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Abstract

The automatic derivation of word pronunciations from input text is a central task
for any text-to-speech system. For general English text at least, this is often
thought to be a solved problem, with manually-derived linguistic rules assumed
capable of handling “novel” words missing from the system dictionary.
Data-driven methods, based on machine learning of the regularities implicit in a
large pronouncing dictionary, have received considerable attention recently but are
generally thought to perform less well. However, these tentative beliefs are at best
uncertain without powerful methods for comparing text-to-phoneme subsystems.
This paper contributes to the development of such methods by comparing the
performance of four representative approaches to automatic phonemization on the
same test dictionary. As well as rule-based approaches, three data-driven
techniques are evaluated: pronunciation by analogy (PbA), NETspeak and IB1-IG
(a modifiedk-nearest neighbour method). Issues involved in comparative
evaluation are detailed and elucidated. The data-driven techniques outperform
rules in accuracy of letter-to-phoneme translation by a very significant margin but
require aligned text-phoneme training data and are slower. Best translation results
are obtained with PbA at approximately 72% words correct on a resonably large
pronouncing dictionary, compared with something like 26% words correct for the
rules, indicating that automatic pronunciation of text is not a solved problem.
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1. Introduction

The automatic conversion of text to a phonemic specification of pronunciation is a necessary
step in all current approaches to text-to-speech (TTS) synthesis. For important languages like
English and French, with only partial regularities between the spelling and sound systems, it is
also a hard computational problem. Consequently, ever since the inception of TTS technology,
text-to-phoneme conversion has attracted a great deal of attention: In his recent book, Dutoit
(1997) emphasizes its importance when he writes (p. 13): “It is thus more suitable to define
text-to-speech as theproduction of speech by machines, by way of the automatic phonetization
of the sentences to utter.” Because of its long history, the intensity and diversity of research
in this area, and thead hocnature of evaluations to date, there is a regrettable tendency
among speech scientists and speech technologists to view the problem as essentially solved.
Unfortunately, as will become clear in the course of this paper, this is far from the case.

For most words encountered in the input of a TTS system, a canonical pronunciation is
easily obtained by dictionary look-up. (In this paper, we use the wordsdictionaryandlexicon
interchangeably.) If the word is absent from the system dictionary, but is a morphological
derivative of a dictionary word, well-established techniques exist to infer a pronunciation
(Allen et al., 1987). Our concern here is the situation in which the input word is “novel”—
such that dictionary look-up (possibly in conjunction with morphological analysis) fails to
produce an output. In this commonly-encountered situation, a “back-up” (default) strategy
must be employed.

The traditional back-up strategy, in practical use for many years, employs a set of context-
dependent phonological rules written by an expert (e.g. Ainsworth, 1973; McIlroy, 1974;
Elovitzet al., 1976; Hunnicutt, 1976; Divayet al., 1997). However, the task of manually writing
such a set of rules, deciding the rule order so as to resolve conflicts appropriately, maintaining
the rules as mispronunciations are discovered etc., is very considerable and requires an expert
depth of knowledge of the specific language. For these reasons, and especially to ease the
problem of creating a TTS system for a new language, more recent attention has focused
on the application of automatic techniques based on machine-learning from large corpora
— see Damper (1995) for a comprehensive review and van den Bosch (1997) for more
recent discussion. It is also conceivable that such data-driven techniques actually outperform
traditional rules. However, this possibility does not seem to have been given much credence.
For instance, Divay and Vitale (1997) recently wrote: “To our knowledge, learning algorithms,
although promising, have not (yet) reached the level of rule sets developed by humans” (p. 520).
Dutoit (1997) takes this further, stating “such training-based strategies are often assumed to
exhibit much more intelligence than they do in practice, as revealed by their poor transcription
scores” (footnote 14, p. 115).

Whatever the veracity of these statements, there now exists a variety of methods of text-
to-phoneme conversion to challenge the traditional rule-based methodology. System imple-
mentors are faced, therefore, with making a rational choice among these competing methods.
This is problematic because techniques for evaluating the pronunciation component of a TTS
system are very poorly developed: indeed, it is even unclear how different approaches with
different motivations and characteristics should be compared. Such comparison is the focus
of the remainder of this paper. Specifically, we present an empirical, quantitative evaluation
of traditional rule-based methods and three newer data-driven methods: pronunciation by
analogy (PbA), back-propagation neural networks (NETspeak) and a nearest-neighbour ap-
proach. Before proceeding, it is worth stating explicitly what we consider the pronunciation
component of a TTS system is supposed to do, because this determines the way we evaluate
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it: it should deliver citation form pronunciations, that might plausibly have been produced by
a lexicographer, for every word in the input.

2. Description of the techniques

In this section, we briefly describe the four automatic-phenomization techniques which are
empirically compared later.

2.1. Phonological rules

The assumption here is that the pronunciation of a letter or letter substring can be found if
sufficient is known of its context, i.e. the surrounding letters. For example, the substringough
is pronounced /o0/ when its left context isth in the wordalthough, /u/ when its left context
is thr in the wordthrough, and /3f/ when its left context isen in the wordenough: in each
case, the right context is the word delimiter symbol. The form of the rules, strongly inspired
by concepts from generative phonology (Chomsky & Halle, 1968, p. 14), is:

A[B]C→ D

which states that the letter substringB with left-contextA and right-contextC receives the
pronunciation (i.e. phoneme substring)D. Such rules can also be strightforwardly cast in the
IF. . . THEN form commonly featured in high-level programming languages and employed in
expert, knowledge-based systems technology.

Because of the complexities of English spelling-to-sound correspondence (e.g. Carney,
1994), more than one rule generally applies at each stage of transcription. The potential
conflicts which arise are resolved by maintaining the rules in a set of sublists, grouped by
(initial) letter and with each sublist ordered by specificity. Typically, the most specific rule
is at the top and most general at the bottom. In the Elovitzet al. (1976) rules, for instance,
transcription is a one-pass, left-to-right process. For the particular target letter (i.e. the initial
letter of the substring currently under consideration), the appropriate sublist is searched from
top-to-bottom until a match is found. This rule is then fired (i.e. the correspondingD substring
is right-concatenated to the evolving output string), the linear search terminated, and the next
untranscribed letter taken as the target. The last rule in each sublist is a context-independent
default for the target letter, which is fired in the case that no other, more specific rule applies.

The rule set evaluated in this paper is that of Elovitzet al. (1976) obtained by anonymous
ftp from directorycomp.speech/synthesis atsvr-ftp.eng.cam.ac.uk.There are 329
rules in this set.

