A Decision Algorithm
for
Full Propositional Temporal Logic*

Y. Kesten™ |, Z. Manna™* , H. McGuire®™™*, A. Pnueli**

Abstract

The paper presents an efficient algorithm for checking the satisfiability of a propo-
sitional linear time temporal logic formula, which may have past as well as future
operators. This algorithm can be used to check validity of such formulas over all
models as well as over computations of a finite-state program (model checking).
Unlike previous theoretical presentations of a decision method for checking satisfi-
ability or validity, whose first step is to construct the full set of all possible atoms
of a tableau (satisfaction graph) and immediately pay the worst case exponential
complexity price, the algorithm presented here builds the tableau incrementally.
This means that the algorithm constructs only those atoms that are reachable from
a possible initial atom, satisfying the formula to be checked.

While incremental tablean construction for the future fragment of linear time tem-
poral logic can be done in a single pass, the presence of past operators requires
multiple passes that successively construct augmented versions of existing atoms,
while still maintaining consistency and reachability.

The proof of correctness of the algorithm is based on showing that any model of
the considered formula is embedded as a path in the tableau at all the construction
stages, and can be delineated when the construction terminates.

The paper also describes an implementation of the algorithm with further attention
to efficiency. This implementation is available as a support system for the book [8]
under the name “temporal prover”. It has been used to verify all the propositional
temporal formulas and to model-check all the finite-state programs appearing in
the book.

Keywords: temparal logic, satisfiability checking, validity checking, model check-
ing, past and future operators, incremental tableau, automatic verification.

1 Introduction

We consider the full language of linear time temporal logic, as defined by Kamp [5].
This language includes operators that symmetrically allow references to the futdre

* This research was supported in part by the National Science Foundation under grant
CCR-89-11512, by the Defense Advanced Research Projects Agency under contract
NAG2-703, by the United States Air Force Office of Scientific Research under contract
F49620-93-1-0139, by the European Community ESPRIT Basic Research Action Projects
SPEC (3096) and REACT (6021), and by the France-Israel project for cooperation in
Computer Science.

** Department of Computer Science, The Weizmann Institute of Science, Rehovot 76100,
Israel. E-mail: yonit@wisdom.weizmann.ac.il

*** Department of Computer Science, Stanford University, Stanford, CA 94305.
E-mail: manna@cs.stanford. edu :

98

and past of any time instant. Temporal logic has been used successfully for specifying
properties of reactive systems, including concurrent programs and hardware circuits.

One of the important advantages of temporal logic is that its propositional version
(PTL), while being expressive enough to specify interesting properties of programs,
circuits, and communication protocols, is decidable. This has been exploited exten-
sively for automatic verification of such systems. All of these applications used only
the future fragment of the temporal language.

The heart of many of these decision methods is an algorithm for checking the
satisfiability of a given temporal formula ¥. This algorithm is based on fableau
construction. While the name temporal tableau is commonly used in the description
of these algorithms, there are in fact two types of temporal tableaux, to which we
may refer as declarative and incremental tableaux, respectively. In both cases, the
algorithm constructs a graph ({ableau) G, whose nodes (atoms) are labeled by sets
of formulas derived from ¥, such that every model of ¥ is represented as an infinite
path in G. The difference between the two constructions is that all possible atoms
are present in declarative tableaux, while only atoms reachable from initial atoms
are present in incremental tableaux. Declarative tableaux are clearer and easier to
understand and analyze. They are used to prove properties of the logic, such as upper
bounds on the complexity of decision procedures {2], [11]. Incremental tableaux, on
the other hand, are more efficient, and are obviously better for implementation [1],
[10], [9]-

The reason for this difference in efficiency is that the declarative construction
starts by constructing all possible atoms, immediately realizing the worst case com-
plexity which, as shown in [11], is exponential. The incremental construction, on the
other hand, proceeds more conservatively, constructing only reachable atoms. As a
result, in most cases, a much smaller number of atoms is ever explored.

This paper presents an implementation of an algorithm for deciding the satis-
fiability of a propositional linear time temporal formula in the full language that
includes both past and future operators, using incremental tableaux.

, For comparison, the decision procedure described in {7] is based on declarative

tableaux and is, therefore, unsuitable for implementation. The algorithms described
in {10} and [9] are incremental but are restricted to the future fragment of the
language.

Other previous implementations of a decision procedure for the full language are
presented in [4] and [3], but very little algorithmic detail is provided.

