
Full

A Decision Algorithm
for

Propositional Temporal Logic*

Y. Kesten**, Z. Manna*'**, H. McGuire***, A. Pnueli**

A b s t r a c t
The paper presents an efficient algorithm for checking the satisfiability of a propo-
sitional linear time temporal logic formula, which may have past as well as future
operators. This algorithm can be used to check validity of such formulas over all
models as well as over computations of a finite-state program (model checking).
Unlike previous theoretical presentations of a decision method for checking satisfi-
ability or validity, whose first step is to construct the full set of all possible atoms
of a tableau (satisfaction graph) and immediately pay the worst case exponential
complexity price, tile algorithm presented here builds the tableau incrementally.
This means that the algorithm constructs only those atoms that are reachable from
a possible initial atom, satisfying the formula to be checked.
While incremental tableau construction for the future fragment of linear time tem-
poral logic can be done in a single pass, the presence of past operators requires
multiple passes that successively construct augmented versions of existing atoms,
while still maintaining consistency and teachability.
The proof of correctness of the algorithm is based on showhlg that any model of
the considered formula is embedded as a path in the tableau at all the construction
stages, and can be delineated when the construction terminates.
The paper also describes an implementation of the algorithm with further attention
to efficiency. This implementation is available as a support system for the book [8]
under the name "temporal prover". It has been used to verify all the propositional
temporal formulas and to model-check all the finite-state programs appearing in
the book.

Keywords : temporal logic, satisfiability checking, validity checking, model check-
ing, past and future operators, incremental tableau, automatic verification.

1 Introduct ion

We consider the ful l language of linear t ime temporal logic, as defined by Kamp [5].
This language includes opera tors that symmetr ica l ly allow references to the fultzre

* This research was supported in part by the National Science Foundation under grant
CCR-89-11512, by the Defense Advanced Research Projects Agency under contract
NAG2-703, by the United States Air Force Office of Scientific Research under contract
F49620-93-1-0139, by the European Community ESPRIT Basic Research Action Projects
SPEC (3096) and REACT (6021), and by the France-Israel project for cooperation in
Computer Science.

** Department of Computer Science, The Weizmann Institute of Science, Rehovot 76100,
Israel. E-mail: yonit@wisdo,,, weizzarm, ac. il

~'* Department of Computer Science, Stanford University, Stanford, CA 94305.
E-mail: marma@cs . s t an fo rd . edu

98

and past of any time instant. Temporal logic has been used successfully for specifying
properties of reactive systems, including concurrent programs and hardware circuits.

One of the important advantages of temporal logic is that its propositional version
(PTL), while being expressive enough to specify interesting properties of programs,
circuits, and communication protocols, is decidable. This has been exploited exten-
sively for automatic verification of such systems. All of these applications used only
the future fragment of the temporal language.

The heart of many of these decision methods is an algorithm for checking the
satisfiability of a given temporal formula ~. This algorithm is based on tableau
construction. While the name temporal tableau is commonly used in the description
of these algorithms, there are in fact two types of temporal tableaux, to which we
may refer as declarative and incremental tableaux, respectively. In both cases, the
algorithm constructs a graph (tableau) G, whose nodes (atoms) are labeled by sets
of formulas derived from ~, such that every model of ~ is represented as an infinite
path in G. The difference between the two constructions is that all possible atoms
are present in declarative tableaux, while only atoms reachable from initial atoms
are present in incremental tableaux. Declarative tableaux are clearer and easier to
understand and analyze. They are used to prove properties of the logic, such as upper
bounds on the complexity of decision procedures [2], [11]. Incremental tableaux, on
the other hand, are more efficient, and are obviously better for implementation [1],
[10], [9].

The reason for this difference in efficiency is that the declarative construction
starts by constructing all possible atoms, immediately real;zing the worst case com-
plexity which, as shown in [11], is exponential. The incremental construction, on the
other hand, proceeds more conservatively, constructing only reachable atoms. As a
result, in most cases, a much smaller number of atoms is ever explored.