2.2. Pronunciation by analogy

Pronunciation by analogy exploits the phonological knowledge implicity contained in a dic-
tionary of words and their corresponding pronunciations. The underlying idea is that a pronun-
ciation for an unknown word is assembled by matching substrings of the input to substrings of
known, lexical words, hypothesizing a partial pronunciation for each matched substring from
the phonological knowledge, and concatenating the partial pronunciations. There are two basic
versions of PbA:explicitandimplicit (Damper & Eastmond, 1997, pp. 4–5). Explicit analogy
(e.g. Dedina & Nusbaum, 1991) retains the lexicon in its entirety, typically in the form of a list
of words and their spellings. PbA requires a dictionary in which text and phonemics have been
aligned, so that pronunciations corresponding to matching orthographics substrings can be
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identified. However, the necessary computational steps to assemble a pronunciation can be an-
ticipated and carried out in advance. Thus, in implicit analogy (e.g. Sullivan & Damper, 1993),
the lexical database is precompiled to yield a generalized phonological knowledge base which
is consulted during pronunciation generation. This done, the (explicit) dictionary can be dis-
carded. In the terminology of machine learning, explicit and implicit approaches correspond
to “lazy” and “eager” learning respectively (van den Bosch, 1997). Lazy learning minimizes
the extent of any prior training phase, whereas eager learning involves significant prior train-
ing. Often, but not necessarily, eager learning will also attempt to compress the training data.
That is, in the process of extracting regularities useful for generalization, a proportion of the
training data will actually be discarded.

The variant of PbA evaluated here is based on PRONOUNCE (Dedina & Nusbaum 1991),
but with several further enhancements as detailed by Marchand and Damper (submitted) and
briefly outlined below. In PRONOUNCE, an incoming word is matched in turn against all
orthographic entries in the lexicon which is an integral part of the subsystem (explicit analogy).
For a given dictionary entry, the process starts with the input string and the dictionary entry left-
aligned. Substrings sharing contiguous, common letters in matching positions in the two strings
are then found. Information about these matching letter substrings, and their corresponding
phoneme substrings in the dictionary entry under consideration, is entered into the input
string’s pronunciation lattice as detailed below. This requires that text and phonemes are
previously aligned in the dictionary. The shorter of the two strings is then shifted right by one
letter and the matching process repeated. This continues until the two strings are right-aligned,
i.e. the number of right shifts is equal to the difference in length between the two strings.

Matched substrings, together with their corresponding phonemic mappings as found in the
lexicon, are used to build the pronunciation lattice for the input string. A node of the lattice
represents a matched letter,Li , at some position,i , in the input. The node is labelled with
its position indexi and with the phoneme which corresponds toLi in the matched substring,
Pim say, for themth matched substring. An arc is placed from nodei to node j if there
is a matched substring starting withLi and ending withL j . The arc is labelled with the
phonemes intermediate betweenPim andPjm in the phoneme part of the matched substring.
Note that arcs corresponding to bigrams are labelled with the empty string: the two symbols
of the bigram label the nodes at either end. Additionally, arcs are labelled with a “frequency”
count (Dedina and Nusbaum’s term, and nothing to do with frequency of usage in written
or spoken communication) which is incremented by one each time that substring (with that
pronunciation) is matched during the pass through the lexicon.

A possible pronunciation for the input string then corresponds to a complete path through its
lattice, with the output string assembled by concatenating the phoneme labels on the nodes/arcs
in the order that they are traversed. (Different paths can, of course, correspond to the same
pronunciation.) Scoring of candidate pronunciation uses two heuristics in PRONOUNCE. If
there is a unique shortest path, then the pronunciation corresponding to this path is taken as
the output. If there are tied shortest paths, then the pronunciation corresponding to the best
scoring of these is taken as the output.

Because the minimum length of a matched substring in PRONOUNCE is two (correspond-
ing to the two nodes at either end of an arc labelled with the empty string), there may not be a
complete path through the lattice. Thus, we have a “silence” problem with this version of PbA.
The problem is avoided in Sullivan and Damper’s (1993) approach in which the lattice nodes
represent the junctures (notional spaces) between words and arcs can therefore be labelled
with single letter to single phoneme correspondences, so that (like letter-to-sound rules) there
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is always a default correspondence available. This, however, is at the cost of considerably
larger pronunciation lattices.

The version of PbA evaluated here features several enhancements over PRONOUNCE,
as described by Marchand and Damper (submitted). First, we use “full” pattern matching
between input letter string and dictionary entries, as opposed to Dedina and Nusbaum’s (1991)
“partial” matching. That is, rather than starting with the two strings left-aligned, we start with
the initial letter of the input stringI aligned with the end letter of the dictionary entryW.
The matching process terminates not when the two strings are right-aligned, but when the
end letter ofI aligns with initial letter ofW. Thus, the number of right shifts is equal to the
sum of the lengths of the two strings minus one. Second, multiple (five) heuristics are used to
score the candidate pronunciations. Individual scores are then multiplied together to produce
a final overall score. The best-scoring pronunciation on this basis is then selected as output.
Marchand and Damper show that this “multi-strategy” approach gives statistically significant
performance improvements over simpler versions of PbA.

Each word of the dictionary was processed in turn by removing it from the dictionary and
assembling a pronunciation for it by analogy with the remainder. This can be seen as a version
of then-fold cross-validation technique described by Weiss and Kulikowski (1991), as used
by van den Bosch (1997, p. 54) in the evaluation of text-to-phoneme subsystems, withn = L
whereL is the size of the entire lexicon.

2.3. Neural networks — NETspeak

Sejnowski and Rosenberg (1987) described NETtalk, a feedforward neural network for text-
to-phoneme conversion. Not only is this probably the best-known example of a data-driven
text-to-phoneme converter, it is possibly the best-known application of neural nets also. In
particular, Sejnowski and Rosenberg helped to popularize the error back-propagation training
algorithm of Rumelhart, Hinton and Williams (1986) by demonstrating its success in learning
to tackle the hard problem of automatic phonemization.

NETtalk’s input consists of a window of an odd number of letters, where the central letter
is the “target” and the letters to left and right provide the context. The input text is stepped
through the window letter-by-letter. NETtalk was trained to associate the target letter with its
correct pronunciation — here a single phoneme. Thus, like PbA, it requires its training data
to have been previously aligned so that the letter and phoneme representations of each word
have the same length. The standard NETtalk had a 7-letter window. However, smaller and
larger windows were also studied (in the range 3 to 11 letters). Generally, performance was
found to improve with window size.

In the usual case where the orthographic representation is longer than the phonemic one,
null phonemes were added to make the two strings the same length. In the (rarer) case when the
phoneme string is the longer of the two, Sejnowski and Rosenberg invented new “phonemes”,
e.g. they used /K/ for thex→/ks/ sound insexual. Each input character was represented by a
sparse (1-out-of-n) code of 29 bits — one for each of the 26 letters plus three additional bits
for punctuation marks and word boundaries. Thus, the number of input unitsi is 7×29= 203.
Sejnowski and Rosenberg used 21 “articulatory features” to represent the (single) phoneme
output. Typical such features are voicing, place of articulation (labial, velar,. . .) and tongue
height. They also added five additional output units to represent stress and syllable boundaries.
Hence, the number of output unitso is 21+ 5= 26.

