Please cite the Published Version

Sherwood, T, Ahmad, E and Yap, MH (2016) Formulating efficient software solution for digital
image processing system. Software: Practice and Experience, 46 (7). pp. 931-954. ISSN 0038-
0644

DOI: https://doi.org/10.1002/spe.2339

Publisher: Wiley

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/608241/

Usage rights: © In Copyright

Additional Information: This is an Accepted Manuscript accepted for publication in the Software:
Practice and Experience, copyright John Wiley & Sons Ltd.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1002/spe.2339
https://e-space.mmu.ac.uk/608241/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Journal of:

Softare: Practice and Experience

Software: Practice and Experience

Formulating Efficient Software Solution for Digital Image

Processing System

Journal:

Software: Practice and Experience

Manuscript ID:

Draft

Wiley - Manuscript type:

Research Article

Date Submitted by the Author:

n/a

Complete List of Authors:

Sherwood, Thomas; Manchester Metropolitan University, School of
Computing, Mathematics and Digital Technology

Ahmad, Ezak; Manchester Metropolitan University, School of Computing,
Mathematics and Digital Technology

Yap, Moi Hoon; Manchester Metropolitan University, School of Computing,
Mathematics and Digital Technology

Keywords:

software solution, image processing, plug in, maintainability, OpenCV,
Matlab

http://mc.manuscriptcentral.com/spe

Page 1 of 25

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Software: Practice and Experience

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 00:1-25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Formulating Efficient Software Solution for Digital Image
Processing System

Thomas Sherwood, Ezak Ahmad, Moi Hoon Yap*

School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Chester Street,
Manchester, M1 5GD, UK

SUMMARY

Digital Image Processing Systems are complex, being usually composed of different computer vision
libraries. Algorithm implementations cannot be directly used in conjunction with other algorithms developed
using other computer vision libraries. This paper formulate a software solution by proposing a processor with
the capability of handling different types of image processing algorithms, which allow the end-users to install
new image processing algorithms from any library. This approach has other functionalities like capability
to process one or more images; manage multiple processing jobs simulteneously; and maintain the manner
in which an image was processed for later use. It is a computational efficient and promising technique to
handle variety image processing algorithms. To promote the reusability and adaptation of the package for
new types of analysis, a feature of sustainability is established. The system past the testing procedures by
using unit testing, integration testing and usability testing. Future work involves introducing the capability
to connect to another instance of processing service with better performance. Copyright © 2010 John Wiley
& Sons, Ltd.

Received ...

KEY WORDS: image processing, software solution, sustainability, plugin, OpenCV, Matlab

1. INTRODUCTION

Digital image processing is complex and inconsistence due to various programming languages
and variation computer vision libraries. The domain of image processing has increased vastly in
recent years [1], spanning across a range of applications such as photography, forensics and medical
imaging [2]. The term simply relates to the process (or set of processes) applied to the detector and
dataset of a radiograph exposure [3]. Motivations for processing an image stem from not only the
amount of information perceived as image form, but also for autonomous machine control [4].

A mechanism for implementing the algorithms is required, in order to provide a means to perform
the transformations. Larkins et. al. [5] discuss an existing high-level toolbox known as Matlab,
providing a plethora of existing algorithms and components for re-use in building more complex
algorithms. They highlight how Matlab is easy enough for novice users to grasp while still providing
powerful processing and data crunching capabilities. However algorithm implementations cannot be
directly used in conjunction with other algorithms developed using other technologies, for instance
C++ processing classes. Culjak et. al.[6] discusses an alternative to Matlab known as OpenCYV,
which provides a suite of processing algorithms and assistant classes written in C. They discuss
how the library is also widely used, providing heavily optimised solutions to particular algorithms.
A C++ wrapper is available for OpenCV, allowing for easy integration into higher-level languages.

*Correspondence to: School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University,
Chester Street, Manchester, M1 5GD, UK.

Copyright © 2010 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]
http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

Software: Practice and Experience

2 T. SHERWOOD, E. AHMAD, M.H. YAP

Matuska et. al.[7] provides a detailed comparison between the processing speeds of Matlab and
OpenCV, concluding that OpenCV dominates Matlab in regards to processing speed. However in
order to utilise OpenCYV, the user must directly implement the processing code in a language capable
of using the C or C++ implementations.

The contribution of this paper is to formulate a Digital Image Processing System (DIPS), by
proposing a processor with capability of handling different types of image processing algorithms.
The functionality requirements include: capability to process one or more images; allow end-users
to install new image-processing algorithms; manage multiple processing jobs simultaneously; and
maintain the manner in which an image was processed for later additional analyses. In addition to
these functional requirements, there are non-functional requirements for this project; i.e. memory
and computational efficiency. The sustainability of DIPS is also an issue to be considered. It has
been established that a feature of sustainability is that a system is not simply being made bespoke
and obsolete as soon as its initial use concludes [8]. This is ensured by the design to keep the
new image processing algorithms created by the user that promote reusability and adaptation of the
package for new types of analysis.

This paper is organised as follows. Section 2 presents the concept of DIPS and the detailed design.
Section 3 shows how to implement the processing modules in DIPS. Section 4 describes the testing
process and Section 5 conclude the paper with future work.

2. PROCESSOR DESIGN

This section pertains to the design of the image processing module within the DIPS application.
Opening with a high-level view of the communication between the application and the processing
modules, the core requirements of the processor are devised and explained in detail. These
requirements are used as the base of the system design description.

2.1. System Architecture

The formulation of DIPS application is composed of three key components: the database system
used for persistence, the graphical user interface providing the presentation layer, and the image
processor module. The processor discussed in this paper will permit any image which can be
represented as an object. This provide the flexibility of supporting different image formats.

The processing module is intended to run independent of the DIPS application as a service.
This allows the deployment of the processor and execution of jobs in a separate environment
(and optionally machine) to a running DIPS instance, the intent of which paves the way for the
potential for shared ‘cloud’ computation. The functions of the processor are exposed through a
public interface known to the application, which prevents locking it to a single instance of the
service and provides the means to test the application through mock instances.

The application-layer is responsible for manufacturing an object describing the job to be executed.
This consists of the inputs to process in addition to the method of processing each image. The
processor uses this information to execute the processing job, firing events back to the client (such
as when work begins and ends, when a single image is processed and so forth). The processor is
broken down into several subsystems responsible for various operations. One such module provides
job-management functionality, allowing clients to submit more than one job and leave the processor
to complete them in the order provided. On receiving a new job, the processor enqueues the
information into the job queue and provides the caller with a ‘ticket’ representing the job within
the queue. The application will later use this ticket to access their results, or use it to observe events
as the job progresses. The new job is enqueued into the job queue, which maintains the current set
of active jobs to process. The queue will then fire an event notifying observers a new item has been
added.

A separate subsystem to the job management system provides the actual execution of jobs within
the processor. On observing the event fired by the queue, a background worker initialises (if it is
not already working). This worker dequeues the next job and uses the information to execute the
processing functionality, while notifying the client as it progresses through the provided inputs. If

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 2 of 25

Page 3 of 25

©CoO~NOUTA,WNPE

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 3

Database Application Processor

Dispatch processing job

Notify process completion

Request result for job

Provide result object

Save results

Figure 1. High-level communication between application and processor

Job Job

Processor Manager Executor

New processing job

Enqueue job

Return ticket Notify queue changed

Dequeue and run

Notify job complete

Figure 2. New jobs are provided to the job manager, which creates the executable job based on the

information provided by the client. It is then enqueued and ran at a later time. Many jobs can be queued as

the background worker gradually completes them in a FIFO manner. Dashed lines represent asynchronous
actions.

an error occurs while running a job, it notifies the client of the error and aborts the execution of
that particular job. The next job is then dequeued and ran, until the queue is exhausted. Another
subsystem provides the means to convert the information provided by the client into the actual job.
The client is provided with objects used to represent the processing algorithms, which must be
converted into their associated instances before they can be used. This prevents the introduction of
dependencies into the client, and instead only exposes limited types through the public interface.
Additionally, new image processes can be installed into the service and sent to the client in these
‘definition’ objects without needing to alter the client or the underlying processor interfaces and
logic.

Finally, the output of processing each image is retained locally by the processor until the client
requests the results. They can then use the ticket to delete the results once they have accessed them,
or leave the service to clean up outstanding results on shutdown. In the DIPS application, the results
are retrieved and saved to the database.