This paper presents an implementation of an algorithm for deciding the satis-
fiability of a propositional linear time temporal formula in the full language that
includes both past and future operators, using incremental tableaux.

For comparison, the decision procedure described in [7] is based on declarative
tableaux and is, therefore, unsuitable for implementation. The algorithms described
in [i0] and [9] are incremental but are restricted to the future fragment of the
language.

Other previous implementations of a decision procedure for the full language are
presented in [4] and [3], but very little algorithmic detail is provided.

One can clearly use any satisfiability checking algorithm to check validity over
all models, since a formula ~ is valid iff -~9 is unsatisfiable. As shown in [6] and
[11], a satisfiability (validity) checking algorithm for linear time temporal logic can
be used to check validity of a formula ~ over all computations of a given finite-state
program P (model checking). This can be done either by checking the validity of
the formula S e m p --~ ~P, where Setup is a formula characterizing the computations
of program P, or by forming a cartesian product of the program's transition graph
with the tableau constructed by the satisfiability checking algorithm applied to ~P.

The implementation reported here has been used to verify all the propositional
formulas appearing in the book [8] and to model-check all the finite-state programs
appearing there. The implementation is available to readers of the book as a support
tool.

99

Section 2 presents a high-level, simplified description of the algorithm. Section 3
provides a proof of correctness for the simplified algorithm. Section 4 provides addi-
tional details about our implementation, which is derived from the implementation
reported in [12]. The section lists several points in which the implementation im-
proves upon the simplified description of the algorithm by being more general and
more efficient than the simplified algorithm. Section 5 presents an improved version
of the basic algorithm which uses additional data structures removing some redun-
dant and unnecessary construction steps. Section 6 summarizes the work, with a
short discussion.

2 A n I n c r e m e n t a l T a b l e a u A l g o r i t h m f o r P T L f o r m u l a s

In this section, we present a simplified description of an algorithm for checking the
satisfiability of a temporal formula ~.

2.1 T h e Language P T L

"In what follows, we refer to the PTL language, with syntax and semantics as defined
in [S].

For a simpler presentation of the algorithm, we consider only the following op-
erators;

- Boolean operators: -~ , A.
- Temporal operators: 0 - Next, H - Until, (~) - Previous, S - Since.

It is well known that all the other boolean and temporal operators, such as V, ~ ,
and I-1, can be defined in terms of these basic ones. As described in Section 4, the
implementation accepts formulas using the full complement of boolean and temporal
operators.

We also use the formula true, which is always true, and the notations false and
first as abbreviations for --,true and -~ (~ true, respectively. We further identify -,-,p
with p and reduce double negations whenever they arise.

Basic a nd Nonbas ic fo rmulas A formula is called basic if it has one of the fol-
lowing forms:

Proposition, true, 0 P, G P,

or the negation of any of these forms. Otherwise, it is called nonbasic,
Every nonbasic formula has one or two preconditions, which are sets of formulas,

according to the following table:

Formul a
pAq
pHq
pSq

-,(p ^ q)
--,(pllq)
-~(pSq)

pre 1
{P, q}

{q}
{q}

{-,p}
{-,q, -,,}
{-"q, ~V}

pre 2

{p, O(pliq)}
(p, (~(pSq)}

{-,q}
{-q, O(pUq)}
{--,q,---, (~(p,.q q) }

100

!learly, a nonbasic formula ~ holds at a t ime-instant t if and only if all the formulas
.~ at least one of its pre.conditions pre i hold at t.

2 .2 A t o m s a n d C o v e r a g e

Let ~o be a formula whose sat isf iabi l i ty we wish to check.

D e f i n i t i o n : The closure of ~, CL(~), is the smallest set of formulas containing
and satisfying:

- first E CL(~).
- p e C L (~) i f f "~p E CL(~) .
- If O P e CL(~) or (~)p e CL(~), then p e CL(~~
- If a nonbasic formula p E CL(~), then all the formulas appear ing in the precon-

dit ions of p are in CL(~).

