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Abstract. This paper presents work aimed at rendering the dual-step
EM algorithm of Cross and Hancock more efficient. The original algo-
rithm integrates the processes of point-set alignment and correspon-
dence. The consistency of the pattern of correspondence matches on
the Delaunay triangulation of the points is used to gate contributions
to the expected log-likelihood function for point-set alignment parame-
ters. However, in its original form the algorithm uses a dictionary of
structure-preserving mappings to asses the consistency of match. This
proves to be a serious computational bottleneck. In this paper, we show
how graph edit-distance can be used to compute the correspondence pro-
babilities more efficiently. In a sensitivity analysis, we show that the edit
distance method is not only more efficient, it is also more accurate than
the dictionary-based method.

1 Introduction

The matching of point-sets is a problem of central importance in computer vi-
sion, The process is usually abstracted as either alignment or correspondence.
Alignment is concerned with recovering the set of transformation parameters
that bring the points into registration with one-another [10/12]. Correspondence
is a symbolic process which is concerned with consistently labelling the points
[Ml6]. Alignment can be realised using maximum likelihood methods while cor-
respondence is frequently posed as a graph-matching problem.

In the majority of the literature there is a strong dichotomy between the two
approaches. However, in a recent paper Cross and Hancock [I] have observed
that there are important synergies that can be exploited. Specifically, they have
noted that there is a chicken-and-egg problem. Before alignment parameters can
be recovered there need to be correspondences available. Correspondence esti-
mation, on the other hand, needs information concerning alignment. In order to
overcome this problem, they develop a dual-step EM algorithm [25] in which the
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consistency of the pattern of correspondences is used to constrain the estima-
tion of alignment parameters. The methods is proved effective in the matching
of planar point-sets under affine and perspective geometries.

Despite proving effective the method is computationally demanding. The rea-
son for this is that the correspondence probabilities, which weight contributions
to the expected log-likelihood function for alignment parameter estimation are
computed using a time-consuming dictionary-based method. The aim in this pa-
per is to address this deficiency by using a more efficient method for computing
the correspondence probabilities. We turn to the edit-distance model recently
reported by Myers, Wilson and Hancock [11]. The main bottle-neck in the Cross
and Hancock method [1] is the need to model the effects of structural error by
padding the consistent mappings between graphs with dummy nodes. In the edit
distance approach, this is simplified by computing the Levenshtein distance bet-
ween coded strings that represent neighbourhood structure of the graphs being
matched. By adopting the edit-distance method for computing the correspon-
dence probabilities, we not only accelerate the Cross and Hancock method, we
also increase its accuracy. This is attributable to to the fact that the dictionary-
based method is more likely to become trapped in local minima.

2 Preliminaries

One of our goals in this paper is to recover the elements (j)](;?l) which describes
a coordinate system transformation that will best bring a model-image feature
points set z into registration with their counterparts in a data set w. In order to
do this, we represent each point in the model set by an augmented position vec-
tor z; = (4,4, 1)T where 4 is the point index. This augmented vector represents
the two-dimensional point position in a homogeneous coordinate system. We will
assume that all these points lie on a single plane in the image. In the interests
of brevity we will denote the entire set of model points by z = {z;,Vi € M}
where M is the points-index set for the model feature-points z;. The corre-
sponding fiducial points constituting the data-image are similarly represented
by w = {w;,Vj € D} where D denotes the points index-set.

In this paper we are interested in affine transformations. which has six free
parameters. These model the two components of translation of the origin on the
image plane, the overall rotation of the co-ordinate system, the overall scale,
together with the two parameters of shear. These parameters can be combined
succinctly into an augmented matrix that takes the form

(n) (n) (n)
1,1 1,2 1,3

(n) — n n n
o= [ of) o) o) g
0 0 1

With this representation, the affine transformation of co-ordinates is computed
using the following matrix multiplication

zZ(-n) =Mz, (2)
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Clearly, this multiplication gives us a vector of the form zgn) = (z,y,1)7.
The superscript n indicates that the parameters are taken from the n® iteration
of our algorithm.

The basic idea behind the dual step EM algorithm of Cross and Hancock
is to exploit structural constraints to improve the recovery of affine parameters
from sets of feature points. Because of its well documented robustness to noise
and change of viewpoint, we adopt the Delaunay triangulation as our basic
representation of image structure [3]. We establish Delaunay triangulations on
the data and the model, by seeding Voronoi tessellations from the feature-points.

