes in the revision on the high
side of phenomenon C.3.1. After closer inspection of the changes made in this revision*, we found
that this code implements cache-like functionality in Django. In order to allow a web site to use
an older revision of files, such as stylesheets, Django adds the MDS5 hash of the content to the
filename. To avoid the performance burden caused by creating the MDS5 hash every time the file is
accessed, it can be preprocessed from the administration panel. This preprocessing is done by calling
the collectstatic management command, which was already available in previous revisions
to perform other similar functionality. After adding the MDS5 hash code to the code executed by
collectstatic, it generates more writes because the file with the hash in it is copied. Our
similarity report correctly indicated that the collectstatic command was the #1 suspect cause
of the increased writes. Because the increase in writes was intended, we can conclude that this is an
‘acceptable’ performance regression, hence it does not require a fix.

8. DISCUSSION

8.1. The Evaluation Research Questions Revisited

Does our approach provide enough information to detect performance regressions? From our
evaluation, we get a strong indication that our reports provide, after adding the information

*https://github.com/django/django/commit/8efd20£96d2045cf08baded98el18d241led4c6122d
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Figure 6. Average number of MB written during execution of the Django test suite (33 subcommits)

explained in Section 6.3, enough information for detecting I/O performance regressions. In our
user study, one out of two detected regressions was diagnosed correctly by the participants. The
participants were able to partly analyze and diagnose the second one. In addition, we were able to
detect three performance regressions in the Django study, of which we analyzed one in detail.

Does our approach provide enough information to guide the performance optimization process?
Our evaluation showed that our approach is capable of detecting I/O performance regressions in
the Dispersy, Tribler and Django projects. These regressions can act as a guide during the search
for possible performance optimizations. Our user study alone resulted in an optimization (Dispersy
phenomenon D) and a fix (Tribler phenomenon D) that have immediately been carried through in
the respective projects. Hence, we get an indication that our approach can guide the performance
optimization process. In future work, we will conduct more case studies to get stronger evidence for
this claim.

Does our approach provide enough information to verify the effect of made performance
optimizations? Our approach provides enough information to validate the optimization and fix made
after the user study. In addition, the participants were able to validate a performance fix made in the
history of Dispersy. The participants indicated the optimizations would have been easier to validate
if the difference in number of calls for each stack trace was shown in the reports, hence, these have
been added to our approach.

How does our approach work for test executions which are influenced by external factors? From
our Tribler case study, we get the indication that our approach should be adapted before it can
properly deal with influence from external factors, as the participants were able to partly explain 2
out of 4 performance phenomena only. However, our case study does show that the reports provided
useful and new information to the participants. Hence, we will continue to pursue our effort and in
future work, we will do research on how we can minimize the effect of external factors.

8.2. Scalability & Limitations

For the moment, the overhead of our approach is considerable, mostly due to our inefficient
implementation of the monitoring probes for Systemtap. The execution time of the Dispersy test
suite increased from 320 seconds to approximately 550 seconds when the monitor was enabled.
Likewise, the running time of the Django test suite increased from 325 seconds to approximately
660 seconds with the monitor enabled. While we expect that this does not affect relatively stable
metrics such as I/O, we acknowledge that this must be improved to be able to monitor timing-
sensitive metrics, such as execution time. In addition, to the best of our knowledge, Systemtap is the
only available option for monitoring Python code with such granularity. Therefore, we will focus on
minimizing the overhead of our approach in future work.

In this paper, we focused on write I/O. We set up our tooling infrastructure such that the
monitoring component can easily be exchanged for another component that is able to monitor
different metrics. Hence, by changing the monitoring component, our approach can analyze other
performance metrics. In addition, we will investigate how we can rank stack traces on a combination
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of these metrics, rather than on one metric only. This would help in making a trade-off between the
various performance metrics while optimizing.

A limitation of our approach is the fact that we require stack traces to be monitored. Some existing
profilers (such as the default Python profilers*) do not offer this functionality. As a result, we must
resort to tools such as Systemtap to collect the data. While Systemtap is a powerful tool, it is more
difficult to use and install than most profilers. This limits the ease with which our approach is
adopted.

We have implemented our approach for Python programs only. However, because Systemtap
natively supports C, C++ and Java, we expect our approach will work for programs implemented
in (a combination of) those languages as well. In future work, we will verify that this is indeed the
case.

Another limitation is that we compare a version with its predecessor only. In future work, we
will investigate if comparing with more versions can lead to new insights, such as the detection of
performance degradation over longer periods.