Although targets during training can (in principle) easily be specified by binary codings
from the set of 226 possible outputs, actual outputs are graded (because of NETtalk’s sigmoidal
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activation functions) in the range (0, 1). Even if these were thresholded to give “hard” (0, 1)
values, very few would correspond exactly to legal codings. So how do we know what the
obtained output phoneme is? Sejnowski and Rosenberg’s solution was to compute the inner
product of the output vector with the codes for each of the possible phonemes. The phoneme
that made the smallest angle with the output was chosen as the “best guess” output.

Various numbers of hidden layers and units(h) were studied. Specifically, single hidden
layers withh = 0, 80 and 120 units were trained and tested, together with one net with two
hidden layers each ofh = 80 neurons. Performance increased with additional units and with
an additional hidden layer. However, the most comprehensive results are presented for the
case of a single hidden layer of 120 units.

With this latter net, the number of connections (excluding variable thresholds) is:

(i × h)+ (h× o) = (203× 120)+ (120× 26) = 27 480.

To this must be added the small number(h+ o = 146) of variable thresholds, one per unit.
Thus, the number of adjustable weights (free parameters of the model) is nearly 28 000.

The neural network studied in the present work is based on NETspeak, McCulloch, Bed-
worth, and Bridle’s (1987) re-implementation of NETtalk (but using a different dictionary
and output phoneme set). McCullochet al.(1987) additionally explored the impact of differ-
ent input and output codings. Like NETtalk, NETspeak used a window of seven characters
through which the input was stepped one character at a time. The input and output codings
were thought to be important in that “an appropriate coding can greatly assist learning whilst
an inappropriate one can prevent it”. In place of NETtalk’s 1-out-of-n coding leading to 203
input units, NETspeak used a more compact (2-out-of-n) 11-bit coding, givingi = 77. The
first five bits indicated which of five rough, “phonological sets” the letter belonged to and the
remaining six bits identified the particular character. In place of NET talk’s 21 articulatory
features to represent the (single) phoneme output (plus five stress and syllable boundary units),
NETspeak usedo= 25 output features. NETspeak used 77 hidden units in place of NETtalk’s
120. Hence, NETspeak had just 7854 adjustable parameters compared with NETtalk’s 27 480.

Learning parameters (learning rate, momentum, etc.) are all as in the original NETspeak.
Our re-implementation differs from the original in two respects, however. First, instead of
calculating the network error at each iteration of training and updating weights to all output
nodes, only weights leading to individual nodes with erroneous outputs were updated. This was
done after the presentation of each letter, as in NETspeak. Benefits of this training modification
include quicker convergence and an improvement in final performance. Second, we introduced
a termination condition based on network error, rather than using a fixed number (three)
of iterations. The network output was evaluated on the test set after every five iterations of
training. If the performance deteriorated on two consecutive occasions, the test result obtained
10 iterations previously (i.e. before performance started to deteriorate) was taken as the final
result. This means that the net was trained on typically 40–50 (but as many as 700) iterations, as
opposed to just three for NETspeak. Hence, we are confident that the net was reasonably well
trained (even though we have not used an independent unseen set to monitor the training error).

2.4. Nearest neighbour — IB1-IG

In the IB1-IG approach (Daelemanset al., 1997; van den Bosch, 1997), a feature-weighting
function is used to provide a real-valued expression of the relative importance of feature
values (i.e. letter positions) when performing the mapping from input to (phoneme) classifi-
cation. Weighting is by information gain. The main idea is to interpret the training material
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TABLE I. Instances generated in IB1-IG for the
wordbook

Instance Left Focus Right Phoneme
number context letter context class
1 - - - b ook /b/
2 - -b o ok- /u/
3 -bo o k- - /-/
4 boo k - - - /k/

(letter-phoneme correspondences) as an information source capable of generating a number
of messages (i.e. phoneme classifications) with a certain probability.

Database information entropy is equal to the average number of bits of information needed
to know the class given an instance. It is computed as:

E(Database) = −
∑

i

pi log2 pi ,

where the probability of phoneme classi , pi , is estimated by its relative frequency in the
training set.

For each feature, its relative importance in the database can be calculated by computing
its information gain. To do this, we compute the average information entropy for this feature
and subtract it from the information entropy of the database. The classification function of
IB1-IG computes the similarity between a new instance and all stored instances, and returns
the class label of the most similar instance. The instance database is generated by a fixed-size
window capturing a focus letter surrounded by three left and three right neighbour letters. An
example of instances generated for the wordbookis shown in Table I. The similarity function
corresponds to the sum of the information gain values associated to the mismatched letter
positions between new instances and stored instances.

We have slightly changed this method by creating 26 disjoint instance databases instead
of just one. There is a one database for each focus letter. Thus, before using the similarity
function, the database which corresponds to the focus letter of the new instance is selected,
rather than considering all possible letters. This increases performance both in terms of words
correct (marginally) and run time (considerably).

3. Adequacy of rules

Translation by rules manually written by an expert linguist has long been (and remains)
the staple method of automatic phonemization in TTS synthesis. As such, rule-based ap-
proaches form thede facto (or “gold”) standard against which other techniques should
be measured. Given this, it is clearly important to know precisely how well rules per-
form. Yet Pols (1989) wrote (p. 60): “There is very little experience in evaluating the text-
specific part (text preprocessing, grapheme-to-phoneme conversion) of a rule synthesizer”.
This situation has hardly changed since: for instance, van Bezooijen and van Heuven’s
recent (1998) contribution on “Assessment of Synthesis Systems” to Gibbon, Moore and
Winski’s extensiveHandbook of Standards and Resources for Spoken Language Systems
devotes less than two pages to grapheme-to-phoneme conversion (Section 5.5.1.2 of Vol-
ume III) and falls short of offering a strategy for evaluation. Thus, in Volume I of Gibbon
et al., Choukri (1998, p. 60) writes: “As. . . detailed in Chapter III:5, there is no stan-
dard and agreed-upon methodology for the assessment of the linguistic module of a TTS
[system]”.
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So how can we assess the performance of a rule-based pronunciation component of a TTS
system, what might we expect it to be, and is typical performance adequate for high-quality
TTS applications? A review of the literature reveals an enormous disparity in the claimed
performance of knowledge-based pronunciation rules. For instance, Pollatsek and Rayner
(1993, p. 415) write:

“ . . . the pronunciation of English is too variable to sensibly be explained by rules, with
estimates ranging from 25% to 75% of the pronunciation of words being accounted
for by rules. (The percentage varies of course with the complexity and number of rules
hypothesized.)”