2.2. Requirements

The processing service used by the application is subject to several functional requirements, either
inherited from the main goals of the application or derived based on feedback by stakeholders. These
include:

o Provide the capability to process one or more images. While an obvious requirement, the
processor must expose the capability to accept one or more images in a request and provide the
means to process them using an arbitrary algorithm chosen by the client. This is to decouple
all image processing logic from any application logic.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

Software: Practice and Experience

4 T. SHERWOOD, E. AHMAD, M.H. YAP

o Allow end-users to install new processing algorithms. Rather than provide a limited set of
algorithms and be done with it, there is the potential an end-user may want to incorporate a
specific image processing technique they have written into the processor. Rather than have to
receive and modify a copy of the processor, they should be able to incorporate their processing
algorithm without needing to make other changes.

e Manage multiple processing jobs simultaneously. The application can enqueue dozens of jobs
which are completed sequentially, with the client receiving the results as each job completes.

o Persist the manner in which an image was processed for later re-use. The main objective of
the DIPS application is to save the end-user time when performing pre-processing operations.
While this is achieved by batch processing, they may wish to re-use the same set of processes
at a later point in time (for instance, as new scans become available). To satisfy this, the
processor needs to be able to save the state of the method used to process images and provide
the capability to use this information at a later time to restore the method’s state.

In addition to the functional requirements listed above, there are several non-functional
requirements requiring consideration when implementing the processing module. These include:

e Memory. As the processor will be dealing with a large number of requests simultaneously, all
composed of multiple image files, the memory required for the processor to run will increase
greatly based on the size and number of processing batches it has received. A degree of
memory management may be required if the processor begins occupying too much memory
during testing.

e Computational Efficiency. The amount of processing required to execute a job is heavily
dependant on the way in which they wish to process their inputs. If they have chosen a
processing mechanism which takes a considerable amount of time, or have requested a very
large set of images to be processed, the time their job will take will increase and cause other
queued jobs to be delayed further. The processor must decide if a job should be aborted for
exceeding the allowed time permitted by the job to complete, whether or not this is based on
the complexity of the algorithm or another reason for the blocking call.

2.3. Subsystem Architectures

2.3.1. Process Definitions Job requests dispatched to the processor are composed of not only the
inputs to be processed, but also an object specifying how to process the images. In order to construct
a legal processing definition, the application must first be aware of the type of object used to define a
process in addition to receiving objects of this type depicting the available processes. The client may
also wish to use a complex process consisting of one or more other processes, effectively chaining
them together.

This chaining of processes together is regarded as a ‘pipeline’. The pipeline consists of one or
more elements representing an image process, in which the image is passed through the individual
elements until it exits the pipeline. Each element is capable of accepting an arbitrary image input,
perform the processing task it represents, and output the result for use by the next element in
the pipeline. This isolates each process from one another by eradicating knowledge of other
processes from one another, and additionally allows for greater customisation by the user; rather
than hard-coding an algorithm or only allowing the selection of a single process, users are able to
replace components of a pipeline, or add or remove elements as their processing needs dictate.
The objects exposed to the client for the purposes of pipeline construction are relatively basic
in nature in order to avoid introducing too many dependencies. The AlgorithmDefinition object
represents a single processing algorithm available to the processor, consisting of its identifier and a
separate object containing its parameters. These are aggregated within a PipelineDefinition object,
assembled by the client to represent their desired processing task. Figure 4 depicts this relationship
between the objects. The processor exposes a read-only collection of available AlgorithmDefinition
objects which the client can utilise to build legal pipelines. These are resolved when the processor

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 4 of 25

Page 5 of 25

©CoO~NOUTA,WNPE

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 5

Input —— Process A Process B Process G —— Output

Figure 3. The processing algorithm packaged as part of a job request is in fact a ‘pipeline’ composed of one
or more image processes

PipelineDefinition AlgorithmDefinition

algorithms : AlgorithmDefinition(] K>—

algorithmName : String
parameterObject : object

Figure 4. Client applications use AlgorithmDefinition objects alongside PipelineDefinitions to portray their
desired processing pipelines

AlgorithmPlugin

input : Image
output : Image

run(parameterObject : object)

Figure 5. The abstract AlgorithmPlugin represents a single image processing technique. The processor
utilises the common interface to communicate with implementations without requiring them to possess
knowledge of each other.

first initialises and are not modified during the lifetime of the processor. The range of available
processing techniques available to the client is dependant on the implementation of the processor.
It retains the underlying implementations privately and exposes the AlgorithmDefinitions publicly.
This separates how the implementations of the processes are dealt with from the client, allowing for
restricting of the internals of the processor without breaking existing pipelines in use by clients.

In the case of the DIPS design, it is required that new processing techniques can be implemented
and adapted into the processor without requiring the modification of any existing code. To achieve
this, an architecture based around the concept of ‘plugins’ is required. These plugins represent
unique image processing techniques, such as histogram equalisation or gamma correction. The
processor is made aware of the existence of these plugins and loads them dynamically, exposing
them as AlgorithmDefinitions to the client through the public interface.

To achieve this, a base class is required in order for the processor to communicate with
a plugin. The AlgorithmPlugin class (figure 5) represents the basic definition of an image
processing technique; it utilises a known Image class representing the input, and performs its
processing implementation through a call to its run method. This method accepts an arbitrary
object representing the parameters to the process, provided by the client through the associated
AlgorithmDefinition object. The processor is able to instantiate an instance of this class by
associating the specific plugin implementation with the identifier used in it’s AlgorithmDefinition.
Upon receiving a new job request from the client, the processor uses the PipelineDefinition to
reconstruct the collection of associated AlgorithmPlugin objects. It sets the input of each plugin
as the output of the former (or in the case of the first process, the input image itself). The output
of the final process is then regarded as the output of the pipeline. This approach of dynamically
loading plugins and exposing them as AlgorithmDefinitions allows the development and installation

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

Software: Practice and Experience

6 T. SHERWOOD, E. AHMAD, M.H. YAP

JobRequest

pipeline : PipelineDefinition
inputs : Image][]

!

PipelineDefinition

AlgorithmDefinition

algorithmName : String

Igorithms : AlgorithmDefiniti
algorithms gorithmDefinition[] parameterObject : object

Figure 6. The client constructs a PipelineDefinition as part of their JobRequest, along with the set of input
Images to be processed. The processor uses this information to constructing processing jobs.

«enumeration»

JobState «interface»
InQueue lJobTicket
Running GetState() : JobState
Cancelled GetRequest() : JobRequest
Error GetResult() : JobResult
Complete Cancel()

Figure 7. The client is provided with a job ticket, representing the job within the processing queue. The
client can attach to relevant events from this object, or even cancel the job if required

of new processes without modifying either processor or application code, while keeping the system
testable by isolating all the components from each other.

2.3.2. Job Management Given a mechanism of allowing clients to define tasks through
JobRequests, the processor must be capable of transforming these requests into real jobs it can
process. This is undertaken using a queucing system in which jobs dispatched by the client
application are executed in a FIFO manner. Given a task outlined by a client’s JobRequest, the
processor must first validate the contents of the job. The PipelineDefinition provided is examined,
and made sure it does not contain any AlgorithmDefinitions the processor is unaware of. Upon
successful validation, the information is retained by the processor and the client is provided with a
‘ticket’. Like a real queueing system, the ticket represents the jobs place within the queue and can be
used at later points within the job’s lifetime to perform actions against it. The processor retains the
ticket also, used by a separate object to devise and execute the job it represents. On dispatching the
first job to the processor, the queue signals an event declaring it contains pending jobs. A background
worker observes this event, and begins the execution loop. The background worker dequeues the
next ticket from the queue and begins executing the job. It uses the ticket to gather the information
provided by the client in the JobRequest and dispatch appropriate events as it makes progress. This is
executed on a separate thread, providing a producer-consumer relationship between the two objects.
As clients continue feeding the processor with jobs, the worker will gradually execute the work in
the background until the queue is exhausted.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 6 of 25

Page 7 of 25 Software: Practice and Experience

1 SOFTWARE SOLUTION FOR DIPS 7
2

3

g JobQueue QueueWorker

6 jobs : |JobTicket[] queue - JobQueue

7 enqueue(ticket : lJobTicket)

g dequeue() : JobTicket

10

11 Figure 8. The JobQueue retains the FIFO data structure collating the jobs received by client applications.
12 The QueueWorker sequentially dequeues and works with the next job in the queue.