The closure of ~o can be par t i t ioned into CL(~o) = CL+(~)U CL-(~), where CL-(~o)
is the set of all formulas in CL(~) of the form "-,p, and CL+(~) is the set of all other
formulas in CL(~). It can be shown that]CL-(~o)] = ICL+(~)] < 1.5.]~l + 2 , where
]~] is the size of the formula ~.

D e f i n i t i o n : A ~-atom is a set of formulas A C CL(~) satisfying:

- false • A.
- I f - ~ p E A t h e n p ~ A .
- If f i r s / E A then (~)p ~ A for any p.
- If p E CL(~) is a nonbasic formula, then p E A iff pre i C A, for one of the

precondit ions of p.

I t is possible to establish 3 ICL+(~~ _~ 31"5"1~1+2 as an upper bound on the number
of ~ - a t o m s :

D e f i n i t i o n : An a tom A is said to generalize atom B, denoted A _E B, if:

- A C B .
- For every formulapUq E CL(~), ifpHq E A (hence also pHq E B) and q E B,

then also q E A. Thus, if B manages to satisfy pHq by sat isfying q, so should A.

Note that , while B has more formulas than A, it is more specific, in the sense tha t
it commits itself to more formulas being true than A. Thus, A covers more cases
than B does. Atom A is a slrict generalization of B, denoted A E B, if A C B and
A # B (implying A C B).

D e f i ~ i t i o n : A set { A ~ , . . . , Ak} of ~O-atoms is said to be a (complete) cover of a set
of formulas S C CL(~) if:

- Each Ai , for i = 1 , . . . , k , contains S; i.e:, S C At.

4 A better upper bound of 31~1+2 can be obtained if we restrict ourselves to irreducible
atoms. A formula in CL(~) is called extraneous if it is neither first nor a subformula of
~. An atom A is called irreducible if there does not exist an extraneous formula p E A
such that A - {p} is also an atom. It can be shown that the algorithm works correctly,
constructing a somewhat smaller tableau, if only irreducible atoms are used.

101

- Every atom B containing S is generalized by some At, i = 1 , k.

There are many ways to compute a complete cover for a given set of formulas S C
CL(~O). Section 4 describes one such algorithm, with attention to efficiency. Here,
we assume only that we have one such an Mgorithm, and denote the complete cover
for S by Cover(S). Implementations usually at tempt to construct a minimal cover,
which is a cover such that Ai [Z Aj for all i and j .

The following property follows from the definition of a cover.

P r o p e r t y 2.1 (M o n o t o n i e i t y) Given two sets of formulas $I C_ S~ C_ CL(~O),
then each B2 6 Cover(S2) is generalized by some B1 6 Cover(S1), i.e., B1 E B2.

2.3 T h e T a b l e a u A l g o r i t h m

Def in i t ions :
A set of formulas S is called locally consistent if it satisfies the first three require-

ments of an atom. That is, it does not contain the formula false, it does not contain
two formulas of the form p and -~p, and it does not contain a formula of the form
(~)p together with the formula first.

An atom is called initial if it contains the formula first.
For a set of formulas S, we define the following sets of formulas:

- Next(S) = {Vl S} u { VI- OVe S}.
- = {p I | P e S} U I | P e S}.
- Basic(S) is the set of basic formulas among S.

For two atoms A and B, we say that the pair (A,B) is neighborly consistent if
Next(A) C B and Prey(B) C_ A.

The algorithm constructs and manipulates a graph structure G consisting of
vertices which are ~O-atoms, and directed edges connecting them. We denote the set
of vertices by F, and the set of edges by g. In addition, we maintain a set ~ Of
removed edges. These are edges that have been once in ,~ but have been removed
from the graph, and their inclusion in ~c is intended to ensure that they will not be
recreated. We denote the union ,~ U ~ by s

An edge connecting atom A to atom B indicates that B is a possible temporM
successor of A. We refer to such an edge as either (A, B), (A, B)l,,t or (B, A)past.
An edge (A, B) may be marked as future-satisfactory, if Next(A) C B, and past-
satisfactory, if Prey(B) C_ A. If an edge (A, B) is satisfactory in both directions (the
pair (A, B) is neighborly consistent), it is said to be satisfactory.