To give some idea of the range of opinions on this matter, Glushko (1981, p. 81) comments:

“ . . . rules alone simply don’t work”,

yet Klatt (1987, pp. 770–771) writes:

“ . . . the performance[of NETtalk] is not nearly as accurate as that of a good set of letter-
to-sound rules (performing without use of an exceptions dictionary, but with rules for
recognizing common affixes). A typical knowledge-based rule system (Bernsteinet al.,
1980) is claimed to perform at about 85% correct at a word level. . . in a random sampling
of a very large dictionary, which implies a phoneme correct rate of better than 97%.”

It is difficult to resolve the obvious contradictions in these views. (Resolution is not helped
by the fact that we are unable to locate in their paper the “85% correct at word level” claim
that Klatt attributes to Bernstein and Pisoni. However, Bernstein has confirmed this figure
in a personal communication.) Rule-sets like those of Bernstein and Pisoni often become
embodied in TTS products and, for commercial reasons, are not available for testing by
independent researchers. Hence, the above figures are not amenable to replication and verifi-
cation.

This is not true of the Elovitzet al.(1976) rule set, which is freely available. Bernstein and
Nessly (1981) wrote that the only published rule sets were those of McIlroy (1974), Hunnicutt
(1976) and Elovitzet al.(1976). To this list should be added the even earlier Ainsworth (1973)
rules for British English. To the best of our knowledge, the availability of rule sets remains
today essentially as it was then.

Bernstein and Nessly (1981, Table II, p. 451) present evaluations done on various 1000-
word subsets of the Brown corpus (Kuˇceraet al., 1967). Percentage correct word scores on
each subset vary from 65% (for a sample of the rarest words) to 86·8% (for the 1000 most
common words). Although the scoring was said to be (p. 449) “quite strict”, it was actually
rather lax as “the criterion for correctness was a good IPA transcription”. (For instance,
doubled consonants were not counted as errors.) In our view, this is unsatisfactory, as too
much depends upon the arbitrary assignment “good”. On the basis of frequency weighting,
Elovitz et al. (1976) claim (p. 450): “we would expect to correctly translate 89 to 90 percent
of the words in a random sample of English text”. However, we feel that frequency weighting
gives an unduly optimistic picture, as it is all too easy to ensure the correct pronunciation
of very common words, which are not difficult to anticipate and which dominate the testing.
Consider a trivially-simple pronunciation subsystem which has only a lexicon of the 10 most
common words. It is guaranteed to make the pronunciation of these words, but no others,
correct. It is easily estimated, either from Zipf’s law (see Appendix A) or from data in the
Brown corpus, that such an approach attains a word accuracy of approximately 20–30% on
this basis alone when evaluated on general text. The problem for TTS systems is rare/unusual
words which cannot be anticipated.



Evaluating pronunciation 163

Hunnicutt (1980, pp. 52–55) presents a “preliminary evaluation” of her rules using subsets
of 200 words from the Brown corpus. Percentage correct word scores varied from 66% (for
the rarest words) to 100% (for the 200 most common words), but this was using a dictionary
containing “the 200 words of highest frequency plus another 87 words which guarantee the
correct pronunciation of the first 580 words according to frequency”. Without this dictionary,
using the rules alone, the figure for the 200 commonest words was 65·5%. Based on these
results, Hunnicutt estimates the performance on words absent from the dictionary at 71%
correct (p. 54). This estimate appears to be frequency-weighted.

There are obvious dangers in extrapolating from a small test set to general text (as we will
demonstrate below). However, neither Elovitzet al. (1976) nor Hunnicutt (1980) report tests
on the complete Brown corpus. To avoid the dangers inherent in extrapolation, this would
seem to be well worthwhile, and vastly preferable to testing on subsets.

Bernstein and Nessly (1981) report a performance comparison of the Hunnicutt and Elovitz
et al. rules. Outputs were assessed before stress assignment, and the assessment was (in our
terms) lax as the intention was to evaluate the suitability of the “phenomicization. . . assuming
one can assign stress correctly and then reduce vowels appropriately” (p. 20). Against this
criterion, three experts rated the pronunciations as 1= correct, 0·5 = close and 0= wrong.
Using this scoring scale, “both algorithms get about 25% words wrong on[a] lexically flat
sample of 865 word types”. Again, it is difficult to extrapolate this figure to performance on
a large dictionary more representative of general text.

Finally, Divay and Vitale (1997, pp. 516–517) report an evaluation of their much newer
rule set for English. They test on a 19 837 word subset of the Brown Corpus — presumably
unique words, but the authors omit to say. Their pronunciation subsystem uses a dictionary,
but its size is not explicitly specified. However, Divay and Vitale state that the “dictionary hit
count was 7337 (36·99%)” which we can only interpret to mean that the dictionary contained
7337 words which were also in the Brown corpus. They further state that “the rules matched
5432 words (27·38%)”. Hence, by simple arithmetic (and assuming thatmatchedmeans
pronounced correctly), they apparently matched 43·46% of the non-dictionary words — but
these are presumably among the easier (more regular) words.

4. Comparing automatic-phonemization methods

Having considered how rules, thede factostandard method, might be assessed, we ask:
what precisely are the difficulties in making comparisons betweendifferentapproaches to the
derivation of pronunciations from text? First, it is necessary to make a clear distinction between
evaluating synthetic speech and evaluating a component of a TTS system. The former tests
“fitness for purposes” of a complete system, whereas the latter is diagnostic and is our concern
here. On this point, Bernstein and Nessly (1981, p. 19) write: “comparison of the output
speech from two complete systems may not always provide a good test of the performance
of the corresponding component algorithms in the two systems, because radical performance
differences in other components can obscure small differences in the components of interest”.
This is not to say that the impact of the pronunciation component on overall quality and
intelligibility of the speech output should not be assessed at some stage, but we believe this
should be left to final system evaluation.

Turning to the pronunciation component itself, because the back-up strategy is only used
when the primary approach of dictionary matching fails, it should (as Klatt implied) be
assessed without the dictionary present. This poses problems for the rule-based approach. In
practice, “exceptions” to the rules can either be embedded in the rule set (i.e. treated as highly-
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specialized rules) or separated out and placed in the dictionary. For instance, Elovitzet al.
include about 60 very common whole words as “rules”; Hunnicutt includes none. Divay and
Vitale (1997, p. 505) write: “When we have a rule that handlesn words, wheren is between 1
and some small number, say fewer than 7, we generally put these words in a dictionary”. As
Klatt (1987, p. 772) states: “A moderate-sized exceptions dictionary can hide the deficiencies
of a weak set of letter-to-sound rules, but at a high cost in terms of storage requirements”.
Hence, there is a real problem in deciding where the division between the two lies.