One can clearly use any satisfiability checking algorithm to check validity over
all models, since a formula ¥ is valid iff =% is unsatisfiable. As shown in [6] and
[11], a satisfiability (validity) checking algorithm for linear time temporal logic can
be used to check validity of a formula ¥ over all computations of a given finite-state
program P {model checking). This can be done either by checking the validity of
the formula Semp — ¥, where Semp is a formula characterizing the computations
of program P, or by forming a cartesian product of the program’s transition graph
with the tableau constructed by the satisfiability checking algorithm applied to -¢.

The implementation reported here has been used to verify all the propositional
formulas appearing in the book [8] and to model-check all the finite-state programs
appearing there. The implementation is available to readers of the book as a support
tool.

29

Section 2 presents a high-level, simplified description of the algorithm. Section 3
provides a proof of correctness for the simplified algorithm. Section 4 provides addi-
tional details about our implementation, which is derived from the implementation
reported in [12). The section lists several points in which the implementation im-
proves upon the simplified description of the algorithm by being more general and
more efficient than the simplified algorithm. Section 5 presents an improved version
of the basic algorithm which uses additional data structures removing some redun-
dant and unnecessary construction steps. Section 6 summarizes the work, with a
short discussion.

2 An Incremental Tableau Algorithm for PTL formulas

In this section, we present a simplified description of an algonthm for checking the
satisfiability of a temporal formula ¥.

2.1 The Language PTL

*In what follows, we refer to the PTL language, with syntax and semantics as defined
in [8].

For a simpler presentation of the algorithm, we consider only the following op-
erators:

— Boolean operators: =, A.
— Temporal operators: O ~ Next, i/ - Until, © - Previous, S ~ Since.

It is well known that all the other boolean and temporal operators, such as v, O,
and [J, can be defined in terms of these basic ones. As described in Section 4, the
implementation accepts formulas using the full complement of boolean and temporal
operators.

We also use the formula true, which is always true, and the notations false and
first as abbreviations for —{rue and ~ © true, respectively. We further identify —-p
with p and reduce double negations whenever they arise.

Basic and Nonbasic formulas A formula is called basic if it has one of the fol-
lowing forms:

Proposition, true, O p, Op,

or the negation of any of these forms. Otherwise, it is called nonbasic.
Every nonbasic formula has one or two preconditions, which are sets of formulas,
according to the following table:

Formula| pre, prey
pAgq | {p.q} —
pllg {¢} | {p.OlplUqg)}
pSq {¢} | {r.®OW@SH)}

=(pAg)| {-p} {~g}

~(plU g} |{~¢, ~p}{{~q,~ O(pUq)}
~(»S9) |{~9,-P}{~9,~ O(pSq)}

100

‘learly, a nonbasic formula ¢ holds at a time-instant ¢ if and only if all the formulas
4 at least one of its preconditions pre; hold at ¢.

2.2 Atoms and Coverage

Let ¥ be a formula whose satisfiability we wish to check.

Definition: The closure of ¥, CL(¥), is the smallest set of formulas containing ¥
and satisfying:

— first € CL(¥).

— p€ CL(¥) iff ~p € CL(¥).

— If Ope CL(¥) or ©pe CL(¥), then p € CL(¥).

~ If a nonbasic formula p € CL(#¥), then all the formulas appearing in the precon-
ditions of p are in CL(¥).

The closure of ¢ can be partitioned into CL(¥) = CL*(¥)U CL™(¥), where CL™(¥)
is the set of all formulas in CL(¥) of the form —~p, and CL*(¥) is the set of all other
formulas in CL(¥). It can be shown that |CL™(¥)| = |CLT(¥)] < 1.5-|¥| +2, where
|#] is the size of the formula ¥.

Definition: A ¥-alom is a set of formulas A C CL(¥) satisfying:

— false & A.

—If-pe Athenp ¢ A.

— If first € A then O p & A for any p.

— If p € CL(#) is a nonbasic formula, then p € A iff pre; C A, for one of the
preconditions of p.

It is possible to establish 3lcL* (i < 31519142 45 an upper bound on the number
of -atoms.*
Definition: An atom A is said to generalize atom B, denoted A C B, if:

- ACB.
— For every formula pliqg € CL(¥), if pldgq € A (hence also pliqg € B) and q € B,
then also ¢ € A. Thus, if B manages to satisfy plfq by satisfying ¢, so should A.

. Note that, while' B has more formulas than A, it is more specific, in the sense that
it commits itself to more formulas being true than A. Thus, A covers more cases
than B does. Atom A is a siricl generalization of B, denoted A C B, if AZ B and
A # B (implying A C B).

Definition: A set {A;,..., Ay} of ¥-atoms is said to be a (complete) cover of a set
of formulas S C CL(¥) if: ‘

— Each A;, fori=1,...,k, contains S; i.e., S C A;.