The algorithm comprises two construction phases:

- Phase I:
Given a formula ~, we construct an initial graph G : (]), g, ~), in which the set of
vertices V comprises a set of initial (root) atoms, each containing the formulas ~o
and first, and a generic future atom F containing no formulas. The set of edges

comprises edges drawn from each element of "g to F. The set of forbidden
edges ~c is initially empty.

102

Phase Ih
As long as some edge (A, B) in the graph is unsatisfactory in some direction, we
consider a new atom that augments either A or B (according to the direction in
which the edge is unsatisfactory) by additional formulas that are necessary to
make this direction satisfactory. This atom may already exist in the graph or,
if not, will be added to the graph. The unsatisfactory edge will be replaced by
a new edge connecting to this new atom, and some additional connections may
be duplicated. The unsatisfactory edge is moved to L'.
This process continues until Ml edges in s are satisfactory in both directions.

Phase I of the algorithm is presented in procedure construct-initial, and phase II, in
correct-graph.

construct-initial(~)
F := {} /* F is the generic future atom */
v := {F}
s := {(F, F)} /* draw an edge from F to itself */

:= {} / , s is initially empty , /
for each atom A E Cover({~,firsl}) do

add A to l; / , create a new vertex for each initial atom , /
add edge {A, F) to E / , draw an edge from A to the generic future */

end construct-init ial

c o r r e c t - g r a p h
for each unsatisfactory edge (A, B)a E s do

ifd = future then A := Cover(Ne~t(A) U B)
else ,4 := Cover(Prey(A) U B)

for each atom B t E .A do
add B I to V
add-edge((A, B')d)
for each edge (B, Y)~ E s do

add-edge((B', Y)d)
move edge (A, B)d from s to

end co r r ec t -g raph .

Upon detecting an unsatisfactory edge (A, B)a, the algorithm considers an aug-
mentation of the formulas in B by the formulas that A requires for neighborly
consistency, and generates in ,4 a set of atoms that forms a complete cover of the
augmentation. Then, there is a loop which adds to V each atom B' E A that is not
already there. For each edge departing from atom B to some atom Y in direction d,
we construct a duplicate edge, connecting B' to Y. This ensures that any previous
path segment, traversing A, B, and Y in direction d, is now available as the segment
A, B I, Y.

add-edge((X, Y)d)
if edge (X, Y)d ~ s

103

add (X, V)d to •]
for each edge (Y, Z)d e ~r do]

move (Y, Z)d from ~e to E [
for each edge (W, X)d e ~_ do [

move (W,X}d from g to g J
end add-edge

The procedure add-edge constructs an edge from X to Y in direction d, provided
it is not already there (not in C) and has not been constructed before and deleted
(as would be evident by belonging to ~e). The newly constructed edge is registered
in g. Also, since there is a new connection between X and Y, we move from E back
to E (reinstate) all the edges entering X and departing from Y in direction d. This
is so that the next time these edges will be considered, and surely removed again
because they still connect neighborly inconsistent atoms, the newly added edge from
X to Y will also be duplicated to the replacement of X or the replacement of Y.

The entire algorithm:

satisfy(~)
conslruct-initial(~o)
co rrecl-graph
strongly-connected-components-analysis

end satisfy.

The procedure slrongly-connected-components-analysis analyzes the graph by de-
composing it into maximal strongly connected components and identifying those
which are self-fulfilling [6]. A strongly connected component C is called self-fulfilling
if every atom A E C has at least one successor, and for every formula pUq E A,
there exists an atom B E C such that q E B.