Moreover, Bernstein and Nessly (1981, p. 19) write: “Comparing the accuracy of different
algorithms for text-to-phoneme conversion is often difficult because authors measure and
report system performance in incommensurate ways”. Further, Hunnicutt, Meng, Seneff &
Zue (1993) state: “direct comparison of performance of different systems is difficult due to
the lack of standardized phone sets, data sets or scoring algorithms”. It is now established
procedure to test the generalization ability of data-driven techniques with unseen words —
not available during training. But how does the seen/unseen distinction apply in the case of a
knowledge-based technique, if at all? How do we know what words (if any) and what accent
of English the rule developer had in mind when writing the rules?

In spite of the difficulties, we nonetheless believe the need for comparative evaluation
techniques is urgent. Given the above discussion, we propose:

(1) competitor techniques for automatic phonemization should be tested on the same (large)
dictionaries in their entirety;

(2) scoring should be as strict as possible, should not be frequency weighted (for the reason
outlined above), and should use a standardized metric;

(3) a standardized output (phoneme) set should be used.

Clearly, if any of three basic elements — dictionary, scoring metric or phoneme set — differs
in the evaluation of different pronunciation subsystems, comparison is made difficult. As we
will see, however, for practical reasons our evaluations actually fall a little short of the ideal
expressed in (3).

Although we generally favour the Levenshtein (1966) string-edit distance, scoring in terms
of words correct is easier, it avoids any necessity to enumerate phoneme insertions, deletions
and/or substitutions, and is more stringent and sensitive than symbols correct scores (which
are routinely in the greater than 90% range). This is the metric used here. A further advantage
is that, as word pronunciations are either right or wrong, word accuracies are binomially
distributed: this facilitates testing of statistical significance (see Appendix A). Finally, in
addition to testing on the complete dictionary (as in (1) above), it is also of interest to know
how performance for the data-driven methods varies as a function of the size of training
data set and test set. In particular, this gives a way of estimating asymptotic performance as
dictionary size tends to infinity.

5. Practical comparison

5.1. Materials

A machine-readable version of the (American English)Teachers’ Word Book(TWB) of
Thorndike and Lorge (1944) was used in this work. It had previously been manually aligned
for the purpose of training NETspeak (McCullochet al., 1987). (Thanks to David Bounds for
supplying us with this lexicon). Pronunciations were obtained for each of the 16 280 words us-
ing: the popular, publically-available rules of Elovitzet al.; pronunciation by analogy (PbA);
NETspeak; and IB1-IG.
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5.2. Harmonization of the phoneme set

For all four pronunciation subsystems, outputs were compared with their (known) dictionary
pronunciations. At this stage, we have not included lexical stress markers in the set of output
symbols: the important aspect of stress assignment is left for future work. The standardization
of the phoneme set was not entirely without difficulty. The three data-driven methods neces-
sarily produce output in terms of the TWB phoneme inventory of 52 phoneme symbols. The
rules, however, produce output using an incommensurate alphabet of 41 phonemes. A fur-
ther complication is the different transcription standards, and the different dialectal/accentual
forms and distinctions, used by the dictionary- and rule-writers — so that the rule phoneme
inventory is not just a proper subset of the dictionary inventory.

Proper evaluation requires that each subsystem is scored on the same output phoneme set, so
that the TWB inventory and the Elovitzet al.inventory must somehow be made commensurate.
We call this processharmonization. In this work, we do not achieve perfect harmonization.
One approach would be to collapse the inventories into the smaller of the two sets so as to
abolish any phonetic distinction not respected in the rule outputs. To some extent, this favours
the rules over the data-driven methods, as (by their use of 52 output symbols rather than just 41)
the latter are attempting to make finer distinctions but would not be penalized for getting them
wrong. Also, the data-driven methods hold the considerable advantage over the rules that their
pronunciations are assembled from the exact phoneme inventory embodied in the dictionary.
Given these considerations, we decided it was fairest to evaluate the data-driven methods with
the full inventory of 51 phonemes, but to evaluate the rules on a harmonized subset of these.
Appendix B gives the phoneme sets and details of the harmonization process adopted.

5.3. Effect of dictionary size

Practical evaluation can only ever be on a dictionary of restricted, finite size, yet we really
should characterize a pronunciation subsystem by its asymptotic performance on an effectively
infinite-size test set. Hence, we should test on the largest lexicon available. Thus, there is a
particular difficulty in comparing trainable data-driven methods with approaches that do not
require training, like rules. The latter can be simply tested on the entire dictionary, but the
former require some words to be held out as test data.

In principle, it is possible to useL-fold cross-validation as was done for PbA by Damper
and Eastmond (1997). This means that training (lazy learning in this case) is always on the
maximum number of(L−1)words, and allL words are tested as unseen. However, the eager
(back-propagation) learning required by NETspeak is far too computationally intensive for
this to be practical. The same is true of IB1-IG, where a set of(L − 1) instance databases
would have to be extracted from the dictionary at considerable computational cost. Further,
it is of interest to know how performance depends on the size of test and/or training sets,
because this gives some idea of asymptotic performance. In view of this, we have used the
evaluation procedure described below, which was introduced by Lucas and Damper (1992).

By random sampling from the dictionary, two disjoint subsets of the same sizeN are
produced. We train on one of these and test on the other. This is done for various values ofN
upto the maximum of half the size of the lexiconL/2. We then plot accuracy on thetrain and
testsubsets vs.N. The values ofN used here were 100, 500, 1000, 2000, 5000 and 8140 words.
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6. Results

In this section, we detail the results obtained with the four automatic phonemization ap-
proaches. Strenuous efforts were made to ensure that each data-driven technique had been
properly implemented and was performing correctly. This took the form of, as far as possible,
replicating (or improving) the results originally reported for each technique. These efforts are
detailed under the relevant subheadings.

6.1. Phonological rules

The Elovitz et al. rules were evaluated on the complete dictionary of 16 280 words. Just
25·7% of the word pronunciations were correct. Length errors (especially due to geminate
consonants), /g/↔/j/ confusions and vowel substitutions abound. This figure is so low that we
were at considerable pains to confirm it. Two of the authors obtained the same result working
independently to the agreed harmonization scheme in Appendix A. One of the authors gave
his students (14 final year Computer Science with Artificial Intelligence undergraduates) the
problem of evaluating the Elovitzet al. rules on TWB as an assessed programming exercise.
Students had to devise their own harmonization methods and were not told what outcome to
expect. All nine students who produced complete and correct code replicated the above figure
to within 1.5 percentage points: the variation was attributable to differences in harmonization.
Finally, Bagshaw (1998, p. 133) has recently confirmed the poor performance of the Elovitzet
al. rules, obtaining just 19·34% words correct using “a slightly modified” version of this rule
set on the CNET lexicon of 110 000 words. (He does not, however, detail his harmonization
method.)

