
Please cite the Published Version

Sherwood, T, Ahmad, E and Yap, MH (2016) Formulating efficient software solution for digital
image processing system. Software: Practice and Experience, 46 (7). pp. 931-954. ISSN 0038-
0644

DOI: https://doi.org/10.1002/spe.2339

Publisher: Wiley

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/608241/

Usage rights: In Copyright

Additional Information: This is an Accepted Manuscript accepted for publication in the Software:
Practice and Experience, copyright John Wiley & Sons Ltd.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1002/spe.2339
https://e-space.mmu.ac.uk/608241/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

For Peer Review

Formulating Efficient Software Solution for Digital Image

Processing System

Journal: Software: Practice and Experience

Manuscript ID: Draft

Wiley - Manuscript type: Research Article

Date Submitted by the Author: n/a

Complete List of Authors: Sherwood, Thomas; Manchester Metropolitan University, School of
Computing, Mathematics and Digital Technology
Ahmad, Ezak; Manchester Metropolitan University, School of Computing,
Mathematics and Digital Technology
Yap, Moi Hoon; Manchester Metropolitan University, School of Computing,
Mathematics and Digital Technology

Keywords:
software solution, image processing, plug in, maintainability, OpenCV,
Matlab

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review

SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 00:1–25
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Formulating Efficient Software Solution for Digital Image
Processing System

Thomas Sherwood, Ezak Ahmad, Moi Hoon Yap∗

School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, Chester Street,
Manchester, M1 5GD, UK

SUMMARY

Digital Image Processing Systems are complex, being usually composed of different computer vision
libraries. Algorithm implementations cannot be directly used in conjunction with other algorithms developed
using other computer vision libraries. This paper formulate a software solution by proposing a processor with
the capability of handling different types of image processing algorithms, which allow the end-users to install
new image processing algorithms from any library. This approach has other functionalities like capability
to process one or more images; manage multiple processing jobs simulteneously; and maintain the manner
in which an image was processed for later use. It is a computational efficient and promising technique to
handle variety image processing algorithms. To promote the reusability and adaptation of the package for
new types of analysis, a feature of sustainability is established. The system past the testing procedures by
using unit testing, integration testing and usability testing. Future work involves introducing the capability
to connect to another instance of processing service with better performance. Copyright c© 2010 John Wiley
& Sons, Ltd.

Received . . .

KEY WORDS: image processing, software solution, sustainability, plugin, OpenCV, Matlab

1. INTRODUCTION

Digital image processing is complex and inconsistence due to various programming languages

and variation computer vision libraries. The domain of image processing has increased vastly in

recent years [1], spanning across a range of applications such as photography, forensics and medical

imaging [2]. The term simply relates to the process (or set of processes) applied to the detector and

dataset of a radiograph exposure [3]. Motivations for processing an image stem from not only the

amount of information perceived as image form, but also for autonomous machine control [4].

A mechanism for implementing the algorithms is required, in order to provide a means to perform

the transformations. Larkins et. al. [5] discuss an existing high-level toolbox known as Matlab,

providing a plethora of existing algorithms and components for re-use in building more complex

algorithms. They highlight how Matlab is easy enough for novice users to grasp while still providing

powerful processing and data crunching capabilities. However algorithm implementations cannot be

directly used in conjunction with other algorithms developed using other technologies, for instance

C++ processing classes. Culjak et. al.[6] discusses an alternative to Matlab known as OpenCV,

which provides a suite of processing algorithms and assistant classes written in C. They discuss

how the library is also widely used, providing heavily optimised solutions to particular algorithms.

A C++ wrapper is available for OpenCV, allowing for easy integration into higher-level languages.

∗Correspondence to: School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University,
Chester Street, Manchester, M1 5GD, UK.

Copyright c© 2010 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]

Page 1 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

2 T. SHERWOOD, E. AHMAD, M.H. YAP

Matuska et. al.[7] provides a detailed comparison between the processing speeds of Matlab and

OpenCV, concluding that OpenCV dominates Matlab in regards to processing speed. However in

order to utilise OpenCV, the user must directly implement the processing code in a language capable

of using the C or C++ implementations.

The contribution of this paper is to formulate a Digital Image Processing System (DIPS), by

proposing a processor with capability of handling different types of image processing algorithms.