13

14

15 <?xml version="1.0" encoding="utf-8"7?>

16 <pipeline>

17 <algorithms>

18 <algorithm name="GammaCorrection">

19 <properties>

20 <property name="Gamma" value="3"/>

21 </properties>

22 </algorithm>

23 </algorithms>

gg </pipeline>

26

27 Figure 9. Pipelines created by applications can be represented as XML and re-loaded at a later time.
28 The processor can convert this XML ba(?k into its rgpresented Pz.'peline.Deﬁnitilon by re-instantiating the
29 appropriate AlgorithmPlugins and providing them with their associated XML.

30

31

32 2.3.3. Pipeline Persistence One of the key requirements of the processor is to save time in the
33 recreation of process batches by saving the users processing workflow. While they can process a
34 large batch of images using a single pipeline, it is likely they will want to retain the pipeline they
35 have created for reuse at a later time. Thusly a mechanism is needed to retain the state of their
36 customised process to a data store. The AlgorithmDefinition objects used to expose the pipeline
37 components carry enough state information to represent a process. They state which process in
38 particular they represent in addition to possessing an object detailing the parameters to be used
39 when the process is executed. However, these objects may not be safe to serialise into a permanent
40 form into a data store - it is never known what contents the parameter object may contain, nor is
4l it safe to assume the object itself will change. Instead of object serialisation, XML can be used to
42 represent the individual processes of a pipeline (figure 9). The AlgorithmPlugin objects loaded and
43 used by the processor can expose the capability to create or load XML in order to create a memento
44 of their state. In the event their schema changes (due to the addition of a new property or otherwise),
45 they can act accordingly against older versions of their XML. This is much safer than attempting
46 to reload stale serialised objects, and also allows the testing of the pipeline system without any UI,
47 XML representing pipelines can be injected to create the relevant pipeline without needing a Ul
48 to construct it. The processor provides the two-way pipeline to XML transformation on the public
49 interface. Once a client has constructed a pipeline, they can hand the PipelineDefinition object to
22 the processor. The associated plugins are then used to create their individual algorithm clements
50 represented in the DOM in figure 9. These are then used to form the document itself, which is
53 returned back to the client. It is up to the application how to store the XML, whether in the file
54 system or a database. On receiving XML to re-create a PipelineDefinition, the processor resolves the
55 appropriate plugin using the name attribute in each algorithm element. It then hands the plugin the
56 particular element to restore itself, before converting them into their associated AlgorithmDefinition
57 objects. In the event invalid XML is provided, the processor throws an appropriate exception for the
58 client to handle.

59

60 Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)

Prepared using speauth.cls DOI: 10.1002/spe
http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

Software: Practice and Experience

8 T. SHERWOOD, E. AHMAD, M.H. YAP

«interface»
IProcessor

GetJobManager() : JobManager
GetPipelineManager() : IPipelineManager

| |

«interface» «interface»

JobManager IPipelineManager
Enqueuejob(request : JobRequest) : IJobTicket GetAvailableProcesses() : AlgorithmDefinition[]
GetResults(jobTicket : [JobTicket) : JobResult CreatePipelineMemento(pipeline : PipelineDefinition) : String
DeleteResults(jobTicket : JobTicket) : Boolean RestorePipelineMemento(pipelineXml : String) : PipelineDefinition

Figure 10. The processor module is represented by the IProcessor interface, exposing further submodules
providing pipeline and job management.

2.4. Client Interface

Previous sections have discussed how the requirements of the processing module have been
satisfied within their subsystems, providing the means for client applications to execute the required
functions. With these subsystems in place, the manner in which they are exposed can be devised.
The client application is intended to obtain a reference to a root interface it is aware of, which
represents the processing module. This interface is further composed of the submodules discussed
previously, pertaining to job management and pipeline building/persistence. Figure 10 represents
this structure, and an overview of the general methods applicable to each component.

IProcessor
The root IProcessor is intended to represent the entirety of the processing module. It is an
instance of this interface in which client applications are provided with, granting them with
the capabilities represented by the processor. At present, it does little more than expose the
associated subsystems providing the underlying functionalities of the processor.

IJobManager

The IJobManager is intended to represent the subsystem used by client applications in which
jobs are dispatched to. Clients can call the Enqueueob method with their JobRequest to
enqueue their processing job, providing them with the LJobTicket representing their place in
the queue. They can listen to events on the ticket and await completion of their work, before
calling the GetResults method on the manager. This provides them with a JobResult object
containing the output of their processing task. They can then optionally call DeleteResults
once they have retained a local copy to tidy up their work on the processor immediately.
Clients who are neglectful in this regard will have their results automatically removed after
an extended period of time, or when the object is disposed.

IPipelineManager

The IPipelineManager provides clients with the means to become aware of the available
AlgorithmDefinitions within the associated IProcessor. It exposes these definitions through
a simple getter, allowing the application to then build up their PipelineDefinition. The
client will then use this in the IJobManager as part of their JobRequest, however it is the
IPipelineManager who exposes the functionality to save and restore PipelineDefinitions to
and from Xml. Two methods exposing these functionalities are available against the manager,
accessible to the client.

2.5. Summary

The individual components described within this chapter provide the processing functionality
required by the DIPS application. However, the design approach taken does not restrict the
processing capabilities to one particular implementation of the software and is instcad made
available to any application aware of its client interface. A discussion of the mechanism providing

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 8 of 25

Page 9 of 25

©CoO~NOUTA,WNPE

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 9

the processes was provided, detailing the usage of a plugin framework capable of loading the
available processing algorithms dynamically. This prevents restricting the capabilities of the
processor to a particular subset of processing algorithms during the current development cycle, and
instead provides scope for other developers to continue adding their own processing algorithms at a
later point in the product lifetime. The manner in which jobs are managed within the system was also
discussed, detailing the requirement of a robust queueing system. This is used in conjunction with
multithreading to allow a constant throughput of work provided the processor continues receiving
work. Following this, the manner in which processing ‘pipelines’ are persisted was devised. The
chosen manner of performing this was Xml, as it avoids the pitfalls of object deserialisation.
Additionally, it provides the means to design a pipeline without requiring a Ul or additional code
to inject a pipeline definition. Finally, the manner in which the core functions of the processor are
exposed to the public was presented. Separating the logical subsystems of the processor into separate
domains makes it easier to manager for both the client and the processor implementation.

3. IMPLEMENTATION

This section of the document details the specifics of the implementation of the processing module
within the DIPS application. It has been broken down into logical segments pertaining to relevant
sections within the design, such as the plugin system and job management.

3.1. Plugin System

This section focuses on the plugin subsystem and its interactivity with the rest of the processing
module. A discussion of the system was provided along with a high-level overview of its interactions
(page 5, figure 5). There are however further steps required for consideration:

1. How implementations of plugins are loaded into the processor dynamically
2. How the parameter object associated with the process is resolved and created

3. How the two-way Xml procedure is implemented to provide a means of process persistence

3.1.1. Dynamic Plugin Loading The ability to load new plugin implementations into the processor
without requiring the modification of existing code is one of the key features of the design.
Other developers can implement new processing algorithms and incorporate them into pipelines
without modifying the processor itself. The manner in which plugins are integrated is relatively
straightforward, making use of a concept known as type introspection. This is where the program
has the capability to examine and potentially modify itself during runtime, however we only make
use of the former. The C# language makes this available through Reflection, which is built right
into the language. It allows the analysis of class structures as an object of type Type, exposing
details such as property names and types, attributed values, superclasses, interfaces and more.
Reflection can also be used to examine compiled assemblies, also regarded as DLL files. Assemblies
represent an aggregation of types and other code, in which reflection provides enumeration over
the types within the assembly. Figure 11 demonstrates the loading of an assembly from a file,
before enumerating through all the Types within the assembly. The Type class provides the means
to determine whether the class it represents extends another class. Additionally, the typeof operator
allows the introspection of a class without requiring an instance of it. Thusly, we can combine the
two as demonstrated within figure 12 to determine whether a class represented by a Type extends
the AlgorithmPlugin class. Combining the code snippets in figures 11 and 12, the implementations
of AlgorithmPlugin within a particular assembly can be uncovered. However, this only yields their
Types and does not associate them with any sort of identifier. At this stage of the process, adding an
abstract accessor requesting their identifier will not solve this as the types have yet to be instantiated.
Therefore an attribute must be required to be applied to the class in order to resolve this. In C#,
an attribute is a class which extends the appropriately named Attribute class. Such classes are