Arguably, one might expect publically-accessible rules, dating back essentially to 1976,
to perform less well than rules included in a current TTS product. After all, the intervening
20 years have seen considerable research efforts directed at rule-based speech synthesis. For
this reason, we also evaluated an up-to-date and commercially-successful rule-set. (It was
a condition of access to these rules that they should remain anonymous.) However, these
anonymous rules actually produced a lower word accuracy of 23·8% when evaluated using
the above techniques. Specific details of the harmonization were, of course, rather different
as the anonymous rules used a different output phoneme inventory (of size 49).

6.2. PbA

Alone among the data-driven techniques, the performance of PbA can be practically evaluated
(i.e. in reasonable time) usingL-fold validation on the complete dictionary of 16 280 words.
This yielded a figure of 71·8% words correct. This result must be interpreted cautiously —
the scoring of the rule outputs with reference to dictionary pronunciations using a different
transcription standard is perhaps too stringent. However, the performance difference between
71·8% and 25·7% is so striking that it is almost superfluous to test its statistical significance.
Using the test described in Appendix A, the probability of obtaining such a difference by
chance is infinitesimally small(z= 134·6).

As stated above, the version of PbA implemented here is that described by Marchand and
Damper (submitted). This actually achieves the best performance so far reported for PbA on the
TWB lexicon. Hence, we are confident that it has been properly implemented. By comparison,
Damper and Eastmond (1997) obtained 67·9% words correct on TWB. Yvon (1996) achieved
64·0% words correct on the 20 000 word lexicon (Webster’s dictionary) used to train NETtalk
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— using “multiple unbounded overlapping chunks” as the nodes of the pronunciation lattice.
Damper and Eastmond’s corresponding figure for this lexicon was 60·7%.

PbA was further tested on the different sized subsets of TWB in two ways:

(1) pronunciations were produced for each word of thetestsubsets by analogy with the
(same-sized, disjoint)train subset;

(2) pronunciations were produced for each word of thetest subset by analogy with the
complete dictionary;

usingL-fold cross-validation in both cases.
Figure 1(a) shows the results. The lower curve, obtained with method 1, illustrates that

performance improves monotonically as the size of the lexical database (thetrain subset)
increases. Most of the errors for the vary smalltrain/testsets were silence. There seems to
be no case for using anything other than the largest available dictionary. This finding is not
entirely vacuous: the possibility exists with PbA that best results are obtained by analogy with
a small lexicon of representative words and that the presence of other (exotic or rare) words
is harmful. This does not appear to be so (although we need to be aware that here subsets are
formed by random sampling rather than by principled selection). Method 2 is closer to the
way one would use PbA in reality. The upper curve, obtained with method 2, is effectively
constant apart from some sampling variance which is more pronounced for the smallertest
subsets. We note that the two curves are asymptotic to the same value of about 72% words
correct, lending credence to this value as a good estimate of ultimate performance on a very
large dictionary.

6.3. NETspeak

To check the implementation, we first replicated the reported results of McCullochet al.
(1987). Figure 1 (b) shows the results subsequently obtained for the present evaluation. The
lower curve is for testing on the unseen(test)subset and the upper curve is for testing on the
training data. The curves are less smooth than Figure 1 (a) because of sensitivity to the initial
random weights used in training. The best unseen performance is 46·0% words correct on the
largest(L/2) testsubset: training and testing on the complete dictionary gave 54·4%. Hence,
asymptotic generalization performance is expected to be about 50%, considerably poorer than
PbA but very much better than rules.

6.4. IB1-IG

The result for IB1-IG trained and tested on disjoint, same-sized subsets of the dictionary is
depicted in Figure 1(c) (bottom curve). The best performance is 57·4% words correct on the
largest(L/2) testsubset, which is better than NETspeak but not as good as PbA. (According
to the statistical test of Appendix A, the probability that this difference could be due to
chance is practically indistinguishable from zero,z = 16·4.) This ranking is consistent with
van de Bosch’s (1997) finding that any compression of the dictionary seems to be bad for
performance, i.e. the two lazy learning techniques of PbA and IB1-IG outperform the eager
(back-propagation) learning approach of NETspeak.

We also carried out a (slightly simplified)L-fold cross-validation test for the various sized
test subsets, intended to parallel the method 2 testing for PbA as shown in the upper curve of
Figure 1(a). This was done by first computing the instance database (including the entropy
measures) for the entire dictionary. Each word of the subset was then tested against the
entire database after removing all its instances from the database. The simplification was that
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Figure 1. Results of training and testing on different-sized disjoint subsets of the
dictionary: (a) PbA; (b) NETspeak; (c) IB1-IG. See text for specification of the testing
strategies in each case.

entropies were not recomputed as each new test word was individually removed from the
lexicon, because of the enormous computational cost of so doing. The assumption is that any
single word will have little effect on the entropy calculation across 16 280 words. The result is
depicted in Figure 1(c) (top curve). The asymptotic performance is about 65% words correct,
which is better than NETtalk but poorer than PbA.

These results are poorer than those obtained by van den Bosch (1997, Fig. 3.3, p. 70) who ob-
tained a higher word accuracy of 77·9% words correct with IB1-IG on CELEX (77 565 words).
We attribute this apparently superior performance to use of a much smaller phoneme inventory
of just 42 phonemes (including null) rather than to any problems with our implementation.
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Figure 2. Theoretical coverage of dictionary plus back-up pronunciation strategy for
unlisted words according to Zipf’s law withR= 200 000 words (see Appendix A for
explanation). The upper curve assumes the word accuracy of the back-up strategy is
65%, the middle curve assumes it is 30% and for the lower curve it is 0% (i.e. the
dictionary is used alone). This illustrates the importance of a good back-up strategy to
performance of a TTS system.

6.5. Speed of conversion

Speed of conversion is an important aspect of the pronunciation component of a TTS system.
It could be argued that PbA, for instance, is fundamentally slow and an advantage of rules is
their computational efficiency. (For instance, Damper, Burnett, Gray, Straus & Symes (1987)
implemented the Elovitzet al. rules in real time on a hand-held device within the constraints
of mid-80s microprocessor technology, viz. 1 MHz processor with just 8 Kbytes of total
memory.) In the present work, the total time to process the 16 280 words of TWB was 2·06 s
on a Sun Ultra Enterprise with dual 170 MHz processor. (This machine is reserved for fast-
response, light applications.) This corresponds to about 0·127 ms/word or a conversion speed
of 7903 words/s, well in excess of normal speech rates and leaving plenty of processor time
for other necessary tasks in a real-time TTS system. Nor should it be forgotten that the concern
here is back-up strategies which are not continuously invoked.

NETtalk required 19·54 s to process the complete TWB on a 200 MHz Pentium, corre-
sponding to 8·8 ms/word or a conversion speed of 112 words/s. This is slower that the rules
but more than adequate for real-time TTS synthesis. Back-propagation training times were,
however, very long: it took something like 9 days to produce the results of Figure 1 (b).