The functionality requirements include: capability to process one or more images; allow end-users

to install new image-processing algorithms; manage multiple processing jobs simultaneously; and

maintain the manner in which an image was processed for later additional analyses. In addition to

these functional requirements, there are non-functional requirements for this project; i.e. memory

and computational efficiency. The sustainability of DIPS is also an issue to be considered. It has

been established that a feature of sustainability is that a system is not simply being made bespoke

and obsolete as soon as its initial use concludes [8]. This is ensured by the design to keep the

new image processing algorithms created by the user that promote reusability and adaptation of the

package for new types of analysis.

This paper is organised as follows. Section 2 presents the concept of DIPS and the detailed design.

Section 3 shows how to implement the processing modules in DIPS. Section 4 describes the testing

process and Section 5 conclude the paper with future work.

2. PROCESSOR DESIGN

This section pertains to the design of the image processing module within the DIPS application.

Opening with a high-level view of the communication between the application and the processing

modules, the core requirements of the processor are devised and explained in detail. These

requirements are used as the base of the system design description.

2.1. System Architecture

The formulation of DIPS application is composed of three key components: the database system

used for persistence, the graphical user interface providing the presentation layer, and the image

processor module. The processor discussed in this paper will permit any image which can be

represented as an object. This provide the flexibility of supporting different image formats.

The processing module is intended to run independent of the DIPS application as a service.

This allows the deployment of the processor and execution of jobs in a separate environment

(and optionally machine) to a running DIPS instance, the intent of which paves the way for the

potential for shared ‘cloud’ computation. The functions of the processor are exposed through a

public interface known to the application, which prevents locking it to a single instance of the

service and provides the means to test the application through mock instances.

The application-layer is responsible for manufacturing an object describing the job to be executed.

This consists of the inputs to process in addition to the method of processing each image. The

processor uses this information to execute the processing job, firing events back to the client (such

as when work begins and ends, when a single image is processed and so forth). The processor is

broken down into several subsystems responsible for various operations. One such module provides

job-management functionality, allowing clients to submit more than one job and leave the processor

to complete them in the order provided. On receiving a new job, the processor enqueues the

information into the job queue and provides the caller with a ‘ticket’ representing the job within

the queue. The application will later use this ticket to access their results, or use it to observe events

as the job progresses. The new job is enqueued into the job queue, which maintains the current set

of active jobs to process. The queue will then fire an event notifying observers a new item has been

added.

A separate subsystem to the job management system provides the actual execution of jobs within

the processor. On observing the event fired by the queue, a background worker initialises (if it is

not already working). This worker dequeues the next job and uses the information to execute the

processing functionality, while notifying the client as it progresses through the provided inputs. If

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

Page 2 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 3 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4 T. SHERWOOD, E. AHMAD, M.H. YAP

• Allow end-users to install new processing algorithms. Rather than provide a limited set of

algorithms and be done with it, there is the potential an end-user may want to incorporate a

specific image processing technique they have written into the processor. Rather than have to

receive and modify a copy of the processor, they should be able to incorporate their processing

algorithm without needing to make other changes.

• Manage multiple processing jobs simultaneously. The application can enqueue dozens of jobs

which are completed sequentially, with the client receiving the results as each job completes.

• Persist the manner in which an image was processed for later re-use. The main objective of

the DIPS application is to save the end-user time when performing pre-processing operations.

While this is achieved by batch processing, they may wish to re-use the same set of processes

at a later point in time (for instance, as new scans become available). To satisfy this, the

processor needs to be able to save the state of the method used to process images and provide

the capability to use this information at a later time to restore the method’s state.

In addition to the functional requirements listed above, there are several non-functional

requirements requiring consideration when implementing the processing module. These include:

• Memory. As the processor will be dealing with a large number of requests simultaneously, all

composed of multiple image files, the memory required for the processor to run will increase

greatly based on the size and number of processing batches it has received. A degree of

memory management may be required if the processor begins occupying too much memory

during testing.

• Computational Efficiency. The amount of processing required to execute a job is heavily

dependant on the way in which they wish to process their inputs. If they have chosen a

processing mechanism which takes a considerable amount of time, or have requested a very

large set of images to be processed, the time their job will take will increase and cause other

queued jobs to be delayed further. The processor must decide if a job should be aborted for

exceeding the allowed time permitted by the job to complete, whether or not this is based on

the complexity of the algorithm or another reason for the blocking call.