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Software: Practice and Experience Page 10 of 25

10 T. SHERWOOD, E. AHMAD, M.H. YAP

Assembly assembly = Assembly.LoadFrom("MyAssembly.dll");
foreach(Type type in assembly.GetTypes ())

{
// Do stuff with type

Figure 11. Once an assembly has been loaded, the Types within the assembly can be enumerated through.
Each Type represents a class, interface or other entity and can be introspected further.

if (type.IsSubclassOf(typeof(AlgorithmPlugin)))

{
// Type subclasses AlgorithmPlugin

Figure 12. The Type class provides the IsSubclassOf method to determine whether the class it represents
extends another, represent by it’s Type

[AttributeUsage (AttributeTargets.Class, AllowMultiple = false)]
public sealed class AlgorithmAttribute : Attribute
{

public AlgorithmAttribute(string pluginName)

{

PluginName = pluginName;

public string PluginName
{

get;

private set;

[Algorithm("SomeAlgorithm")]
public class SomeAlgorithm : AlgorithmPlugin
{

Figure 13. The AlgorithmAttribute provides the means to ‘annotate’ classes with an identifier. This can then
be used to associate an identifier with a type of plugin, rather than a single instance.

used to ‘annotate’ various parts of code files, such as classes, properties, methods and so on. In
this scenario, each AlgorithmPlugin implementation must be annotated with a class requesting
them to provide an identifier. Figure 13 demonstrates an implementation and usage of this class,
providing a specific AlgorithmPlugin with an identifier within its type definition. The Attributes of
a Type can be accessed with ease through a simple method call. If no attribute is found then the
plugin is ignored, otherwise the identifier and type can be registered into the system. By checking
whether the class represented by Type extends AlgorithmPlugin and has been annotated with the
AlgorithmAttribute, plugin implementations can be loaded from DLLs provided the processor. In
the case of the DIPS solution, the assemblies it is provided with reside in the same directory as the
executing processor assembly. On startup, the processor checks the directory it is executing in for

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 11 of 25

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 11

var attribute = type.GetCustomAttribute (typeof (
AlgorithmAttribute));

if(attribute != null)

{
// Plugin has AlgorithmAttribute

Figure 14.Using introspection, the AlgorithmAttribute can be resolved from a Type. If the
GetCustomAttribute method returns null, the implementation has not been annotated with the attribute and
the plugin is ignored.

string currentDir = Directory.GetCurrentDirectory();

var files = from file in Directory.GetFiles(currentDir)
let fileNoPath = Path.GetFileName(file)
where fileNoPath.StartsWith("DIPS.Processor.Plugin")
&& fileNoPath.EndsWith(".d11")
select fileNoPath;

foreach(string fileName in files)

{

// Assembly is a plugin assembly

Figure 15. Plugin assemblies within the current directory can easily be located by enumerating over the files
and filtering out those not named like ‘DIPS.Processor.Plugin.*.dll’.

compiled assemblies and scans each one for plugin types. When a new plugin is to be integrated
into the processor, it need only be compiled into a DLL and copied into the same directory as the
processors binaries. This manner of loading plugins through DLLs is very flexible, only requiring
future developers to extend the base AlgorithmPlugin class, attribute the class accordingly and copy
the compiled output to the same location as the processor binaries. Figure 16 demonstrates the
entirety of the plugin loading procedure, from detecting assembly files to scrutinising types within
assemblies. Error catching has been omitted for clarity. When the processor is required to convert
the information registered about the plugin into an actual object, reflection can be used again to
instantiate the associated Type into the implementation of the AlgorithmPlugin. This is demonstrated
in figure 17, through a call to a method against the Activator static class. With the ability to load
the plugins from their assemblies, a mechanism is required for persisting this information during
the lifetime of the processor. This is retained in a ‘registrar’ held by the processor itself, which
can be provided to other components requiring plugin-level functionality. The IAlgorithmRegistrar
represents the container for this information, in which a specific implementation is held by the
IProcessor. The IAlgorithmRegistrar retains the information about all loaded plugins, but does not
possess the capability to actually manufacture them. This behaviour resides within a separate factory
utilising this information known as the IPluginFactory (figure 19), which provides the ability to
manufacture an AlgorithmPlugin from its AlgorithmDefinition by using the information within the
registrar. This separation of concerns is not only to ensure these distinct behaviours are isolated,
but it also helps keep the system testable. Specific tests can be written to simulate scenarios
within the PluginRegistrarFactory by using dependency injection. Various implementations of
the [AlgorithmRegistrar can be provided to simulate lack of knowledge of particular algorithms
amongst other conditions.

3.1.2. Plugin Parameter Objects As previously stated in the design, implementations of
AlgorithmPlugin provide the ability to perform the image processing algorithm against an input. The
parameters used to adjust their execution pattern reside in a separate object, providing during their

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

el
WN RO

U OO AR DMBEMDIAMDIMBAEADIAMDMDNWOWWWWWWWWWWNDNNDNNNNNNNRERPRRERERER
QUOWONOUPRRWNRPOOO~NOUOPRWNRPOOONOUAWNRPOOONOOODURAWNRPEPOOOLONO O

Software: Practice and Experience

12 T. SHERWOOD, E. AHMAD, M.H. YAP

private void _loadAssembliesInCurrentDirectory ()
{
string currentDir = Directory.GetCurrentDirectory();
var files = from file in Directory.GetFiles(currentDir)
let fileNoPath = Path.GetFileName(file)
where fileNoPath.StartsWith("DIPS.Processor.Plugin"
)
&& fileNoPath.EndsWith(".d11")
select fileNoPath;
foreach(string fileName in files)
{
_loadssemblyByName (fileName);

private void _loadAssemblyByName (string assemblyFileName)

{
Assembly assembly = Assembly.LoadFrom(assemblyFileName);
foreach(Type type in assembly.GetTypes())

{
_examineType (type);

private void _examineType(Type type)
{
if(type.IsSubclassOf(typeof(AlgorithmPlugin)))
{
var attr = type.GetCustomAttribute (typeof (
AlgorithmAttribute));
if(attr !'= null)
{
// Plugin detected

Figure 16. When the processor is first created, it calls loadAssembliesInCurrentDirectory to register any
plugins it can find. The assembly is then loaded in loadAssemblyByName, which in turn begins scrutinising
each detected Type. If the Type represents a plugin, it is registered into the plugin system.

Type pluginType =
AlgorithmPlugin plugin =
(AlgorithmPlugin)Activator. CreatelInstance (pluginType);

Figure 17. The Activator type provides the means to instantiate the actual object represented by their Type

counterpart. The processor assumes the plugin implementation contains a parameterless constructor for this

to work; the processor cannot be aware of the construction requirements of a plugin without needing to be
aware of their implementation.

definition. However AlgorithmDefinitions do not utilise an instance of the plugin, and thus a factory

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 12 of 25

Page 13 of 25

©CoO~NOUTA,WNPE

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 13

«interface»
IAlgorithmRegistrar

GetKnownAlgorithms() : IEnumerable <AlgorithmDefinition
KnowsAlgorithms(algorithmName : String) : Boolean
FetchType(algorithmName : String) : Type

«realize» 1
L

«interface»

PluginRepository
IProcessor

GetJobManager() : IJobManager
GetPipelineManager() : IPipelineManage

Figure 18. The IProcessor possesses an IAlgorithmRegistrar implementation, capable of providing
information about loaded plugins and resolving the Type associated with their identifier.