In our approach we do not deal with errors that occurred during the test executions. When no
profile could be generated for a revision, we simply compare with the last revision that has a profile.
In future work, we will investigate how we can inform the user about errors better, for example by
using information from the application logs in our reports.

8.3. Threats to Validity

With regard to external validity, we can report that we have performed our field study on Tribler and
Dispersy, a set of applications which have been under development for 9 years and is downloaded
over a million times. In order to make sure that our approach generalizes to non-academic oriented
software systems, we have performed a feasibility study on Django, the most popular Python project
on Github with 538 contributors and more than 10,000 commits. We acknowledge that future work
should concentrate on gathering more evidence for the usefulness of our approach through additional
case studies.

The field study on Tribler and Dispersy was conducted with two users only. While the user
study was carried out with developers who have considerable experience with the application, we
acknowledge that in the additional case studies that we plan to perform, we should involve more
developers.

Concerning the internal validity of our approach, we acknowledge that using the range of
monitored values in the profiles is not a statistically sound method. However, due to the low number
of test executions, we feel that using a value such as the standard deviation does not add to the
reliability of the profiles. To verify this, we have calculated the mean and standard deviation (std)
for Django and Dispersy executions. We found that for the Django case, the std was 0 for all cases,
which means that there was no difference in writes between the test executions for one revision. As
a result, we could have used a lower number of executions. For Dispersy, we manually compared
the ranges created by our approach, mean+std and mean+2*std. For these revisions, the range
created by mean-std was on average slightly smaller than the range created by our approach, while
mean=+2%std resulted in slightly larger ranges. Hence, we feel that for 5 test executions, it does
not really matter which approach is used. In future work, we will do more analysis on the optimal
number of test executions and the statistical approach to use.

We acknowledge that the performance of an application is heavily influenced by the version of the
(external) libraries and kernel it uses. To keep this threat as small as possible, we have executed our
case studies from within a virtual environment. GUMBY contains a build script for this environment,
allowing the case studies to be repeated in an environment which always has the same dependencies
installed.

*https://docs.python.org/2/library/profile.html
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8.4. Lessons Learned

In our studies, we have used the unit test suite to do performance regression tests. The advantage
of using unit tests is that they are usually readily available, while performance tests are not. This
lowers the bar for developers to do performance tests. In addition, unit testing can be done early in
the development cycle, allowing potential performance issues to be caught early, possibly making
their solution cheaper to implement. The disadvantage of using the unit test suite is that it was not
designed to stress the performance of the application. In addition, it is possible that the analysis leads
to optimizations of the unit test suite only. However, we believe that a unit test suite should contain
representative behaviour of the application. Therefore, we expect that performance regressions
occurring in the test suite are likely to occur in the application itself. In future work, we will
investigate how our choice of using the unit test suite affects the analysis results of our approach.

During our studies, we learned that the filename of the file written to was not always correctly
captured by our approach. This was due to the fact that we assumed that only one file descriptor
is used within a function. For the Tribler project, this was often the case, due to the style of
programming. In addition, we learned from discussion with the developers that they usually had
a good indication of what was causing the writes by just knowing the stack trace doing the writes.
While we feel that this wrong assumption did not affect the results of our case studies, we will fix
this issue in future work by taking our monitoring granularity one step further and monitoring writes
per file descriptor per function, instead of just per function®.

Although we did not encounter this during our studies, special care must be taken in the case
of refactoring. Because refactored code paths are considered new, they will receive a high ranking
in the similarity report if they perform writes. If new code, which performs writes, is introduced
as well in the same revision, analysis results can be confusing. This can be avoided by separately
committing refactoring changes and new code (i.e., self-contained commits [13]).

The final lesson we learned is that it is useful to do performance regression testing in an automated
fashion using a continuous integration environment such as Jenkins'. This is because automation 1)
allows for quick feedback, which in turn will help in finding early solutions to performance issues,
and 2) will help in lowering the bar for software developers to incorporate regression testing into
the development cycle.

9. RELATED WORK

Comparison of execution profiles and the detection of performance regressions have received
surprisingly little attention in research. Savari [14] has proposed a method which works for
frequency-based profiling methods. Our approach works for any type of metric on a function-level
granularity.

The widely-used profiler OProfile! implements a technique known as differential profiles, which
expresses differences between profiles in percentage. The problem with this technique, is that it
reports high percentages for the difference of small values. For example, the difference between
1Kb and 2Kb is 100%, while the absolute difference is relatively small. As a result, it is unknown
whether this difference is significant, without incorporating the number of calls to the function. Our
approach calculates the impact of the code change instead, which does not have this problem.