2.3. Subsystem Architectures

2.3.1. Process Definitions Job requests dispatched to the processor are composed of not only the

inputs to be processed, but also an object specifying how to process the images. In order to construct

a legal processing definition, the application must first be aware of the type of object used to define a

process in addition to receiving objects of this type depicting the available processes. The client may

also wish to use a complex process consisting of one or more other processes, effectively chaining

them together.

This chaining of processes together is regarded as a ‘pipeline’. The pipeline consists of one or

more elements representing an image process, in which the image is passed through the individual

elements until it exits the pipeline. Each element is capable of accepting an arbitrary image input,

perform the processing task it represents, and output the result for use by the next element in

the pipeline. This isolates each process from one another by eradicating knowledge of other

processes from one another, and additionally allows for greater customisation by the user; rather

than hard-coding an algorithm or only allowing the selection of a single process, users are able to

replace components of a pipeline, or add or remove elements as their processing needs dictate.

The objects exposed to the client for the purposes of pipeline construction are relatively basic

in nature in order to avoid introducing too many dependencies. The AlgorithmDefinition object

represents a single processing algorithm available to the processor, consisting of its identifier and a

separate object containing its parameters. These are aggregated within a PipelineDefinition object,

assembled by the client to represent their desired processing task. Figure 4 depicts this relationship

between the objects. The processor exposes a read-only collection of available AlgorithmDefinition

objects which the client can utilise to build legal pipelines. These are resolved when the processor

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

Page 4 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 5 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 6 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 7 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 8 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

SOFTWARE SOLUTION FOR DIPS 9

the processes was provided, detailing the usage of a plugin framework capable of loading the

available processing algorithms dynamically. This prevents restricting the capabilities of the

processor to a particular subset of processing algorithms during the current development cycle, and

instead provides scope for other developers to continue adding their own processing algorithms at a

later point in the product lifetime. The manner in which jobs are managed within the system was also

discussed, detailing the requirement of a robust queueing system. This is used in conjunction with

multithreading to allow a constant throughput of work provided the processor continues receiving

work. Following this, the manner in which processing ‘pipelines’ are persisted was devised. The

chosen manner of performing this was Xml, as it avoids the pitfalls of object deserialisation.

Additionally, it provides the means to design a pipeline without requiring a UI or additional code

to inject a pipeline definition. Finally, the manner in which the core functions of the processor are

exposed to the public was presented. Separating the logical subsystems of the processor into separate

domains makes it easier to manager for both the client and the processor implementation.

3. IMPLEMENTATION

This section of the document details the specifics of the implementation of the processing module

within the DIPS application. It has been broken down into logical segments pertaining to relevant

sections within the design, such as the plugin system and job management.

3.1. Plugin System

This section focuses on the plugin subsystem and its interactivity with the rest of the processing

module. A discussion of the system was provided along with a high-level overview of its interactions

(page 5, figure 5). There are however further steps required for consideration:

1. How implementations of plugins are loaded into the processor dynamically

2. How the parameter object associated with the process is resolved and created

3. How the two-way Xml procedure is implemented to provide a means of process persistence

3.1.1. Dynamic Plugin Loading The ability to load new plugin implementations into the processor

without requiring the modification of existing code is one of the key features of the design.

Other developers can implement new processing algorithms and incorporate them into pipelines

without modifying the processor itself. The manner in which plugins are integrated is relatively

straightforward, making use of a concept known as type introspection. This is where the program

has the capability to examine and potentially modify itself during runtime, however we only make

use of the former. The C# language makes this available through Reflection, which is built right

into the language. It allows the analysis of class structures as an object of type Type, exposing

details such as property names and types, attributed values, superclasses, interfaces and more.

Reflection can also be used to examine compiled assemblies, also regarded as DLL files. Assemblies

represent an aggregation of types and other code, in which reflection provides enumeration over

the types within the assembly. Figure 11 demonstrates the loading of an assembly from a file,

before enumerating through all the Types within the assembly. The Type class provides the means

to determine whether the class it represents extends another class. Additionally, the typeof operator

allows the introspection of a class without requiring an instance of it. Thusly, we can combine the

two as demonstrated within figure 12 to determine whether a class represented by a Type extends

the AlgorithmPlugin class. Combining the code snippets in figures 11 and 12, the implementations

of AlgorithmPlugin within a particular assembly can be uncovered. However, this only yields their

Types and does not associate them with any sort of identifier. At this stage of the process, adding an

abstract accessor requesting their identifier will not solve this as the types have yet to be instantiated.