The process of Delaunay triangulation generates relational graphs from the
two sets of point-features. More formally, the point-sets are the nodes of a data
graph Gp = {D, Ep} and a model graph Gy = {M, Ep}. Here Ep CD x D
and Ejpr € M x M are the edge-sets of the data and model graphs. Key to our
matching process is the idea of using the edge-structure of Delaunay graphs to
constrain the correspondence matches between the two point-sets. We represent
the set of correspondences at iteration n by the function f : M — D. In
other words the statement f() (i) = j means that the model-point i is in cor-
respondence with data-point j at iteration n of the matching process. In order
to construct the expected log-likelihood function we will need to compute the
consistency of the arrangement of correspondence matches. We therefore let ¢; ;
denote the probability of the correspondence match f() (i) = j. In [I], Cross
and Hancock observed that the EM algorithm provides a natural framework
for recovering the required correspondences and aligned point co-ordinates. The
method is concerned with finding maximum likelihood solutions to problems po-
sed in terms of missing or hidden data. According to Cross and Hancock, if the
pattern of correspondences f(™ is regarded as missing data, then the task of
maximising complete likelihood function p(®™, f(™)|w,z) can be posed as that
of maximising the expected log-likelihood

Q@ 3y = 3" N7 P(z;|w;, 0) ¢ np(w;, 2@ V). (3)
jeEDieM

Broadly speaking, we can describe the EM algorithm framework as follows. In
the Expectation step the a posteriori probabilities P(z;|w;, &) of the missing
data (i.e. the model-graph measurement vectors, z;) are updated by substituting
the point positions vector into the conditional measurement distribution. In the
Maximization step, by two interleaved substeps the correspondence assignments
f (i) = argmaxjep P(zi|w;, '15(”))@‘(3) are calculated and the updated alig-
nment matrix

—1
w“):[ S Plzifw;, 6™)¢z; B} [ S P(aifw;, 8)( D w, B
(i,5)ef™ (i,5)ef

is estimated (B = UT 2T ¥71, the elements of the matrix U are the partial
derivatives of the affine transformation matrix with respect to the individual
parameters and X is the variance-covariance matrix for the position errors).
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The probabilities Cz(zl) measure the consistency of the pattern of correspon-

dences when the match (™ (1) = j is made and their computation constitutes the
main computational bottleneck. Compared with this, the estimation of transfor-
mation parameters represents a relatively small overhead. Our aim in this paper
is to find an alternative way to compute (; ; in order to speed up the execution
time of the method.

3 The Structural Matching Probabilities

In the original dual-step EM algorithm, the gating probabilities Ci(f;) are compu-
ted using a dictionary of structure-preserving mappings between the nodes of the
model-graph and the nodes of the data-graph. These structures are subgraphs
that consist of neighbourhoods of nodes interconnected by arcs; for convenience
we refer to these structural subunits as supercliques. The superclique of the node
1 being matched in the model graph with arc-set E); is denoted by the set of
nodes C; = iU{l|(4,1) € Ep}. The matched realisation of this superclique under
the mapping function f( is I = {f(™)(1),VI € C;}. Supercliques are illustra-
ted in panel (a) of figure [I, which shows a graph with two of its super-cliques
highlighted.

<1,2,3,4,5,6>—> <a,b,c,d,e, f>
<a,c,d,e, f,b>

<a, f,b,c,d,e>

(a) Super-cliques (b) Mappings

Fig. 1. Supercliques as defined by Wilson and Hancock in [13].

The critical ingredient in developing the matching scheme is the set of feasible
mappings between each superclique of the model-graph and those of the data
graph. The set of feasible mappings, or dictionary, for the superclique Cj, is
denoted by ©; ; = {S;} where S; = jU{l|(j,1) € Ep}. Each element S; of ©; ;, is
therefore a relation formed on the nodes of the data-graph; hence, the dictionary
of feasible mappings for the superclique C; consists of all the consistent relations
that may be elicited from the data-graph. In practice the dictionary is compiled
by considering the cyclic permutations of the non-centre nodes in the superclique
C; about the centre, as shown in panel (b) of figure[[l A complication arises from
the fact that not all supercliques have the same size. In [I3], Wilson and Hancock
addressed this problem by padding the dictionary items with dummy labels so
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that it was the same size of the local configuration. This is essentially a brute
force method, and may significantly add to the complexity of the dictionaries as
we show later.