If the procedure finds a self-fulfilling component which is reachable from an initial
atom (an atom containing firsi and ~o), the procedure reports success, claiming that

is satisfiable. Otherwise, it reports failure, claiming that ~ is unsatisfiable (~ is
valid).

3 P r o o f o f c o r r e c t n e s s f o r t h e T a b l e a u A l g o r i t h m

In this extended abstract we omit all proofs. They are provided in the fuller version
of this paper.

We fix our attention on a formula T whose satisfiability we wish to check. The
first proposition states that the algorithm always terminates.

P ropos i t i on 1 Termina t ion . Algorithm satisfy terminates.

The proof of termination is based on the following points: there are only finitely
many possible atoms, so the set of possible new edges is bounded; only new edges
cause later processing; and the processing for each edge is bounded.

The main theorem of this paper is Theorem 9 stating that the Mgorithm succeeds
iff formula ~ is satisfiable. One direction of the proof, showing that if the algorithm

104

succeeds then ~ is satisfiable, is rather straightforward. The algori thm reports success
only if there exists a self-flflfilling strongly connected subgraph C reachable from some
initial a tom I. It can be shown that the path start ing at I , proceeding to C, and then
repeatedly following a closed path tha t traverses all vertices in C, yields a model for

In the other direction, we have to show that if there exists a model cr for 9 ~, then
the algori thm is guaranteed to find at least one self-fulfilling subgraph C reachable
from some initial a tom. This proof is based on the notion of embedding, showing
that the model a induces an infinite sequence of atoms (called a fulfilling pre-model
in the proof below) which can be traced as a path within the tableau at all stages
of its construction.

D e f i n i t i o n s :

- We write (A, B) ff (A ~, B') as abbreviation for the two generalizations A E A'
and B ff B I.

- A pre-model (for ~) is an infinite sequence of ~O-atoms 7r : A1, A 2 , . . . , such that:
�9 {~ , f i rs t} C_ A1
�9 For every i >__ 1, first ~ At+l, and the pair (Ai, Ai+l) is neighborly consistent.

- A fulfilling pre-model (for ~o) is a pre-model for ~, ~r : A1,A2, . . . , such tha t for
every i > 1, i fpNq E At, then there is a j >_ i such that q E Aj.

T h e o r e m 2. The formula ~ is satisfiable iff there is a fulfilling pre,model satisfying

The proof of this theorem follows the lines of Proposition 1 of [7].

The application of the algori thm of the preceding section constructs a sequence of
graphs, G~ : Go,G1, . . . , where each Gi consists of the components (Vi,gi,gl), for
i = 0, 1 , The graph Go is the one obtained at the conclusion of procedure
construct-initial. The graphs G1, G 2 , . . . , are the ones observed at the end of each
iteration of the main loop within procedure correct-graph.

D e f i n i t i o n s :

- Let r : A1,A2, . . . , be a pre-model. A generalizalion of~r is an infinite sequence
of a toms F : B1,B2, . . . , such tha t Bi generalizes Ai, i.e., Bi U At, for all i > 1.
We write F E r .

- A paih in Gi : (Vi, gi, gi), is a (possibly infinite) sequence of a toms ~ : B1, B2, . . . ,
where Bk E 1;i for all k >__ 1 and, for each pa i r of consecutive a toms Bk and Bk+l
in or, there is an edge (Bk, Bk+l) E ~r U ~i.

- A path cr in Gi is called a good path, if for each pair of consecutive a toms Bk
and Bk+a in a, the edge (Bk, Bk+l) belongs to s (rather than to L'i).

- A prefix of a : B1, B 2 , . . . is a finite sequence of a toms B1, B 2 , . . . , Bj , for some
j > 1, and is denoted by a[1..j].
The infinite subsequenee Bj, Bj+I is a suffix of a and is denoted by a[j..].