Therefore an attribute must be required to be applied to the class in order to resolve this. In C#,

an attribute is a class which extends the appropriately named Attribute class. Such classes are

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

Page 9 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

10 T. SHERWOOD, E. AHMAD, M.H. YAP

Assembly assembly = Assembly.LoadFrom("MyAssembly.dll");

foreach(Type type in assembly.GetTypes())

{

// Do stuff with type

}

Figure 11. Once an assembly has been loaded, the Types within the assembly can be enumerated through.
Each Type represents a class, interface or other entity and can be introspected further.

if(type.IsSubclassOf(typeof(AlgorithmPlugin)))

{

// Type subclasses AlgorithmPlugin

}

Figure 12. The Type class provides the IsSubclassOf method to determine whether the class it represents
extends another, represent by it’s Type

[AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]

public sealed class AlgorithmAttribute : Attribute

{

public AlgorithmAttribute(string pluginName)

{

PluginName = pluginName;

}

public string PluginName

{

get;

private set;

}

}

[Algorithm("SomeAlgorithm")]

public class SomeAlgorithm : AlgorithmPlugin

{

...

}

Figure 13. The AlgorithmAttribute provides the means to ‘annotate’ classes with an identifier. This can then
be used to associate an identifier with a type of plugin, rather than a single instance.

used to ‘annotate’ various parts of code files, such as classes, properties, methods and so on. In

this scenario, each AlgorithmPlugin implementation must be annotated with a class requesting

them to provide an identifier. Figure 13 demonstrates an implementation and usage of this class,

providing a specific AlgorithmPlugin with an identifier within its type definition. The Attributes of

a Type can be accessed with ease through a simple method call. If no attribute is found then the

plugin is ignored, otherwise the identifier and type can be registered into the system. By checking

whether the class represented by Type extends AlgorithmPlugin and has been annotated with the

AlgorithmAttribute, plugin implementations can be loaded from DLLs provided the processor. In

the case of the DIPS solution, the assemblies it is provided with reside in the same directory as the

executing processor assembly. On startup, the processor checks the directory it is executing in for

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

Page 10 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

SOFTWARE SOLUTION FOR DIPS 11

var attribute = type.GetCustomAttribute(typeof(

AlgorithmAttribute));

if(attribute != null)

{

// Plugin has AlgorithmAttribute

}

Figure 14. Using introspection, the AlgorithmAttribute can be resolved from a Type. If the
GetCustomAttribute method returns null, the implementation has not been annotated with the attribute and

the plugin is ignored.

string currentDir = Directory.GetCurrentDirectory();

var files = from file in Directory.GetFiles(currentDir)

let fileNoPath = Path.GetFileName(file)

where fileNoPath.StartsWith("DIPS.Processor.Plugin")

&& fileNoPath.EndsWith(".dll")

select fileNoPath;

foreach(string fileName in files)

{

// Assembly is a plugin assembly

}

Figure 15. Plugin assemblies within the current directory can easily be located by enumerating over the files
and filtering out those not named like ‘DIPS.Processor.Plugin.*.dll’.

compiled assemblies and scans each one for plugin types. When a new plugin is to be integrated

into the processor, it need only be compiled into a DLL and copied into the same directory as the

processors binaries. This manner of loading plugins through DLLs is very flexible, only requiring

future developers to extend the base AlgorithmPlugin class, attribute the class accordingly and copy

the compiled output to the same location as the processor binaries. Figure 16 demonstrates the

entirety of the plugin loading procedure, from detecting assembly files to scrutinising types within

assemblies. Error catching has been omitted for clarity. When the processor is required to convert

the information registered about the plugin into an actual object, reflection can be used again to

instantiate the associated Type into the implementation of the AlgorithmPlugin. This is demonstrated

in figure 17, through a call to a method against the Activator static class. With the ability to load

the plugins from their assemblies, a mechanism is required for persisting this information during

the lifetime of the processor. This is retained in a ‘registrar’ held by the processor itself, which

can be provided to other components requiring plugin-level functionality. The IAlgorithmRegistrar

represents the container for this information, in which a specific implementation is held by the

IProcessor. The IAlgorithmRegistrar retains the information about all loaded plugins, but does not

possess the capability to actually manufacture them. This behaviour resides within a separate factory

utilising this information known as the IPluginFactory (figure 19), which provides the ability to

manufacture an AlgorithmPlugin from its AlgorithmDefinition by using the information within the

registrar. This separation of concerns is not only to ensure these distinct behaviours are isolated,

but it also helps keep the system testable. Specific tests can be written to simulate scenarios

within the PluginRegistrarFactory by using dependency injection. Various implementations of

the IAlgorithmRegistrar can be provided to simulate lack of knowledge of particular algorithms

amongst other conditions.