With PbA, it took 2490·8 s (42·5 min) to process the complete dictionary on a 75 MHz
HP 712 workstation. This corresponds to 0·153 s/word or 6·54 words per second. With IB1-IG,
it took 6626·0 s (110·4 min) to process the complete dictionary on the same HP workstation.
This corresponds to 0·407 s/word or 2·56 words/s. However, the translation programs for
PbA and IB1-IG were written for research purposes: they are implemented in the Python
rapid prototyping language (rather than C) which is interpreted and relatively inefficient. The
programs perform many data logging operations which would not be necessary in production
versions of the code. Most of these features were disabled for the purposes of this testing, but
not all. PbA in particular could be made very much faster by, for instance, precompling lexical
knowledge (implicit analogy), using a fast string-searching algorithm like Boyer–Moore, etc.
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7. Discussion and future work

In our view, there are two common misapprehensions in the speech synthesis research commu-
nity. The first is that automatic phonemization is a solved problem; the second is that linguistic
rules work much better than they actually do. For instance, on the first point, Liberman and
Church (1991, p. 792) write:

“We will describe algorithms for pronunciation of English words. . . that reduce the
error rate to only a few tenths of a percent for ordinary text, about two orders of
magnitude better than the word error rates of 15% or so that were common a decade
ago.”

Such error rates would, if they could be confirmed, render automatic phonemization an effec-
tively solved problem.

In the event, however, Liberman and Church do not really describe their algorithms at all
fully, in a way which would allow other investigators to reimplement them, and no formal
evaluation supporting the claim of such a low error rate is detailed. They go on to describe
the performance of NETtalk as (p. 819, citing a 1988 Technical Report from Princeton by
Rosenberg) “so much worse. . .” than rules. This is similar to the opinion of Divay and Vitale
(1997) quoted in the Introduction as well as to Klatt’s (1987) earlier view quoted in Section 3,
and to McCullochet al.’s (1987, p. 301) statement: “Despite the remarkable results achieved
by . . . NETtalk, [they] are still not as good as the best rule-based phonemic transcription
systems”.

We have shown in this paper that these opinions are mistaken. Further, a best word accuracy
of just over 70% (the asymptotic performance of PbA) leaves much room for improvement,
so that automatic pronunciation of text in TTS synthesis is not a solved problem. Much of the
confusion on this point stems from failure to distinguish between the overall pronunciation
component consisting of the dictionary plus back-up strategy and the back-up strategy itself. In
spite of considerable development over many years, traditional rules (when properly assessed
in the absence of the primary dictionary) perform very badly — much worse than pronunciation
by analogy and other data-driven approaches like IB1-IG or even NETtalk — in spite of the
many contrary views expressed in the literature.

It is worth remembering that the data-driven methods examined here require aligned (text-
phoneme) data, whereas the rules do not. Thus, it could be argued that the data-driven methods
are solving a simpler mapping problem, i.e. they have been unfairly “helped”. Damper and
Eastmond (1997, Table 2, p. 17) show that the use of unaligned training data, which then has
to be aligned automatically, produces a reduction in performance from 67·9% words correct
to 64·5%. This deficit could no doubt be reduced by improving the alignment algorithm.

Computer memory is becoming ever cheaper, and larger and better dictionaries are be-
coming available. Accordingly, one might argue that the importance of the back-up strategy
is declining. Although this is undoubtedly true, it does not follow that performance of the
back-up strategy is in any way unimportant. This is because, no matter how large the base
dictionary of a TTS system is, its coverage can never be 100%. This issue is expanded upon in
Appendix A. Figure 2 (generated as described in Appendix A) shows the theoretical coverage
obtained as a function of dictionary size with the dictionary alone and the dictionary plus
two different back-up strategies — one achieving 30% words correct (somewhat above our
figures for rule-based subsystems) and the other achieving 65% words correct (a little below
the performance of PbA). The positive impact that a good back-up strategy has is abundantly
plain. Accordingly, it seems clear that data-driven methods such as PbA should replace rules
in next-generation TTS systems.
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The discrepancy between our measured figure of 25.7% words correct for the Elovitzet al.
(1976) rules and that of 80–90% estimated by the original authors (as well as Bernstein and
Nessly’s (1981) value of 85%) is very considerable and merits some discussion. Although
Elovitz et al. used frequency weighting, and this obviously played a part, Bernstein and
Nessly did not. Hence, we are inclined to think that our stricter scoring is the principal
reason for the discrepancy. Elovitzet al. were motivated by the desire to produce “good”
pronunciations — on the grounds that these would be subjectively acceptable to listeners —
rather than “perfect” ones, such as canonical dictionary entries. The same is true of Bernstein
and Nessly’s evaluation. Clearly then, future work will need also to assess the subjective
acceptability of the pronunciations when used in synthesis, especially in view of Bernstein
and Pisoni’s statement (1980, p. 576) that: “Analysis of the results suggests that accurate
acoustic realization of segmental information is the crucial factor in intelligibility”. This is
an area in which there has been significant and useful research activity (e.g. van Bezooijen &
Pols, 1990; Pols, 1991; van Santen, 1993; Benoˆıt, Grice & Hazan, 1996) to guide us. Indeed,
subjective testing has often been the first-choice assessment strategy but, as argued earlier, we
see its place as supporting the kind of evaluation reported here rather than replacing it.

There are many other priorities and avenues for future work, several of which are al-
ready underway. Although, for the reasons stated, we have a preference for words correct
as an evaluation metric, it is nonetheless important to analyse the errors made by the pro-
nunciation module at a symbol level. Clearly, it may be possible to eliminate whole cate-
gories of symbol error once these are identified. We are also now including stress in the
conversion process and its evaluation. When this work started, the 16 280-wordTeachers’
Word Bookwas a relatively large dictionary. Now, however, something like 70–100 000
words is more typical of a TTS lexicon. Available dictionaries (see the on-line manual
for the University of Edinburgh Festival TTS system at WorldWide Web URL
http://www.cstr.ed.ac.uk/projects/festival.html for further documentation) in-
clude CUVOALD (70 000 words), CMU (∼ 100 000 words), and BEEP (163 000 words).
Current work is using these much larger lexical resources.

Finally, we emphasize that this paper makes no consideration of the ultimate performance
achievable by rules. The general rule formalism is very powerful: it can be Turing-equivalent.
In fact, Post (1943) originally devisedIF. . .THEN production rules specifically as a model
of universal computation. However, in the form in which they are used in computational
phonology, as described in Section 2.1, they are only regular (Johnson, 1972; Kaplanet
al., 1994; Luket al., 1996). Opinions vary on the computational power of feedforward networks
like NETspeak, and this is probably not the place to develop the argument. The point is
that manually-derived rules of the right specific form ought in theory to be capable of any
computable string mapping and so should ultimately be as good as another approach. Our
claim here is thattypicallinguists’ rules as used in TTS systems — even those which have been
the subject of intensive development efforts — are easily outperformed by current data-driven
techniques.