«interface»
IPluginFactory

Create(definition : AlgorithmDefinition) : AlgorithmPlugin

«realize» I

«interface» !
|AlgorithmRegistrar PluginRegistrarFactory
GetKnownAlgorithms() : IEnumerable <AlgorithmDefinition> || fegistrar : IAlgorithmRegistrar
KnowsAlgorithms(algorithmName : String) : Boolean PluginRegistrarFactory(registrar : IAlgorithmRegistrar)
FetchType(algorithmName : String) : Type

Figure 19. The IPipelineFactory uses the information provided by the IAlgorithmRegistrar to manufacture
plugin instances using their associated AlgorithmDefinitions.

method on the plugin to create an instance of their parameter object will not work. The solution to
this problem is simple, returning to the AlgorithmAttribute class detailed in figure 13. At present,
the class only requires implementations to provide an identifier as part of their metadata. We can
amend this to include the Type of the parameter object used by the plugin for later re-instantiation.
As plugins may not require properties (i.e., they perform one strict path of logic) this additional
property is left optional. C# supports this, as depicted in figure 20, in which optional parameters are
given values by name. Additionally, a restriction is set against the Type to ensure it implements a
common /Cloneable interface. This exposes a singular Clone method, which returns a copy of the
object in its current state. This prevents the use of reflection to re-instantiate the parameter object
every time an AlgorithmDefinition needs to be built, allowing the cloning of the initial instance.
Besides being a much faster operation, it is also far safer as instantiating objects from their Type can
be very exception-prone.

3.1.3. Xml Persistence Retaining the state of a PipelineDefinition is to be implemented through
Xml, as stated in the design. This is to avoid dangerous scenarios pertaining to deserialisation of
class data into a different version of the class. It was previously demonstrated how each algorithm
will be required to generate and accept its own Xml (figure 9). Rather than expose this functionality
as part of the AlgorithmPlugin class, logic pertaining to state management of plugins is done through
a separate class entirely (figure 21). This class is responsible for accepting previously generated
Xml and converting it into an instance of the plugins parameter object, in addition to accepting
the parameter object and generating its Xml. Similar to plugins themselves, these memento classes
must be annotated with a specific attribute in order to expose the type of AlgorithmPlugin they
generate Xml for. When plugins are loaded into the processor, their associated memento class is
located and loaded into the plugin system. Figure 22 depicts this class. While this implementation
requires client plugins to implement an additional interface, it allows them to specify exactly how
their plugin’s parameter object should be represented as Xml. An alternative implementation is the
use of reflection to access the public propertics of the parameter object and serialise their values
to binary, however this again raises the serialisation of types problem in the event the parameter
object is composed of further objects, allowing the potential for deserialisation problems down
the line. With the association formed between AlgorithmPlugins and their IPipelineXmlinterpreter

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

Software: Practice and Experience

14 T. SHERWOOD, E. AHMAD, M.H. YAP

[Algorithm("SomeAlgorithm", ParameterObjectType = typeof(
SomeParameters))]

public class SomeAlgorithm : AlgorithmPlugin

{

}

public Type ParameterObjectType
{

get

{

return _parameterObjectType;

}

set
{
if(value '= null &é&
value.GetInterfaces () .Contains(typeof(ICloneable))
{
_parameterObjectType = value;

}
}
}
[DebuggerBrowsable (DebuggerBrowsableState.Never)]
private Type _parameterObjectType;

Figure 20. Plugins specify the Type of their parameter objects when they annotate themselves with the
AlgorithmAttribute. This allows the processor to later re-instantiate the type and provide the object to the
relevant AlgorithmDefinition.

«interface»
IPipelineXmlinterpreter

CreateXml(parameterObject : ICloneable) : XElement
CreateObject(xml : XElement) : ICloneable

Figure 21. The IPipelineXmlInterpreter provides the interface allowing the processor to call memento
methods relevant to an AlgorithmPlugin.

implementations, Xml documents can be created and loaded providing the pipeline persistence
needed. Both operations exposed through the IPipelineManager (figure 10).

Creating Xml The calling application can call the CreatePipelineMemento method against
the IPipelineManager in order to create the relevant Xml for the PipelineDefinition. As the
AlgorithmDefinitions it is composed of are associated with a particular AlgorithmPlugin known
to the processor, its associated IPipelineXmlinterpreter can be resolved. Creating the Xml using
this information is straightforward, in that most of the execution is handled by the plugin classes.
The processor will create a root element for each AlgorithmDefinition, providing it with an attribute
consisting of the identifier of the plugin. This is to identify the plugin when reloading the Xml at a
later date. The processor then calls the CreateXml method on the plugins IPipelineXmlinterpreter,
providing it with the parameter object within the AlgorithmDefinition. It then sets this Xml as the
first child, and repeats this process for each AlgorithmDefinition. The resulting collection of Xml
elements is then wrapped into a document, dictated by the schema from the design (figure 9).

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 14 of 25

Page 15 of 25

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 15

public sealed class XmlInterpreterAttribute : Attribute

{
public XmlInterpreter (Type pluginType)

{

if(pluginType == null ||
pluginType.IsSubclassOf (typeof(AlgorithmPlugin)) ==
false)

throw new ArgumentException (
"Type provided to XmlInterpreter must subclass
AlgorithmPlugin”);

PluginType = pluginType;

public Type PluginType
{

get;

private set;

Figure 22. The XmlInterpreterAttribute provides the means to expose IPipelineXmlinterpreter implemen-
tations to the processor. The Type they are provided must represent an AlgorithmPlugin, which is then
associated with a loaded plugin implementation.

[Algorithm("SomeAlgorithm", ParameterObjectType = typeof (
SomeProperties)]

public class SomeAlgorithm : AlgorithmPlugin

{

public class SomeProperties : ICloneable

{

[XmlInterpreter (typeof(SomeAlgorithm))]
public class SomeXmlInterpreter : IPipelineXmlInterpreter

{

Figure 23. Example usage of exposing an IPipelineXmlInterpreter that is used to create or restore from Xml
against the SomeAlgorithm plugin.

Restoring from Xml While creating Xml is a straightforward process, loading from it is slightly
trickier. As the usage of existing C# Xml classes is in place, validation that the document’s syntax is
ensured. However the actual structure of the elements and their contents are subject to scrutiny, as
they could easily have been tampered with. This functionality is broken down into more manageable

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

Software: Practice and Experience

16 T. SHERWOOD, E. AHMAD, M.H. YAP

XmlTraverser

visitor : IXmlVisitor

XmlTraverser(visitor : IXmlVisitor)
Traverse(document : XDocument)

'

«interface»
IXmlVisitor

VisitAlgorithm(xml : XNode)

JAN JAN
i
1

1
«realize» 1
1

XmlVisitorDecorator DecompilationVisitor

«realize»

decompiler : IAlgorithmXmlDecompiler

XmlVisitorDecorator(decoratedVisitor : IXmiVisitor)| [pecompilationVisitor(decompiler : IAlgorithmXmIDecompiler)

f

XmlValidationVisitor «interface»
IAlgorithmXmIDecompiler

IsAlgorithmValid(xml : XNode) : Boolean DecompileAlgorithm(xml : XElement) : AlgorithmDefinition

PipelineXmlValidator

PipelineXmlValidator(knownAlgorithms : string[])

Figure 24. The decorator and visitor patterns greatly broaden the reuse of loading Xml into the processor.
The visitor decouples the Xml traversal logic from the logic utilising the Xml. The decorator allows
‘compounding’ behaviours together.

steps. Given an Xml document, a particular object traverses through its structure and locates the
appropriate algorithm elements within the three. It then sends this information to a ‘visitor’ class
used to try and parse the Xml, using the interpreters loaded through the plugin system. Once the
traversal procedure is complete, the parsed Xml is then used to form a new PipelineDefinition. A
distinct layer of validation is required between the traverser and the visitor to ensure the schema
is correct. Rather than integrate this into the decompilation logic, a decorator can be used. This
provides the means to compound behaviours together dynamically, in this case providing validation
logic to decompilation logic. This is demonstrated in figure 24. The DecompilationVisitor uses an
IAlgorithmXmlDecompiler to convert the Xml back into AlgorithmDefinition objects. It then retains
the definitions for collection later once the traversal is complete. The processor will manually create
an XmlTraverser, and provide it with the decompiler. It will utilise the PipelineXmlValidator in
order to decorate the decompilation behaviour with the validation behaviour, ensuring the document
is valid while parsing. This greatly separates the different behaviours required for this procedure,
allowing for more traversal mechanisms to be implemented while keeping the design testable.

3.2. Job Management

This section focuses on the implementation of the job creation, queucing and execution components
of the processor. It also discusses the mechanisms in place for notifying client applications of the
progress of their processing jobs.