* A better upper bound of 32 can be obtained if we restrict ourselves to irreducible
atoms. A formula in CL(¥) is called eztraneous if it is neither first nor a subformula of
#. An atom A is called irreducible if there does not exist an extraneous formula p € A
such that A — {p} is also an atom. It can be shown that the algorithm works correctly,
constructing a somewhat smaller tableau, if only irreducible atoms are used.

101

— Every atom B containing S is generalized by some A;,i=1,...,k.

There are many ways to compute a complete cover for a given set of formulas S C
CL(#). Section 4 describes one such algorithm, with attention to efficiency. Here,
we assume only that we have one such an algorithm, and denote the complete cover
for S by Cover(S). Implementations usually attempt to construct a minimal cover,
which is a cover such that A; Z A; for all 7 and j.

The following property follows from the definition of a cover.

Property 2.1 (Monotonicity) Given two seils of formulas S; C Sy C CL(¥),
then each By € Cover(S,) is generalized by sothe By € Cover(S;), t.e., By T Bs.

2.3 The Tableau Algorithm

Definitions:

A set of formulas S is called locally consistent if it satisfies the first three require-
ments of an atom. That is, it does not contain the formula false, it does not contain
two formulas of the form p and —p, and it does not contain a formula of the form
® p together with the formula first.

An atom is called initial if it contains the formula first.

For a set of formulas S, we define the following sets of formulas:

— Next(S) = {p| Ope S} U {-p|~Ope S}
- Prev(S) = {p|©Ope S} U {-p|- ©peS}

— Basic(S) is the set of basic formulas among S.

For two atoms A and B, we say that the pair (A, B) is neighborly consisient if
Nezt(A) C B and Prev(B) C A.

The algorithm constructs and manipulates a graph structure G consisting of
vertices which are ¥-atoms, and directed edges connecting them. We denote the set
of vertices by V, and the set of edges by £. In addition, we maintain a set £ of
removed edges. These are edges that have been once in £ but have been removed
from the graph, and their inclusion in £ is intended to ensure that they will not be
recreated. We denote the union £U £ by £*.

An edge connecting atom A to atom B indicates that B is a possible temporal
successor of A. We refer to such an edge as either (4, B), (A, B)puture, OF (B, A)past.
An edge (A, B) may be marked as fulure-satisfactory, if Nezt(A) C B, and past-
satisfactory, if Prev(B) C A.If an edge (4, B} is satisfactory in both directions (the
pair (A, B) is neighborly consistent), it is said to be satisfaciory.

The algorithm comprises two construction phases:

— Phase I:
Given a formula ¥, we construct an initial graph G : (V, £, £), in which the set of
vertices V comprises a set of initial (roo0t) atoms, each containing the formulas ¥
and first, and a generic fulure atom F containing no formulas. The set of edges
£ comprises edges drawn from each element of V to F. The set of forbidden
edges £ is initially empty.

102

~ Phase II:

As long as some edge (A, B) in the graph is unsatisfactory in some direction, we
consider a new atom that augments either A or B (according to the direction in
which the edge is unsatisfactory) by additional formulas that are necessary to
make this direction satisfactory. This atom may already exist in the graph or,
if not, will be added to the graph. The unsatisfactory edge will be replaced by
a new edge connecting to this new atom, and some additional connections may
be duplicated. The unsatisfactory edge is moved to £.

This process continues until all edges in & are satisfactory in both directions.

Phase I of the algorithm is presented in procedure construct-initial, and phase I1, in
correct-graph.

construct-initial(¥)

F:={} /* F is the generic future atom »/

V= {F}

& = {{F, F)} /* draw an edge from F to itself */

£:={} /* & is initially empty */

for each atom A € Cover({¥, first}) do
add AtoV /* create a new vertex for each initial atom x/
add edge (A, F)to & /* draw an edge from A to the generic future */

end construct-initial

correct-graph
for each unsatisfactory edge {4, B)4 € £ do
[if d = fulure then A := Cover(Nezt(A)U B) T
else A := Cover(Prev(A)U B)

for each atom B’ € A do

add B' to V

add-edge({A, B')4)

for each edge (B,Y)q € £t do

add-edge((B',Y)4)

move edge (A, B)4 from & to £]

end correct-graph.