- Let a : A n , . . . , A k be a finite path, and o a : B 1 , . . . a possibly infinite path. We
denote the concatenation of ~r and a ~ by a; a ' = A n , . . . , Ak, B1,

P r o p o s i t i o n 3 . Let 7r be a pre-model. For every Gi E ~ , there is a path ~ in Gi
which generalizes ~r.

105

Propos i t ion4 . Let Gi : (Vi,s be a graph in ~o. Let (X , Y) E g~. Then, one
of the following two cases holds:

(a) (X, Y) is not past-satisfactory and, for each atom X ' E Cover(X U Prey(Y)) ,
- X' E Vi and (X', Y) E S + is past-satisfactory.
- For every atom O e V~ such that (O, x) e e~, <O, x') ~ C .

(b) {X, Y) is not future-satisfactory and, for each atom Y' E Gover(Y U Nex t (X)) ,
- Y' E)21 and {X, Y') E g+ is future-satisfactory.
- For every atom Q E Vi such that (Y, Q) E s (Y', Q) E s

Defini t ion: We say that the pair of atoms (A', B') clones the pair (A, B) in Gi i f

- (A, B) _ (A', B').
Z For every X E])i, if (X, A) E E/+ then (X, A') E g+.
- For every Y E r l , if (B, Y) E s then (B', Y) E s

Propos i t ionS. Let rr : A1,A~ be a pre-modeL For some Gi E Ca~o, let the edge
(Bj ,Bj+I) e ~i be such that (Bj ,Bj+I) E_ (Aj,Aj+I). Then, there exists an edge
(B;, S~+,) e C , such that (B~, B}+,) clones (B~, Bj+~) in V, and

(sj,Bi+l) c (Bj,B;+O E_ (A~,Ai+I)

The following proposition improves on Proposition 5 by claiming the existence
of a cloning edge, as above, but one that belongs to St, rather than to ~+.

P ropos i t ion6 . Let r : A1,A~,.~. be a pre.modeL For some Gi E CJ~o, let the edge
(Bj ,Bj+I) e ~i be such that (Bj ,Bj+I) E (Aj ,Aj+I) . Then, there exists an edge
(BJ, B~+,) e s such that (B~, B~+,) clones (Bj, Bj+,) in lli and

(Bj ,Bj+I) ff (Bj,Bs+a) if_ (Aj ,Aj+t) .

Propos i t ion 7. For every pre-model ~r and every Gi E ~o, there is a good path cr 9
in Gi such that ~r 9 generalizes ~r.

The following corollary specializes the preceding claim to the graph Goo obtained
at the termination of procedure correct-graph.

Corol lary 8. For every fulfilling pre-model lr, there exists a good path crg in Goo
such that crg is a fulfilling pre-model generalizing rr.

The o r e m 9. The algorithm reports success iff ~ is satisfiable.

Proof: First assume that tP is satisfiable. Then, from Theorem 2 and Corollary 8,
there exists a good path ag : Ba, . . . in Goo, such that crg is a fulfilling pre-model
for ~o. Since a pre-model is infinite and Goo is a finite graph, there exists a strongly-
connected-component C in Gor reachable from B1, such that all atoms appearing
infinitely many times in ~rg are in C. Moreover, since a# is self-fulfilling, C is self
fulfilling.

In the other direction, assume that the algorithm reports success. Namely, the
algorithm finds a self-flflfilling, strongly-connected-component C, reachable from an
initial atom B1. Let Ba , . . . , B~ be a path in Go~, such that Bk is contained in C.
Then, any infinite path B~, . . . , Bk, . . . is a fulfilling pre-model for ~. From Theo-
rem 2, tO is satisfiable.

106

4 I m p l e m e n t a t i o n a n d I m p r o v e m e n t s

In this section, we consider several aspects in which the implementation improves
on the simplified description of the algorithm, as presented in Section 2, by being
more general and more efficient.

A M o r e Ge ne r a l Language The implementation accepts a much richer temporal
language than the one described in Section 2. It recognizes the boolean operators:

-% V, A, --% ~---*,

and the temporal operators:

O , 0 , ~ , H, W(waiting-for), G , [] , ~ , S, B(back-to).