3.2.1. Job Creation The design discusses how client applications are provided with a limited set of
objects detailing the available processing algorithms within the processor (figure 6). The JobRequest
they provide to the processor is composed of the PipelineDefinition they have constructed, along
with the set of Image objects to be processed. This is provided to the IJobManager, which enqueues
the job and returns an IJobTicket (figure 10). The IJobManager does not retain the job information
itself, nor any of the queucing functionality (discussed later). It instead delegates to a number of
other modules pertaining to converting the JobRequest information into a ticket and enqueucing

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 16 of 25

Page 17 of 25

©CoO~NOUTA,WNPE

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 17
«interface» BatchProcessor
JobManager queue : lJobQueue
Enqueuejob(request : JobRequest) : lJobTicket Enqueue(req : JobRequest)
GetResults(jobTicket : IJobTicket) : JobResult EnableProcessing()
DeleteResults(jobTicket : JobTicket) : Boolean DisableProcessing()

Figure 25. The IJobManager exposed to the public interface allows clients to enqueue their job requests,
but delegates this enqueueing into an underlying BatchProcessor instance. The BatchProcessor retains the
actual enqueueing and execution logic used by the processor.

«interface»
lJobQueue

Enqueue(job : lJobTicket)
Dequeue() : JobQueue
OnJobAdded()

«realize» 1
1
JobQueue

internalQueue : List<lJobTicket>

Figure 26. The IJobQueue is used to conceal the internals of the queue from other components. The
underlying implementation in fact uses a List, providing thread-locking around adding or removing elements.

the job. The first of which represents the root of the underlying processing functions, known as
the BatchProcessor. This object retains the IJobQueue currently in use, and is delegated to by the
LJobManager when jobs are to be added. It accepts the job request, converts the information into a
ticket, enqueues it and returns the ticket (figure 25). The conversion of the information encapsulated
within the JobRequest does not actually occur until the job begins. When the job is dequeued, the
background worker attempts to resolve the plugins associated with the AlgorithmDefinition objects
within the pipeline. If it fails the job is scrapped and the client is signalled with an error, otherwise
the process begins. The BatchProcessor does not perform this conversion itself, instead delegating to
the previously defined IPluginFactory (figure 19). The BatchProcessor is provided with the current
factory in its constructor, concealing knowledge of how the algorithms are created in addition to
their source.

3.2.2. Job Queueing Client applications are able to establish a reference to the processor in order
to dispatch jobs. As many applications could dispatch several jobs around the same time, or a
single application requires processing of multiple batches, the design discussed the requirement of a
capable queueing system (figure 2). The IJobManager exposes the ability to enqueue a job, in which
the clients JobRequest is used as a parameter. The job manager itself does not retain this information,
instead retaining an internal structure regarded as the job queue. The queue is represented as
a very basic collection, only exposing mechanisms to enqueue or dequeue jobs. However it
exposes an event notifying observers when elements are enqueued, providing a rudimentary alerting
mechanism. There the potential for threading issues to occur when multiple applications access
the queue simultaneously, or as a job is enqueued while an internal component begins to dequeue
the next component. Therefore appropriate thread-locking needs to be implemented within the
queue around dangerous areas, such as enqueucing and dequeueing jobs. Figure 26 depicts this
structure. Hiding the true implementation of the queue structure behind the IJobQueue interface
allows for dependency-injection based tests to be written, allowing simulating elements being
added to the queue as part of a test. Additionally, the internal data structure used to represent the
queue can be changed at will without breaking existing code, so long as the JobQueue continues

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

Software: Practice and Experience

18 T. SHERWOOD, E. AHMAD, M.H. YAP

BatchProcessor «interface»
JobQueue

queue : lJobQueue

Enqueue(req ZJObRequest)‘— Enqueue(job : IJobTicket)
EnableProcessing() Dequeue() : lJobQueue
DisableProcessing() OnJobAdded()

0

QueueExecutor

WorkerArgs

«interface»
worker : IWorker IWorker L _xJticket : lJobTicket
factory : IPluginFactory

QueueExecutor(queue : |JobQueue) Work(args : WorkerArgs)
Start()
Stop()

Figure 27. The QueueWorker dequeues jobs within the current IJobQueue, providing them to an IWorker.
This removes knowledge of the queue from the worker, and increases the testability of the system by
swapping the queue and worker implementations within the QueueExecutor.

to conform to the interface. The BatchProcessor retains the IJobQueue throughout the lifetime
of the processor, however the dequeueing and execution process reside in two separate entities.
During its construction, the BatchProcessor initialises an instance of the QueueExecutor class. The
QueueExecutor uses an IJobQueue and listens for the job added event to be signalled. When it does,
if it has yet to begin it spawns a separate thread used to dequeue the next job within the queue.
This thread continues dequeueing elements until the queue is exhausted, where it simply terminates
the thread. While the QueueExecutor dequeues the jobs, the object which processes them is further
separated by interface. Upon dequeueing the next job, the QueueExecutor wraps the information
within a parameter object along with the current plugin factory and provides it to an /Worker, which
represents the object capable of processing jobs within the queue. While the level of decoupling
in this situation seems overkill, it provides several benefits over heavily coupling the dequeucing
and execution together. Namely, the testability of the system is heavily increased by separating the
individual components as much as possible. IWorker implementations can be tested without a queue,
and QueueFExecutors can have specific implementations of queues handed. Additionally, the source
of the pending jobs is not known to the IWorker - it only possesses the knowledge needed to actually
execute them and nothing more. This prevents locking the entire system to a queueing structure in
the event a more efficient design is devised. In the current implementation, the QueueExecutor
is provided with an /Worker implementation capable of fully executing the job described within
the ticket. The PipelineDefinition within its request object contains the set of AlgorithmDefinitions
chosen by the client, and can be handed to the IPluginFactory for conversion into AlgorithmPlugins.
Each input can then be ran through the processes before the output is generated. As the IWorker is
provided with the IJobTicket, it is capable of firing the events through the accessible sink. This
allows the client to be informed of many events as the job progresses, as the worker is aware of
when it begins the job, as it progresses through each input, and when the job ends (or an error is
occurred).

3.2.3. Event Management As execution of processing jobs is done synchronously, clients must
be made aware through appropriate events when they reach completion. Further events can also
be deployed to provide them with update information, for use within Ul or other purposes. The
client can attach to various events against the IJobTicket once they have received it from the job
management system. However there are several additional points to note surrounding this:

1. Firing events through C# occurs on the same thread. Spawning a new thread to fire the event
is a repeated process and should be kept in one location

2. If the events are placed within the interface declaration of the IJobTicket, the interface itself
must change every time a new even is added or an existing event is removed

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 18 of 25

Page 19 of 25

©CoO~NOUTA,WNPE

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 19

EventSink

FireSync(eventName : String,sender : object,e : EventArgs)
FireAsync(eventName : String,sender : object,e : EventArgs)

Figure 28. The EventSink class allows other classes than its subclasses to fire events against its instance.
It also exposes the means to fire the event asynchronously, refactoring the common thread-spawning
mechanism.

Type t = this.GetType();

BindingFlags flags = BindingFlags.Public | BindingFlags.NonPublic
| BindingFlags.Instance;

EventInfo theEvent = t.GetEvent (name, flags);

Figure 29. The Type object allows locating an event against the type. The EventSink attempts to locate public
or private events against instances of its subclass.

BindingFlags flags = BindingFlags.Instance |
BindingFlags.NonPublic;

FieldInfo evField = GetType () .GetField(ev.Name, flags);

Delegate theDelegate = (Delegate)evField.GetValue(this);

object[] parameters = new[] { sender, e };

theDelegate.Method.Invoke (theDelegate.Target, parameters);

Figure 30. On resolving the Eventlnfo, the Delegate methods observing the event can be resolved. These
represent clients hooking into the particular event. The Invoke method on its MethodInfo member allows the
method to be called as if the event was fired.