Upon detecting an unsatisfactory edge (A, B)q, the algorithm considers an aug-
mentation of the formulas in B by the formulas that A requires for neighborly
consistency, and generates in A a set of atoms that forms a complete cover of the
augmentation. Then, there is a loop which adds to V each atom B’ € A that is not
already there. For each edge departing from atom B to some atom Y in direction d,
we construct a duplicate edge, connecting B’ to Y. This ensures that any previous
path segment, traversing A, B, and Y in direction d, is now available as the segment

A BLY

add-edge((X,Y)q)
if edge (X,Y)a g £

103

add (X,Y}ato &
for each edge (Y, Z)4 € € do
move (Y, Z)4 from £ to £
for each edge (W, X)q € € do
move (W, X)g4 from € to £
end add-edge

The procedure add-edge constructs an edge from X to Y in direction d, provided
it is not already there (not in £) and has not been constructed before and deleted
(as would be evident by belonging to £). The newly constructed edge is registered
in £. Also, since there is a new connection between X and Y, we move from € back
to & (reinstate) all the edges entering X and departing from Y in direction d. This
is so that the next time these edges will be considered, and surely removed again
because they still connect neighborly inconsistent atoms, the newly added edge from
X to Y will also be duplicated to the replacement of X or the replacement of Y.

The entire algorithm:

satisfy(¥)
construct-initial(¥)
correct-graph
strongly-connected-components-analysis
end satisfy.

The procedure strongly-connected-componenis-anelysis analyzes the graph by de-
composing it into maximal strongly connected components and identifying those
which are self-fulfilling [6]. A strongly connected component C is called self-fulfiliing
if every atom A € C has at least one successor, and for every formula pl{q € A,
there exists an atom B € C such that ¢ € B.

If the procedure finds a self-fulfilling component which is reachable from an initial
atom (an atom containing first and ¥), the procedure reports success, claiming that
¥ is satisfiable. Otherwise, it reports failure, claiming that ¥ is unsatisfiable (—¢ is
valid).

3 Proof of correctness for the Tableau Algorithm

In this extended abstract we omit all proofs. They are provided in the fuller version
of this paper.

We fix our attention on a formula ¥ whose satisfiability we wish to check. The
first proposition states that the algorithm always terminates.

Proposition1 Termination. Algorithm satisfy terminates.

The proof of termination is based on the following points: there are only finitely
many possible atoms, so the set of possible new edges is bounded; only new edges
cause later processing; and the processing for each edge is bounded.

The main theorem of this paper is Theorem 9 stating that the algorithm succeeds
iff formula ¥ is satisfiable. One direction of the proof, showing that if the algorithm

104

succeeds then ¥ is satisfiable, is rather straightforward. The algorithm reports success
only if there exists a self-fulfilling strongly connected subgraph C reachable from some
initial atom J. It can be shown that the path starting at I, proceeding to C, and then
repeatedly following a closed path that traverses all vertices in C, yields a model for
.

In the other direction, we have to show that if there exists a model o for ¥, then
the algorithm is guaranteed to find at least one self-fulfilling subgraph C reachable
from some initial atom. This proof is based on the notion of embedding, showing
that the model o induces an infinite sequence of atoms (called a fulfilling pre-model
in the proof below) which can be traced as a path within the tableau at all stages
of its construction.

Definitions:

— We write (A, B) C (A', B') as abbréviation for the two generalizations A C A’
and BC B'.
— A pre-model (for #) is an infinite sequence of ¥-atoms « : A, Ag, ..., such that:
o {¥, first} C A,
e Foreveryi> 1, first € A;y1, and the pair (4;, Ai41) is neighborly consistent.
— A fulfilling pre-model (for ¥) is a pre-model for ¥, 7 : Ay, A, .., such that for
every ¢ > 1, if pl{q € A;, then there is a j > ¢ such that ¢ € A;.

Theorem 2. The formula ¥ is salisfiable iff there is a fulfilling pre-model satisfying
.

The proof of this theorem follows the lines of Proposition 1 of [7].

The application of the algorithm of the preceding section constructs a sequence of
graphs, G : Go, Gy, ..., where each G; consists of the components (Vi, &, &), for
i = 0,1,... . The graph Gy is the one obtained at the conclusion of procedure
construct-initial. The graphs Gy, Gy, ..., are the ones observed at the end of each
iteration of the main loop within procedure correct-graph.

Definitions:

—~ Let 7w : Ay, Ag,..., be a pre-model. A generalization of 7 is an infinite sequence
of atoms 7 : By, Bs, ..., such that B; generalizes A;, iie., B; C A;, forall i > 1.
We write 7 € 7.

~ A path in G; : (Vi, &,), is a (possibly infinite) sequence of atoms o : By, Bo, .. .,
where By € V; for all k > 1 and, for each pair of consecutive atoms B and B4y
in o, there is an edge (B, Br41) € & UE;.