The additional operators are not translated into primitive ones; they are han-
dled directly. Avoiding translation conserves formulas' sizes and keeps the imple-
mentation's outputs reasonably understandable. The notions of basic and nonbasic
formulas extend to the richer language in an obvious way.

I n c r e m e n t a l Cover Consider the situation in procedure correct.graph in which the
edge (A, B).f,~t,,,-e is found to be unsatisfactory (in direction .future), and we construct
in A a cover of the set of formulas NezL(A) U B. As seen from Proposition 5 (and
Proposition 6), the ~situatJo~ is that we have some atom Y, belonging to the pre-
model ~r (called in these propositions Aj+I, while B is called Bj+I), such that B E_ Y ,
and we are interested only in atoms B' such that B D B' _ Y. Consequently, i t is
sufficient to construct the incremental cover of B and Next(A).
Defini t ion: A set {A~,. . . , Ak} of ~-atoms is said to be an incremental cover of an
atom B and a set of formulas S C CL(~) if:

- Each Ai, for i = 1 , . . . ,k , contains B U S .
- Every atom Y generalized by B and containing S is generalized by some Ai,

i = 1 , . . . , k ; i . e . , B D A i D Y .

The following recursive procedure is used in the implementation to calculate the
incremental cover of B and S.

incremental-cover(base: atom, increment: set of formulas) :set of sets of formulas
new := increment - base
if new = {} then return base
Let p := longest formula in new
if p is basic then

A := incremental-cover(base, new - {p})
Otherwise, if p is nonbasic with preconditions pre l , . . . , pre k, then

k

.A := U incrementabcover(base, (new u prei) - {p})
i = l

:= {x u {p} IX e .4}
:= {X E B IX is locally consistent}

return 79
e n d cons t ruc t - in i t i a l

107

Addi t iona l I m p r o v e m e n t s Other improvements are:

- Unsatisfactory edges are truly deleted - - not saved anywhere - - except in certain
circumstances.

- Atoms that lose all their edges in either direction (except the past, for initial
atoms) are deleted.

It has been proven that correctness is maintained even with each of these changes
of the basic algorithm.

5 I m p r o v e d A l g o r i t h m

The basic algorithm described in the section 2 is sound and complete, yet contains
some inefficiencies, for the following reasons:

- Non se lec t ive i n h e r i t a n c e of edges: When an unsatisfactory edge (X, Y)~
is corrected (in direction d), for every Y' e Cover(Y U f(X)), where f E
{Prev, Next}, it is ensured that Y~ E 121+1, and for every atom Q E l)i such
that (Y, Q)d e Si +, it is ensured that {Y', Q)d e s We say that the edge
(Y, Q)a is d-inherited by the new atom Y'. Y' will inherit all (Y, Q)~ edges, from
both ,~i and L'i. This non selective inheritance is redundant, creating redundant
atoms and edges.

- R e i n s t a t e m e n t of r e m o v e d edges: An unsatisfactory edge in C, is corrected
and moved from g to ~e. The same edge may me moved back to g at a later
stage. We say that this edge has been reinstated, l~einstated edges, can not be
distinguished from unsatisfactory edges in ~ which have never been corrected.
Their correction involves all correction activities, most of which are redundant
when performed for the second (or more) time.

Since both inheritance and reinstatement of edges are propagated through the graph,
both redundancies are multiplied.

The Improved algorithm corrects both of these deficiencies. Two corrections are
introduced:

- Clone Lists: For every atom A E S+, we maintain two clone lists, denoted
future-clones(A) and past-clones(A). These lists are constructed incrementaly
as follows. Whenever a new atom B is created, both d-clones(B) are initialized
to empty-lists. Whenever an edge (A, B)a is corrected in direction d, all atoms
B' e Cover(B U f(A)) are added to d-clones(B).