This work was supported by research grant R000235487 “Speech Synthesis by Analogy” from the UK
Economic and Social Research Council.
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Appendix A. Impact of back-up strategy

According to Zipf’s law (Zipf, 1949; Schroeder, 1991, p. 35), for English:

f (r ) ∼ 1

r loge(1·78R)
,

where f (r ) is the frequency with which a word of rankr appears in a text composed of words
selected from a set (“vocabulary”) of sizeR.

We note thatR is something of an abstraction since, for a natural language like English,
the vocabulary size is denumerably (or countably) infinite (Parteeet al., 1993, p. 59). That
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is, the lexical entries can be put in one-to-one correspondence with the natural numbers. A
property of the natural numbers is that, given any finite list in ascending order(1,2,3, . . .),
we can always generate a new number which is the successor of (i.e. one greater than) the last
entry. As a consequence (and simplifying somewhat by ignoring issues of lexicographic order,
phonotactic legality etc.), given any lexicon no matter how large, we can always generate a
new word that is not listed. To quote the accomplished novelist Burgess (1975, pp. 26–27) on
this point:

“A language consists of potentialities. . . we cannot be sure of its content. How many
words are there in English? We cannot say. It is not enough to point to the number of
words of a dictionary, because no dictionary — however large — can pretend to be
complete. . . in my own home, my family uses invented words likeshlerp, focklepoff
andarpworthy. . . just aschortle, brilling andabnihilisebelong to English.”

Suppose we have a lexicon ofL(≤ R) words. The coverage due to the lexicon is then:

CL ∼
∫ L

1

dr

r loge(1·78 R)
× 100%

∼ 100 loge L

loge(1·78 R)
·

Note

(1) As rank is a discrete variable, the integration is here an approximation to discrete
summation over the words of the lexicon. The approximation improves asL increases.

(2) CL only approaches 100% forL = R, but even then never reaches it, reflecting the
scale-invariant nature of the Zipf power law. (In other words, reflecting the fact that the
set of words of a natural language is a countable infinity and cannot be listed.)

(3) For a lexicon of the size typically found in up-to-date TTS systems (e. g. CUVOALD,
L ∼ 70 000 words),CL is estimated at 87·3%, leaving almost 13% of the input to be
pronounced by some means other than dictionary look-up.

Now, if the remaining(1− CL) words are pronounced by the back-up strategy of letter-
to-sound rules, neural networks, analogy etc., and this back-up strategy has accuracyA, then
the total coverage is:

CA = CL + A(1− CL).

Figure 2 shows how the total coverageCA varies with the size of lexiconL, assumingR =
200 000 words, for the three cases ofA = 0·65, A = 0·3 andA = 0 (i.e. dictionary used
alone). For the typical size of lexicon considered above(L ∼ 70 000):

C0 = 87·28%

C0·3 = 91·09%

and

C0·65 = 95·55%.

As only two outcomes are possible for the translation of each word — either the pronunciation
is correct or it is not — the sampling distribution of the word accuracies is binomial. Hence,
we can use a binomial test (Siegel, 1956, pp. 36–42) to determine the significance of the above
differences. Because the number of trials (i.e. word translations) is large, we can use the normal
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TABLE II. Elovitz phoneme symbols and TWB equivalents
Elovitz symbol As in. . . TWB symbol TWB symbol in Elovitz set?
AA father AR N
AE fat AA Y: rewrite AA → AE before AR→ AA
AH but U N
AO lawn AW Y: rewrite AW→ AO before OU→ AW
AW how OU N
AX about A N
AY hide IE N
CH char CH identical
DH either DH identical
EH get E N
ER murder ER N
EY gate Al N
HH how H N
IH hit I N
IY beet EE N
NG sung NG identical
OW lone OA N
OY toy OI N
SH leash SH identical
TH ether TH identical
UH full OO N
UW fool UU N
WH where W (also maps to w)
ZH leisure ZH identical
b back B N
d dime D N
f fault F N
g goat G N
j jar J N
k coat K N
l laugh L N
m more M N
n sun N N
p pack P N
r rate R N
s sue S N
t time T N
v vault V N
w wear W (also maps to WH)
y young Y N
z zoo Z N

approximation to the binomial distribution. The appropriate statistic is (Siegel, 1956, p. 41):

z= (x ± 0·5)− N P√
N P Q

·

Considering the difference betweenC0·3 andC0·65, we useN = 70 000 words,P = 0·9109,
Q = (1− P) = 0·0891 andx = N×0·9555, to obtainz= 41·4. The (one-tailed) probability
that this enormously high value could have been obtained by chance is indistinguishable from
zero; it is too small to be computed in Matlab. (Note that all computation in Matlab is double-
precision). In fact, the critical value for theP = 0·0001 significance level isz= 3·72. Hence,
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TABLE III. Phoneme symbols used by TWB but not by
Elovitz

TWB symbol As in. . . Best Elo. equivalent
O falter AO

EI fairy EHr
EY despite EH
IA here IYr
KH anxious kSH
KS experiment ks
KW quench kw
UL shuttle AXI
UR assure ER
YU ejaculation yUW
GZ exalt gz

an improved back-up strategy is capable of making a very highly significant contribution to
pronunciation performance.

Appendix B. Harmonization details

Note

(1) In principle, the harmonization process consists of mapping the canonical pronuncia-
tions from TWB, which use a phoneme inventory of 52 symbols, into a set of pronun-
ciations using the 41 phoneme symbol set of Elovitzet al.so that the rule outputs can
be scored against the (harmonized) dictionary pronunciations. (But see (4) below.)

(2) The codes are not auto-segmental. For instance, the TWB substring ..OOUU.. could
be OO+UU or part of AO+OU+UH. This is not a real problem, however, because all
phoneme codes are of length two. Segmentation was therefore handled in harmonization
to a common phoneme set by initially inserting phoneme boundary markers (+), at every
second position, which were removed at the end of the process.

(3) In the case where a TWB symbol is not in the Elovitz phoneme set, the order of
conversion is important. In UNIX terminology, it is possible for a TWB symbol rewrite
to clobberanother symbol, making it indistinguishable between the two symbol sets.
The last column of the first table details these cases and specifies the order of rewrites
used to avoid the clobber problem.

(4) The mapping fromW in the TWB alphabet to the Elovitz alphabet is not one-to-one.
It rewrites both to WH and to w. This was handled by reducing the Elovitz alphabet to
40 phonemes (substituting w for WH throughout).


	Introduction
	Description of the techniques
	TABLE I.

	Adequacy of rules
	Comparing automatic-phonemization methods
	Practical comparison
	Results
	Figure 1.
	Figure 2.

	Discussion and future work
	References
	Appendix A. Impact of back-up strategy
	TABLE II.
	TABLE III.

	Appendix B. Harmonization details