4 Computing Correspondence Probabilities Using Edit
Distance

Recently Myers, Wilson and Hancock have overcome this problem of dictio-
nary padding by showing how Ci(gi) can be computed more efficiently using edit-
distance [I1]. The Levenshtein or string-edit distance is a measure of the distance
between lists of differing lengths [7l8I9]. This avoids the use of padding alto-
gether, by considering insertions and deletions in addition to changes. In what
follows, we work with a simplified dictionary ©;; which contains only cyclic
permutations and whose size is therefore equal to |C;| — 1.

Suppose that Pr, ¢ is the optimal edit path between the relational image I
and the unpadded dictionary item S. In their recent paper, they have shown

that
C‘ o ZSE@j,j exp [_ (kWW(Plt“S) + kLL(P;“S)>:| (4)
1, T
S sem Ssco,, & | = (kwW (P, ¢) + ki L(PF, 5) ) |
where the contents ky = In (1%52) and k;, = In (1—1Pe) are defined in terms of

an error-probability P..

5 Complexity

As shown by Cross and Hancock in [I] the computation of ¢; ; is based on
the number of dictionary comparisons. For a single step we have that the time
complexity is O(|©; ;| - |S|). Moreover, the length of the structure-preserving
mappings, |S| is linear in the superclique size and will not play a significant role
in the overall complexity. In [IT], Myers, Wilson and Hancock have formalised

that ©; ;] = |Vp|-O (4'01") is an upper bound for the total size of the

max

dictionary in terms of the average data graph superclique size @ when padding
is required. To compute the edit distance between the two strings I; and S we
have adopted the standard algorithm described by Wagner and Fischer in [7].
The complexity for a single comparison is O(|I5|-|S|). Since |I3| = |C;l, |S] = |C}]
and it is sufficient to consider only |C;| — 1 cyclic permutations of C;, the total
size of the dictionary is

©:51 =Y (ICi| = 1) - O(ICilIC5])
j€D

=[Vp|- O (ICilIC5F) (®)

which is polynomial in the size of the supercliques. Moreover, for Delaunay
graphs, the average node degree (and hence the average superclique size) is 6;
using this upper bound we can write
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(19i;

maw)[Paddmg] =0 (46) >0 (63) = (|@i7j|)[Edit] (6)

Hence, although the edit distance calculation is less efficient than a linear
comparison with a padded dictionary, the number of dictionary elements to
compare will be much less than with Wilson and Hancock’s padded dictionary
approach with a considerable reduction of the execution time.

6 Experiments

In this section, we provide experimental evaluation of our coupled matching pro-
cess. This investigation has two distinct strands. We present both an algorithm
sensitivity analysis and an application on real world imagery.

6.1 Sensitivity Analysis

Here we experiment with the edit-distance based dual-step matching scheme
and compare it with its dictionary-based counterpart. Our experiments explore
the sensitivity of the method to structural corruption and affine rotations. The
experiments are based on synthetic graphs generated by randomly distributing
20 nodes in a 200 x 200 pixel window.

Our sensitivity analysis compares the accuracy of the original padded dictio-
nary based approach with the new edit distance-based method. For both algo-
rithms the initial affine alignment matrix was the identity matrix and the initial
correspondences among feature points were all incorrect. To limit the amount of
computation required by the original algorithm, the maximum allowed amount
of dictionary padding was 2 nodes per superclique. In each of the following plots
the red curve indicates the performance of the new edit-distance method, while
the blue curve are the results obtained with for Cross and Hancock’s original
algorithm. In each figure the left hand panel shows the final alignment error as
a function of the average positional deviation and it is expressed in pixels. Sup-
pose that ' C M x D is the set of ground—truth correspondences between the
uncorrupted portion of the data—graph and the model. If n. is the final iteration
number for the matching algorithm, then the measure of registration accuracy

is A = iy S per |24

The right-hand panel shows the final fraction of correct correspondences.