Bergel et al. [15] have proposed a profiler for Pharo which compares profiles using visualization.
In their visualization, the size of an element describes the execution time and number of calls.
Alcocer [16] extends Bergel’s approach by proposing a method for reducing the generated callgraph.
These visualizations require human interpretation, which is difficult when the compared profiles
are very different [15]. Our approach provides a textual ranking, which we expect to be easier to

*Note: this was implemented in the latest version of GUMBY, which was developed after performing the experiments.
Thttp://jenkins-ci.org/
thttp://oprofile.sourceforge.net/
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interpret. However, we believe that the work of Bergel et al., Alcocer and our approach can be
supplemental to each other, and we will investigate this in future work.

Jiang et al. [17] analyze readily available execution log files to see if the results of a new load
test deviate from previous ones. The advantage of this approach is that it does not introduce extra
monitoring overhead. However, this also limits the granularity with which regression analysis can
be performed. This is also demonstrated by the granularity of their case studies: in three conducted
case studies, they analyze system and application-wide tasks such as finding the optimal DBMS
configuration. Our approach does not have such a limitation. However, this comes at the cost of
increased overhead.

Nguyen et al. [18] propose an approach for detecting performance regressions using statistical
process control techniques. Nguyen et al. use control charts to decide whether a monitored value
is outside an accepted range. The violation ratio defines the relative number of times a value is
outside this range. Control charts and the violation ratio are similar to our profile approach. The
approach of Nguyen is more statistically sound than our approach, however, we expect that this is
not necessarily an improvement when using a small number of test executions. The main difference
in the approach used by Nguyen and our approach is the granularity. Their approach identifies
performance regressions in system-level metrics, while our approach identifies regressions on the
function-level, making analysis of the regression easier. In future work, we will investigate how our
approach and Nguyen’s approach can complement each other.

10. CONCLUSION

In this paper, we proposed a technique for detecting and analyzing I/O performance regressions.
By comparing execution profiles of two software versions, we report on the functions of which the
performance profile changed the most. This report can be used to find regressions or to validate
performance optimizations. In this paper, we focused on analyzing write I/O regressions, which
is a relatively stable metric. In future work, we will investigate how our approach performs when
applied to less stable, timing-sensitive metrics, such as execution time and CPU usage.

In a field user study, we showed that our approach provides adequate information to detect write
I/O regressions and guides the performance optimization process. In fact, our field user study
resulted in one optimization and one fix made to our subject system. In addition, we show that
our approach was able to detect three performance regressions in one of the most popular Python
projects, namely Django. To summarize, we make the following contributions:

1. An approach for the detection and analysis of I/O performance regressions

2. An open-source implementation of this approach, called SPECTRAPERF

3. Auser study in which we show that our approach guides the performance optimization process

4. A feasibility study in which we show that our approach works on applications developed

outside our laboratory
Revisiting our research questions:

RQ 1: How can we monitor performance data and generate a comparable profile out of this
data? We have proposed an approach using Systemtap to monitor data and we have showed how to
generate a comparable profile from this data.

RQ 2: How can we compare the generated performance profiles? We have presented our approach
for comparing performance profiles, and provide a ranking of the stack traces which were most
likely to have changed behaviour. This ranking is made based on the similarity coefficient compared
to the previous performance profile, and the fotal impact of a source code change on performance.
In our user study, we showed the ranking was useful in 3 out of 8 cases and partly useful in 3 out of
8 cases and helped the participants find one optimization and one fix. In addition, we were able to
detect three performance regressions in Django, one of the most popular Python projects.

RQ 3: How can we analyze and report on the differences between profiles? We have showed how
we report on the data and we have evaluated this reporting technique in a field user study. During
this study, we analyzed the performance history of the open-source peer-to-peer client Tribler and
one of its components, Dispersy. The field user study resulted in one optimization and one fix,

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOI: 10.1002/smr

TUD-SERG-2014-010 19



Bezemer et al. — Detecting and Analyzing I/O Performance Regressions SE

20 C. BEZEMER, E. MILON, A. ZAIDMAN, J. POUWELSE

which were also validated using our approach. During the user study, we found that our approach
works well for repeatable tests, such as a unit test suite, as the participants were able to explain
3 out of 4 performance phenomena encountered during such a test using our approach. We also
received indication that it needs adaptation for a test which was influenced by external factors, as
the participants were able to explain 2 out of 4 performance phenomena partly only.