3.1.2. Plugin Parameter Objects As previously stated in the design, implementations of

AlgorithmPlugin provide the ability to perform the image processing algorithm against an input. The

parameters used to adjust their execution pattern reside in a separate object, providing during their

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

Page 11 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

12 T. SHERWOOD, E. AHMAD, M.H. YAP

private void _loadAssembliesInCurrentDirectory()

{

string currentDir = Directory.GetCurrentDirectory();

var files = from file in Directory.GetFiles(currentDir)

let fileNoPath = Path.GetFileName(file)

where fileNoPath.StartsWith("DIPS.Processor.Plugin"

)

&& fileNoPath.EndsWith(".dll")

select fileNoPath;

foreach(string fileName in files)

{

_loadssemblyByName(fileName);

}

}

private void _loadAssemblyByName(string assemblyFileName)

{

Assembly assembly = Assembly.LoadFrom(assemblyFileName);

foreach(Type type in assembly.GetTypes())

{

_examineType(type);

}

}

private void _examineType(Type type)

{

if(type.IsSubclassOf(typeof(AlgorithmPlugin)))

{

var attr = type.GetCustomAttribute(typeof(

AlgorithmAttribute));

if(attr != null)

{

// Plugin detected

}

}

}

Figure 16. When the processor is first created, it calls loadAssembliesInCurrentDirectory to register any
plugins it can find. The assembly is then loaded in loadAssemblyByName, which in turn begins scrutinising

each detected Type. If the Type represents a plugin, it is registered into the plugin system.

Type pluginType = ...

AlgorithmPlugin plugin =

(AlgorithmPlugin)Activator. CreateInstance(pluginType);

Figure 17. The Activator type provides the means to instantiate the actual object represented by their Type
counterpart. The processor assumes the plugin implementation contains a parameterless constructor for this
to work; the processor cannot be aware of the construction requirements of a plugin without needing to be

aware of their implementation.

definition. However AlgorithmDefinitions do not utilise an instance of the plugin, and thus a factory

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

Page 12 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 13 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 14 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

SOFTWARE SOLUTION FOR DIPS 15

public sealed class XmlInterpreterAttribute : Attribute

{

public XmlInterpreter(Type pluginType)

{

if(pluginType == null ||

pluginType.IsSubclassOf(typeof(AlgorithmPlugin)) ==

false)

{

throw new ArgumentException(

"Type provided to XmlInterpreter must subclass

AlgorithmPlugin");

}

PluginType = pluginType;

}

public Type PluginType

{

get;

private set;

}

}

Figure 22. The XmlInterpreterAttribute provides the means to expose IPipelineXmlInterpreter implemen-
tations to the processor. The Type they are provided must represent an AlgorithmPlugin, which is then

associated with a loaded plugin implementation.

[Algorithm("SomeAlgorithm", ParameterObjectType = typeof(

SomeProperties)]

public class SomeAlgorithm : AlgorithmPlugin

{

...

}

public class SomeProperties : ICloneable

{

...

}

[XmlInterpreter(typeof(SomeAlgorithm))]

public class SomeXmlInterpreter : IPipelineXmlInterpreter

{

...

}

Figure 23. Example usage of exposing an IPipelineXmlInterpreter that is used to create or restore from Xml
against the SomeAlgorithm plugin.

Restoring from Xml While creating Xml is a straightforward process, loading from it is slightly

trickier. As the usage of existing C# Xml classes is in place, validation that the document’s syntax is

ensured. However the actual structure of the elements and their contents are subject to scrutiny, as

they could easily have been tampered with. This functionality is broken down into more manageable

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

Page 15 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 16 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 17 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 18 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 19 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 20 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 21 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 22 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Page 23 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

24 T. SHERWOOD, E. AHMAD, M.H. YAP

required by the user to perform the MRI pre-processing functions. The application of the various

object-oriented principles and processed outlined in the design have allowed the processing module

to remain very testable. The primary reason for this is the application of dependency injection,

providing the means to devise automated tests through the use of mock instances of classes.