We have subjected the data point-set to two types of error. Firstly, we have
added varying amounts of Gaussian error to the positions of the points. Here
the aim is to simulate the effect of point measurement or localisation error.
The second type of error simulates the effects of a poor feature detection. This
structural error has been generated randomly adding and deleting points in the
data graph and subsequently re-triangulating the point-set.

In Figure [ we show the effect of varying the amount of Gaussian measu-
rement error. In panel (a) the green curve is the initial registration error. The
edit-distance method consistently outperforms the padded dictionary method.
When the initial registration error is small, the padded dictionary can actually
lead to a deterioration in the alignment.

z

)
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100

80
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20

Final average positional deviation

P
Percentage of correctly matched nodes

A (no corr.) B(0-4) C(5-9 D (10-14) E (15-19) 0
. . i A (no corr.) B(0-4) C(59) D (10-14) E (15-19)
Average fraction of positional corruption

Average fraction of positional corruption
(a) Registration accuracy (b) Structural matching results

Fig. 2. Effect of positional Gaussian noise.

Final average positional deviation
Percentage of correctly matched nodes

0 0

A (0%) B (20%) C (40%) D (50%) E (60%) A (0%) B (20%) C (40%) D (50%) E (60%)
Fraction of structural corruption Fraction of structural corruption
(a) Registration accuracy (b) Structural matching results

Fig. 3. Effect of relational disruption in the data graph.

In Figure B we investigate the effect of structural error. Here, both panels
show that the new approach is less sensitive to structural corruption. This is
because the edit distance based mathod tolerates any size difference between
matching supercliques, whereas the performance of the padded dictionary me-
thod rapidly decrease with increasing size difference.

Next we turn our attention to the effects of affine distortion of the point-
sets. Here we measure the effects of rotation and Figure [d we show the obtained
results. Here, we have tested the effectiveness of the two methods by progressively
rotating the data image with the respect of its geometric centre. The operating
limit for the old method has been estimated as £25° while for the edit distance—
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based method it is +35°. Panel (a) again shows that the new method is less
sensitive to noise than the original one.

Final average positional deviation

Percentage of correctly matched nodes

A(0°) B (20°) C(25°) D (30°) E(35°) F (40°) A(0°) B (20°) C(25°) D (30°) E(35°) F (40°)
Angle Angle

(a) Registration accuracy (b) Structural matching results

Fig. 4. Sensitivity to affine rotation.

Taken together, these results would suggest that the edit-distance method
is not only faster than the padded dictionary method, it is also more accurate.
It must be stressed however, that the original method of Cross and Hancock
employs two additional refinements not used here. Firstly, it uses an edit process
to remove poorly matching nodes. Secondly, it anneals the constant P, with
iteration number. This will reduce problems associated with convergence to a
local optimum.

6.2 Real World Imagery

This example demonstrates the effectiveness of the dual-step matching scheme
on real world images. We simulate the task of recognizing planar objects in
different 2D poses, which is posed by two different images of a 3.5-inch floppy
disk.

Panel (a) of Figure Blshows the model image on which we have superimposed
the feature points (corners extracted by hand) and the corresponding Delaunay
triangulation. As we can see from panel (b), in which the data object is repre-
sented, our experimentation involves at the same time two components of affine
transformations: skewing and scaling.

The sequence in Figure[f shows the iterative recovery of the affine geometry.
Here, we illustrate the iterative registration of the model object against the data
image. As in the sensitivity analysis, the initial affine alignment matrix was
the identity matrix and the initial correspondences were all incorrect. The first
panel of Figure [B] shows the initial situation in the registration process. Each
figure in the sequence has been obtained by superimposing the successive model
image transformations on the data image. The last panel shows that the process
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(a) Model Object (b) Data Object

Fig. 5. The two different views used in the matching experiments.

() (d)

Fig. 6. The iterative registration of the model; the steps are ordered from left-to-right
and top-to-bottom.
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converges after few iterations; it is clear that the recovered transformation is
very accurate even if the initial conditions were unfavourable.

7 Conclusions

In this paper we have shown that the use of edit-distance can improve both the
efficiency and accuracy of point-set matching using the Cross and Hancock dual
step EM algorithm. Based on these promising results, we intend to extend our
work by incorporating several refinements reported in the original work of Cross
and Hancock. These include annealing and graph-editing.
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