Main RQ: How can we guide the performance optimization process by doing performance
regression tests? We have showed that our approach for performance analysis can guide the
performance optimization process by detecting I/O performance regressions. The results of our field
user study alone, resulted in one optimization for Dispersy and a fix for Tribler.

In future work, we will focus doing more case studies and on extending our approach to monitor
different performance metrics such as memory and CPU usage. Additionally, we will investigate

how we can report on trade-offs between these metrics.
REFERENCES

1. Rothermel G, Harrold MJ. Analyzing regression test selection techniques. Software Engineering, IEEE
Transactions on 1996; 22(8):529-551.

2. Chung L, Nixon B, Yu E, Mylopoulos J. Non-functional Requirements in Software Engineering. Kluwer Academic
Publishers, 2000.

3. Jain R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling. John Wiley & Sons, 1991.

4. Reiss SP. Visualizing the java heap to detect memory problems. Int’l Workshop Visualizing Software for
Understanding and Analysis (VISSOFT), IEEE, 2009; 73-80.

5. Woodside M, Franks G, Petriu D. The future of software performance engineering. Future of Softw. Engineering
(FOSE), IEEE; 171-187, doi:10.1109/FOSE.2007.32.

6. Bezemer CP, Zaidman A. Performance optimization of deployed software-as-a-service applications. Journal of
Systems and Software 2014; 87(0):87 — 103.

7. Pouwelse JA, Garbacki P, Wang J, Bakker A, Yang J, Iosup A, Epema DH, Reinders M, Van Steen MR, Sips
HJ. Tribler: a social-based peer-to-peer system. Concurrency and Computation: Practice and Experience 2008;
20(2):127-138.

8. Larres J, Potanin A, Hirose Y. A study of performance variations in the mozilla firefox web browser. Proc.
Australasian Comp. Science Conference (ACSC), Australian Computer Society, Inc., 2013; 3-12.

9. Abreu R, Zoeteweij P, Van Gemund AJ. On the accuracy of spectrum-based fault localization. Testing: Academic
and Industrial Conf. Practice and Research Techniques-MUTATION (TAICPART-MUTATION), IEEE, 2007; 89-98.

10. Abreu R, Zoeteweij P, van Gemund A. An evaluation of similarity coefficients for software fault localization. Pacific
Rim International Symposium on Dependable Computing (PRDC), 2006; 39-46.

11. Prasad V, Cohen W, Eigler F, Hunt M, Keniston J, Chen B. Locating system problems using dynamic
instrumentation. Proc. Ottawa Linux Symposium, 2005; 49—64.

12. Zeilemaker N, Schoon B, Pouwelse J. Dispersy bundle synchronization. Technical Report PDS-2013-002, TU Delft
2013.

13. Bezemer CP. Performance regression reports 2014. URL http://dx.doi.org/10.6084/m9.figshare.
974535, figshare.

14. Mulder F, Zaidman A. Identifying cross-cutting concerns using software repository mining. Proceedings of the Joint
ERCIM Workshop on Software Evolution (EVOL) and International Workshop on Principles of Software Evolution
(IWPSE), IWPSE-EVOL, ACM: New York, NY, USA, 2010; 23-32.

15. Savari SA, Young C. Comparing and combining profiles. Journal of Instruction-Level Parallelism 2000; 2.

16. Bergel A, Bafiados F, Robbes R, Binder W. Execution profiling blueprints. Softw., Pract. Exper. 2012; 42(9):1165—
1192.

17. Alcocer JPS. Tracking down software changes responsible for performance loss. Proc. Int’l Workshop on Smalltalk
Technologies (IWST), ACM, 2012; 3:1-3:7.

18. Jiang ZM, Hassan A, Hamann G, Flora P. Automated performance analysis of load tests. Prof. Int’l Conf. Softw.
Maintenance (ICSM), IEEE; 125-134, doi:10.1109/ICSM.2009.5306331.

19. Nguyen TH, Adams B, Jiang ZM, Hassan AE, Nasser M, Flora P. Automated detection of performance regressions
using statistical process control techniques. Proc. ACM/SPEC Int’l Conf. on Performance Engineering (ICPE),

2012; 299-310.
Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
Prepared using smrauth.cls DOI: 10.1002/smr

20 TUD-SERG-2014-010






TUD-SERG-2014-010 S E( i
ISSN 1872-5392