- Se lec t ive Inhe r i t ance : Let /A, B)a E S be an unsatisfactory edge currently
being corrected in direction d. Then, for every edge e = (B, O)d E s and every
B' E Cover(A U y(B)), e is inherited by B' only if e is d-satisfactory. Namely,
only d-satisfactory edges will be d-inherited. An edge which is unsatisfactory in
both directions, will be inherited prior to being corrected, but only by one of
the possible d-inheritance. Whenever a d-satisfactory edge (A, B) is being con-
structed, it is d-inherited recursively, starting with the atoms in the appropriate
clone list of either A or B.

108

The clone lists, together with recursive propagation of newly created d-satisfactory
edges, avoids the need for reinstatement of edges. An edge that has been removed
from s will never be moved back to g.
The improved algorithm:

cor rec t -graph
for each unsatisfactory edge (A, B)d E g do

ifd = future then A := Cover(Nexl(A) U B)
else ,4 := Cover(Prey(A) U B)

d ~ = inverse(d)
if (A, B)~ is dl-unsatisfactory

for each clone-at0m B ~ E d'-clones(B) do
add-edge((A,S')a)

for each B ~ E ,4 do
I add B t to 12

add B I to d-clones(B)
add-edge((A, B')a)
for each (B, Y)a E g do

if (B, Y)d is d-satisfactory
add.edge((B', Y)d)

move edge (A, B)a from g to ~e

end correct-graplt .

add-edge((X,Y)d)
d' = inverse(d)
if edge (X, Y)a ~ g+

"add edge {X,Y)d to g
if (X, Y)d is d-satisfactory

for each X' G d-clones(X) do
add-edge((Z',Y)a)

if (X, Y)a is d~-satisfactory
for each Y' E if.clones(Y) do

add-edge((Y',X)a,)
end add-edge

The first phase of the algorithm, construct-inilial remains unchanged. The proof of
correctness of the algorithm proceeds along lines similar to the proof presented in
section 3

6 D i s c u s s i o n

The paper described an algorithm for checking the satisfiability of a PTL formula
that includes past and future operators, The algorithm is based on incremental
tableau construction and is expected to perform better on the average than previ-
ously available algorithms for this problem.

As explained above, the algorithm can be used for checking general validity as
well as for model checking of a temporal formula over a fini.te-state program.

109

At present, we are investigating the possibility of incorporating this algorithm as
a component in a general deductive system for first-order temporal logic.

Possible generalizations that are currently being investigated consider classes of
temporal logics with variables and equality that may still be decidable.

R e f e r e n c e s

1. M. Ben-Ari, Z. Manna, and A. PnuelL The temporal logic of branching time. Acta
lnformatica, 20:207-226, 1983.

2. M.J. Fischer and R.E. Ladner. Propositionaldynamic logic of regular programs. J.
Comp. Sys. Sci., 18:194-211, 1979.

3. G. D. Gough and H. Barfinger. A semantic driven temporal verification. In Proceedings
of ESOP'88, 1988.

4. G. D. Gough. Decision procedures for temporal logic, Master's thesis, University of
Manchester, England, 1984.

5. J.A.W. Kamp. Tense Logic and the Theory of Order. PhD thesis, UCLA, 1968.
6..O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs s~ttisfy

their linear specification. In Proc. l~th ACM Syrup. Princ. of Prog. Lang., pages 97-
107, 1985.

7. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proe. Conf. Logics
of Programs, volume 19.3 of Lect. Notes in Comp. Sci., pages 196-218. Springer-Verlag,
1985.

8. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

9. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic
specifications. ACM Trans. Prog. Lang. Sys., 6:68-93, 1984.

10. A. Pnueli and R. Sherman. Semantic tableau for temporal logic. Technical Report
CS81 - 21, The Weizmann Institute, 1981.

11. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic. J.
ACM, 32:733-749, 1985.

12. R. Sherman and A. Pnueli. Model checking for linear temporal logic: An efficient im-
plementation. Technical report, Information Science Institute, USC, 1989.