3. Additionally, events against classes can only be fired by the class itself.

Therefore, a common reusable class for firing events is required which allows the firing of events
from other classes. This can be achieved by requesting the class fire a particular event by name,
and use introspection on itself to locate this event. This class is regarded as an EventSink (figure
28), which exposes two methods for firing events. Calling either of the two fire methods within
the EventSink class requires the name of the method, the sender, and an EventArgs object. The
latter two are to satisfy the .NET standard for event method signatures. The name of the event
is used to perform introspection against the current instance of the class (namely the base class).
The Type class exposes a GetEvent method, which is used to locate the event identified by the name
provided (figure 29). Once the Eventinfo for the event is located, the event itself can then be invoked.
Figure 30 demonstrates the manner in which the Delegates hooked into the event can be resolved.
The delegates represent methods observing the event - i.c., the client application listening for the
event. This object may represent a single method, or it may be a MulticastDelegate representing
several targets simultaneously. This satisfies the earlier points of firing events from other classes, and
moving the common thread-spawning code somewhere common. The IJobTicket can also provide
a subclass of EventSink and expose it on the interface. When an event is to be modified or added,
only the EventSink subclass must be modified rather than the public interface itself. The design of
the sink itself can be taken further. Consider the possibility the EventSink is used for processor-
wide events across several applications. Rather than share one sink between the various clients, a
container for multiple sinks can be exposed on the interface itself. Clients instantiate and add their
sinks to the container and hook into the events of only their sink. This is depicted in figure 31. The
EventSinkContainer class represents an aggregation of EventSinks, using a generic constraint on the
EventSink class. It implements two methods from the ISinkContainer interface in order for client
applications to add or remove their sinks, while internal implementations allow the processor to fire

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

Software: Practice and Experience

20 T. SHERWOOD, E. AHMAD, M.H. YAP

«interface»
ISinkContainer<T>

Add(item : T)
Remove(item : T)
/N
1
EventSink EventSinkContainer<T>
<

FireSync(eventName : String,sender : object,e : EventArgs) FireSync(eventName : String,sender : object,e : EventArgs)
FireAsync(eventName : String,sender : object,e : EventArgs) FireAsync(eventName : String,sender : object,e : EventArgs)

Figure 31. The EventSinkContainer allows multiple clients to add their own event sinks while still providing
the asynchronous event firing mechanism. The ISinkContainer interface only lets clients add or remove
sinks, and not fire events out of order.

the events across all sinks. In the case of the events from the IJobTicket, it exposes an ISinkContainer
on its interface with a type constraint on 7TicketSink. The TicketSink contains the events relevant to
the current job, such as the job beginning or ending, and so on. A client application can instantiate
an instance of the TicketSink, add it to the container and hook into the relevant events. The processor
will then fire the event asynchronously through a call to the actual EventSinkContainer on internal
the JobTicket implementation.

3.3. Plugin Implementations

This section discusses the implementations of the various plugins provided with the product.
While more plugins can be easily integrated into the system, several functions requested by the
stakeholders have been provided as part of the product.

3.3.1. Common Image Processes As the pipeline system allows the user to compound multiple
processes together, the first set of processes provided were decided to be relatively basic in their
intent. As discussed within the literature review, the OpenCV library will be utilised to implement
these common processes as it pro ides highly-optimised implementations of the algorithms; where
it lacks in the specific algorithms, it also provides reusable components for easily developing
algorithm implementations. A C# wrapper around OpenCV, EmguCV, was used to provide a
direct method of calling these processes without re-development of a wrapper. The simple
processes chosen for implementation include gamma correction, histogram equalisation, and various
smoothing methods (figure 32). These were discussed within the literature review, and were chosen
upon as the simple processes in which complex pipelines could be built during a stakeholder
meecting. Implementing these plugins is as simple as extending the AlgorithmPlugin abstract class
to provide the custom processing logic, copy the compiled DLL into the same directory as the
processor, and start the software. The new plugins are then aggregated into the processor and
exposed through the DIPS application. As these plugins are delegating the actual processing to
EmguCV, their implementations are very basic. Figure 33 demonstrates the implementation of the
histogram equalisation plugin, in which the processing is performed through a simple method call
against one of the EmguCV classes. EmguCv provides the Image class to provide much ecasier
access to properties or components of a digital image, in comparison to directly utilising the .NET
Image class. This class itself provides all the common processes described within the literate review,
and can be performed by simply calling the appropriate methods on the object. Once this is done,
the OQutput property on the AlgorithmPlugin subclass is then set as the bitmap of the final image.
The processor will use the value provided as the output from this process as the input to the next,
without the knowledge that this plugin has utilised EmguCV rather than implementing the process
manually. The remaining processes are just as simple to implement, wherein particular cases (such
as smoothing) encapsulate the various smoothing methods within a separate class for testability
reasons.

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 20 of 25

Page 21 of 25

©CoO~NOUTA,WNPE

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 21

AlgorithmPlugin

input : Image
output : Image

run(parameterObject : object)

JAN

GammacCorrection HistogramEqualisation Smoothing

Vi \Vi
GammaProperties SmoothingProperties

«interface»
ISmoother

targetGamma : Integer smoother : ISmoother P

Smooth(inout image : limage)

1 1 1
GaussianSmoother MedianSmoother BilatralSmoother

kernelSize : Integer kernelSize : Integer size : Integer
colour

space

Figure 32. The common plugins depicted above are already implemented in EmguCV. The plugin system
allows exposure of these processing methods as various plugins, to be compounded as part of a pipeline.

public override wvoid Run(object parameterObject)
{
Bitmap bmp = new Bitmap(Input);
Image<Rgb, byte> img = new Image<Rgb, byte>(bmp);
img._EgqualizeHist ();
Qutput = img.Bitmap;

Figure 33. EmguCV reduces the load in implementing simple image processing algorithms, such as
histogram equalisation

3.3.2. Matlab As part of the image processing solution, a feature of the application processing
capabilitics was to support the execution of Matlab scripts. This functionality can be provided as an
independent plugin to further prove the extendability of the processor through the plugin system.
The implementation of this plugin is split into two components, including a wrapper around the
Matlab COM interface and the actual AlgorithmPlugin implementation.

Matlab COM Wrapper Matlab exposes a single object, the MLAppClass, through COM
(Component Object Model) allowing other applications to take advantage of its features. The
MLAppClass object allows setting and getting of values from the Matlab workspace, execution
of commands as Matlab scripts, and more. To isolate the scparate logic layers, the direct
communication with the COM interface is separated into a set of classes utilised by the plugin
(figure 34). The various classes depicted above are explained in detail in the following section.

MILAppClass
The MLAppClass is the COM object provided by Matlab, consisting of the set of methods it
exposes. It possesses a variety of methods for getting or settings objects on the workspace,
which have been omitted for clarity. The main methods include the Execute method, which
accepts a single line of Matlab script and executes it against the engine. GetWorkspaceData
and SetWorkspaceData are self-explanatory, however it is important to note complex types

Copyright © 2010 John Wiley & Sons, Ltd.
Prepared using speauth.cls

Softw. Pract. Exper. (2010)
DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

[T gy
WN RO

U OO AR DMBEMDIAMDIMBAEADIAMDMDNWOWWWWWWWWWWNDNNDNNNNNNNRERPRRERERER
QUOWONOUPRRWNRPOOO~NOUOPRWNRPOOONOUAWNRPOOONOOODURAWNRPEPOOOLONO O

Software: Practice and Experience

22 T. SHERWOOD, E. AHMAD, M.H. YAP
MLAppClass
A «interface»

Execute(command : String)] .] IDisposable

GetWorkspaceData(name : String,workspace : String,out data : object) - 5 P
SetWorkspaceData(name : String,workspace : String,data : object) Dispose() «nterface»

ICommand
JAN
: i CanExecute(parameter : object) : Boolean
«realize» E - obi
VETAESE Sion i ! xecute(parameter : object)
MatlabEngine 1 JAN
I
————— «realize» i
g:tﬁ%ﬁ?&gﬂ-?ﬁoﬁeﬂfs CreateCommand(script : string[]) : MatlabCommand e ‘bc 7
B GetBaseWorkspace() : Workspace o
GetGlobalWorkSpace() : Workspace @~ === ——--=-=-=---32
Shutdown() <<instantiates>> [y labCommand(session : MatlabSession)
Workspace SingleStatementCommand
Workspace(session : MatlabSession,name : String) SingleStatementCommand(session : MatlabSession,cmd : String)

Put(name : String,value : object)
Get(name : String) : object

ComplexStatementCommand

ComplexStatementCommand(session : MatlabSession,cmds : string[])

Figure 34. Due to the complexities involved in communication, the COM object provided by Matlab is not
directly communicated with. The set of wrapper classes manage the interface, with the plugin utilising the
MatlabEngine when it begins to run.

cannot be provided to Matlab. Values transmitted in these methods but be primitives, with the
exception of strings.

MatlabEngine
The primary class utilised by the plugin is the MatlabEngine, which initially creates the
instance of the COM object. The plugin can use the MatlabEngine to create script commands
or access the available workspaces. Once it has finished using the engine, it can call Shutdown
to terminate the Matlab session.