Additionally, both internal and external components are hardly coupled to one another and instead

rely predominately on abstractions. Separating the implementation of image processing algorithms

into plugins ultimately proved beneficial during the implementation cycles. Once the core functions

of the processor were constructed and tested, the processes could be incorporated separately without

the fear of breaking existing functionality. This especially paid off during the implementation of the

Matlab plugin, which was requested later on during the development lifecycle.

4. TESTING

4.1. Unit Testing

As the processing module is intended to be independently only as a service or background worker,

no specific UI has been designed for it. Additionally, not all functionalities can be tested through an

interface as validation constraints would restrict the ability to assert certain cases.

Instead, individual unit tests have been designed for each class used by the implementation of

the processor. As many public methods as possible have associated unit tests, in order to provide as

much coverage as possible. These tests ensure the individual methods and classes are functioning

properly, as opposed to the system as a whole.

The unit tests designed for the system were re-run frequently during development in order to

ensure any pulled commits from the shared repository did not break existing code. In contrast to

manually testing the system, this drastically saved time and effort.

4.2. Integration Testing

During the development of the project, infrequent phases of integration testing occurred to ensure

the processor and the primary application were continuing to function normally. These tests were

performed less formally than unit or validation tests; any bugs raised during this time were noted

and assigned to the relevant team member to investigate and fix the problem.

4.3. User Acceptance

Much less frequently than the aforementioned forms of testing, several runs of validation by the

stakeholders were performed against stable prototypes of the end product. These occurred once or

twice per quarter, allowing them to ensure the product was going in the right direction and giving

them an opportunity to request changes or features.

5. CONCLUSION

The aim of this DIPS project was to develop an image processing module capable of performing

batch processing on behalf of client applications. This goal was achieved, and taken further by

providing a mechanism to easily provide new methods of processing images by implementing

plugins to the processor representing individual image processes. While the entirety of the

processing logic required by the design has been fully implemented and tested, there continues

to remain scope for building new algorithm plugins capable for use by clients. Further required

processes can also be implemented through the use of the plugin architecture provided by the

processor. Future work involves futher development of the DIPS to fully support running as a

service. The framework for this is in place, and the capability to connect to another instance of the

processing service through TCP/IP is an achievable possibility. This would allow the processing

service to reside on a separate computer, which could be host to a much faster hardware. For

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

Page 24 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

SOFTWARE SOLUTION FOR DIPS 25

instance, slower clients could dispatch the jobs to the alternate machine, making best use of its

capabilities.

REFERENCES

1. Chang PL, Teng WG. 2007. Exploiting the self-organizing map for medical image segmentation in Computer-Based
Medical Systems, Twentieth IEEE International Symposium on, pp. 281288.

2. Zhou ZJ,Wu H. 2010. Digital Image Processing: Oart 1. Ventus Publishing ApS.
3. Lo WY, Puchalski SM. 2008. Digital image processing Veterinary Radiology and Ultrasound, vol. 49, pp. S42S47

[Online]. Available: http://dx.doi.org/10.1111/j.1740-8261.2007.00333.x
4. Zhang Y. 2009. Image processing using spatial transform. in Image Analysis and Signal Processing, IASP 2009.

International Conference on, pp. 282285.
5. Larkins DB, Harvey W. 2010. Introductory computational science using fMATLABg and image pro-

cessing.Procedia Computer Science, vol. 1, no. 1, pp. 913 919, fICCSg 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050910001018

6. Culjak I, Abram D, Pribanic T, Dzapo H, and Cifrek M. 2012.A brief introduction to opencv. in MIPRO, 2012
Proceedings of the 35th International Convention, pp. 17251730.

7. Matuska S, Hudec R, and Benco M.2012. The comparison of cpu time consumption for image processing algorithm
in matlab and opencv. in ELEKTRO, May 2012, pp. 7578.

8. Mankoff J, Blevis E, Borning B, Friedman A, Fussell SR,Hasbrouck J, Woodruff A, and Sengers P. 2007.
Environmental sustainability and interaction. pp. 21212124.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

Page 25 of 25

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