MatlabSession
In order to share the MLAppClass instance across the various components of the wrapper, the
MatlabSession class contains the current engine currently in use. It is originally instantiated
within the MatlabEngine and provided to the various components as they are created, allowing
them to also assert whether the session is valid (i.e. Matlab is running)

Workspace
The Workspaces exposed by the MatlabEngine make it simpler for the plugin to get or set
values against the Matlab workspaces. The MatlabEngine instantiates the ‘Base’ and ‘Global’
workspaces on startup, in which calls to Put or Get automatically provide the workspace
name.

MatlabCommand
To execute Matlab scripts against the engine, the MatlabCommand is instantiated by the
MatlabEngine and provided to the client. This command retains the current MatlabSession,
allowing re-use of the command so long as the session remains active. Depending on the
amount of lines of script provided, different implementations of this class are provided.

SingleStatementCommand
One implementation of the MatlabCommand is the SingleStatementCommand, allowing the
execution of a single line of Matlab script. Calls to Execute simply execute the one line of
script it had previously been provided with within its constructor.

ComplexStatementCommand
Another implementation of the MatlabCommand is the ComplexStatementCommand, which

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 22 of 25

Page 23 of 25

©CoO~NOUTA,WNPE

Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 23

AlgorithmPlugin

input : Image
output : Image

run(parameterObject : object)

MatlabProperties

MatlabPlugin <<usage>> |scriptFilePath : String

rawScriptFile : byte[]

Figure 35. The MatlabPlugin represents an algorithm plugin capable of running a Matlab script to process
the images. It’s relevant parameter object retains a raw copy of the script for persistence purposes.

input = imread(dipsinput);

imwrite (out, ’'Output.bmp’);
dipsoutput = 'Output.bmp’;

Figure 36. In order for the DIPS plugin to communicate with the Matlab script, some minor changes must
be made to it. The plugin provides the path to the input image within a dipsinput variable, and requires a
path to the output within a dipsoutput variable.

accepts a number of commands for sequential execution. The other in which the strings are
provided represents the order in which they are executed.

Separating the plugin logic into separate components, including the Matlab COM wrapper, helps in
breaking down the system into more manageable chunks. It also makes it more feasible to write unit
tests against the Matlab COM wrapper separately from the Matlab plugin itself.

Implementation In order for Matlab scripts to actually run within a pipeline, the associated
AlgorithmPlugin needs to be developed. The plugin itself will use the script provided within the
associated parameter object to process the current image within the pipeline. Figure 35 depicts the
UML for the Matlab plugin, in which the MatlabProperties parameter object retains a raw copy of
the original script. This is used when saving the algorithm to Xml rather than retaining the original
copy of the script. The MatlabPlugin uses the COM wrapper previously designed to communicate
with Matlab. It instantiates a new instance of the MatlabEngine class when the Run method is
invoked and constructs a command using the information within the script. As complex types such
as images cannot be directly provided to Matlab through the COM interface, the images must be
temporarily saved to disc. The path to the image is then provided to Matlab in a ‘dipsinput’ value
on the workspace, in which the script must make use of this path instead. The script loads the image
using the imread Matlab function, continues processing as normal, then outputs the result of the
processing at the end of the script with a call to imwrite. It then sets the path of the output to a
variable on the workspace named ‘dipsoutput’, which the plugin locates and loads the image from
once the script has terminated. Due to this manner of saving and loading images, scripts must be
adjusted accordingly to allow them to function as part of the pipeline. However these changes are
fairly minor, only requiring the script to load an image from a file path already provided by the
plugin.

3.4. Summary

The provided implementation of the DIPS processing module has satisfied the requirements
produced by the design, which in turn were based off the revised aims and objectives of the
processor. This ensures the DIPS application is well-equipped with the processing functionality

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

©CoO~NOUTA,WNPE

Software: Practice and Experience

24 T. SHERWOOD, E. AHMAD, M.H. YAP

required by the user to perform the MRI pre-processing functions. The application of the various
object-oriented principles and processed outlined in the design have allowed the processing module
to remain very testable. The primary reason for this is the application of dependency injection,
providing the means to devise automated tests through the use of mock instances of classes.
Additionally, both internal and external components are hardly coupled to one another and instead
rely predominately on abstractions. Separating the implementation of image processing algorithms
into plugins ultimately proved beneficial during the implementation cycles. Once the core functions
of the processor were constructed and tested, the processes could be incorporated separately without
the fear of breaking existing functionality. This especially paid off during the implementation of the
Matlab plugin, which was requested later on during the development lifecycle.

4. TESTING

4.1. Unit Testing

As the processing module is intended to be independently only as a service or background worker,
no specific UI has been designed for it. Additionally, not all functionalities can be tested through an
interface as validation constraints would restrict the ability to assert certain cases.

Instead, individual unit tests have been designed for each class used by the implementation of
the processor. As many public methods as possible have associated unit tests, in order to provide as
much coverage as possible. These tests ensure the individual methods and classes are functioning
properly, as opposed to the system as a whole.

The unit tests designed for the system were re-run frequently during development in order to
ensure any pulled commits from the shared repository did not break existing code. In contrast to
manually testing the system, this drastically saved time and effort.

4.2. Integration Testing

During the development of the project, infrequent phases of integration testing occurred to ensure
the processor and the primary application were continuing to function normally. These tests were
performed less formally than unit or validation tests; any bugs raised during this time were noted
and assigned to the relevant team member to investigate and fix the problem.

4.3. User Acceptance

Much less frequently than the aforementioned forms of testing, several runs of validation by the
stakeholders were performed against stable prototypes of the end product. These occurred once or
twice per quarter, allowing them to ensure the product was going in the right direction and giving
them an opportunity to request changes or features.

5. CONCLUSION

The aim of this DIPS project was to develop an image processing module capable of performing
batch processing on behalf of client applications. This goal was achieved, and taken further by
providing a mechanism to easily provide new methods of processing images by implementing
plugins to the processor representing individual image processes. While the entirety of the
processing logic required by the design has been fully implemented and tested, there continues
to remain scope for building new algorithm plugins capable for use by clients. Further required
processes can also be implemented through the use of the plugin architecture provided by the
processor. Future work involves futher development of the DIPS to fully support running as a
service. The framework for this is in place, and the capability to connect to another instance of the
processing service through TCP/IP is an achievable possibility. This would allow the processing
service to reside on a separate computer, which could be host to a much faster hardware. For

Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

Page 24 of 25

Page 25 of 25 Software: Practice and Experience

SOFTWARE SOLUTION FOR DIPS 25

instance, slower clients could dispatch the jobs to the alternate machine, making best use of its
capabilities.

REFERENCES

1. Chang PL, Teng WG. 2007. Exploiting the self-organizing map for medical image segmentation in Computer-Based
0 Medical Systems, Twentieth IEEE International Symposium on, pp. 281288.
11 2. Zhou ZJ,Wu H. 2010. Digital Image Processing: Oart 1. Ventus Publishing ApS.
12 3. Lo WY, Puchalski SM. 2008. Digital image processing Veterinary Radiology and Ultrasound, vol. 49, pp. S42547
[Online]. Available: http://dx.doi.org/10.1111/j.1740-8261.2007.00333.x
13 4. Zhang Y. 2009. Image processing using spatial transform. in Image Analysis and Signal Processing, IASP 2009.
International Conference on, pp. 282285.
1;1 5. Larkins DB, Harvey W. 2010. Introductory computational science using fMATLABg and image pro-
cessing.Procedia Computer Science, vol. 1, no. 1, pp. 913 919, fICCSg 2010. [Online]. Available:
16 http://www.sciencedirect.com/science/article/pii/S1877050910001018
17 6. Culjak I, Abram D, Pribanic T, Dzapo H, and Cifrek M. 2012.A brief introduction to opencv. in MIPRO, 2012
Proceedings of the 35th International Convention, pp. 17251730.
. Matuska S, Hudec R, and Benco M.2012. The comparison of cpu time consumption for image processing algorithm
19 in matlab and opencv. in ELEKTRO, May 2012, pp. 7578.
20 8. Mankoff J, Blevis E, Borning B, Friedman A, Fussell SR,Hasbrouck J, Woodruff A, and Sengers P. 2007.
21 Environmental sustainability and interaction. pp. 21212124.

P OO~NOUILAWNPE

60 Copyright © 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://mc.manuscriptcentral.com/spe