— A path o in G; is called a good path, if for each pair of consecutive atoms B
and By in o, the edge (Br, Biy1) belongs to & (rather than to £;).

— A prefiz of ¢ : By, By,...is a finite sequence of atoms By, Bs, ..., B;, for some
j > 1, and is denoted by ¢[1..5].

The infinite subsequence Bj, Bj41, ... is a suffiz of o and is denoted by ofj..].

— Let 0 : Ay,..., Ag be a finite path, and ¢’ : By,... a possibly infinite path. We
denote the concatenation of o and ¢’ by ;0" = Ay,..., A, By,....

Proposition3. Let 7 be a pre-model. For every G; € Gp, there is a path o in G;
which generalizes =.

105

Propositiond4. Let G; : (V.-,g,-,f,-) be a graph in Gp. Let (X,Y) € E;. Then, one
of the following two cases holds:

(a) (X,Y) is not past-satisfactory and, for each atom X' € Cover(X U Prev(Y)),
- X'€V; and (X",Y)€ &Y is past-satzsfactory
~ For every alom Q € V; such that (@, X)e&F, (Q, X" e &F.

(%) (X,Y) is not fulure-satisfactory and, for each atom Y'e Cover(Y U Nezt(X)),
~ Y'€V; and (X,Y') € &' is fulure-satisfactory.
~ For every atom Q € V; such that (Y,Q) € &', (Y',Q) € &F.

Definition: We say that the pair of atoms (A’, B') clones the pair (A, B} in G; if-

- (4,B)C (4, B).
~ For every X € V;, if (X, A) € E"’ then (X, A’) € &.
~ Forevery Y € V;,if (B,Y) € £+ then (B',Y) € 8"'

Proposition5. Let 7 : Ay, As, ... be a pre-model. For some G; € Gy, let the edge
(Bj, Bj+1) € & be such that (BJ,BJ-.H) C (Aj, Aj+1). Then, there exists an edge
(B, Bj,.) € &Y, such that (B}, B},) clones (B, Bj41) in V; and

(Bj, Bj+1) E (B}, Bjy1) £ (45,4541)

The following proposition improves on Proposition 5 by claiming the existence
of a cloning edge, as above, but one that belongs to &, rather than to £7.

Proposition6. Let 7 : Ay, As,... be a pre-model. For some G; € Gy, let the edge
(B,,B,.H) € &; be such that (B;,Bj4+1) C (Aj,Aj41). Then, there exists an edge
(B}, Bi41) € &, such that (B}, B} ,) clones (Bj, Bj+1) in Vi and

(Bj, j+1) c (B' BI+1) (Aj’Aj+1)'

Proposition7. For every pre-model 7 and every G; € Gy, there is a good path o,
in G; such that o, generalizes .

The following corollary specializes the preceding claim to the graph Go, obtained
at the termination of procedure correci-graph.

Corollary 8. For every fulfilling pre-model 7, there exists a good path oy in G
such that o4 is a fulfilling pre-model generalizing .

Theorem 9. The algorithm reporis success iff ¥ is satisfiable.

Proof: First assume that ¢ is satisfiable. Then, from Theorem 2 and Corollary 8,
there exists a good path o, : By,...in G, such that o, is a fulfilling pre-model
for ¥. Since a pre-model is infinite and G is a finite graph, there exists a strongly-
connected-component C in G, reachable from By, such that all atoms appearing
infinitely many times in o, are in C. Moreover, since g, is self-fulfilling, C is self
fulfilling.

In the other direction, assume that the algorithm reports success. Namely, the
algorithm finds a self-fulfilling, strongly-connected-component C, reachable from an
initial atom B;. Let By,..., Br be a path in G, such that By is contained in C.
Then, any infinite path By,..., Bg,... is a fulfilling pre-model for ¥. From Theo-
rem 2, ¥ is satisfiable.

106

4 Implementation and Improvements

In this section, we consider several aspects in which the implementation improves
on the simplified description of the algorithm, as presented in Section 2, by being
more general and more efficient.

A More General Language The implementation accepts a much richer temporal
language than the one described in Section 2. It recognizes the boolean operators:

—" V’ A, —_)) H’
and the temporal operators:
O, O, O U, W(witingfor), ©, B, &, S, B (back-to).

The additional operators are not translated into primitive ones; they are han-
dled directly. Avoiding translation conserves formulas’ sizes and keeps the imple-
mentation’s outputs reasonably understandable. The notions of basic and nonbasic
formulas extend to the richer language in an obvious way.

Incremental Cover Consider the situation in procedure correct-graph in which the
edge (A, B) juture is found to be unsatisfactory (in direction future), and we construct
in A a cover of the set of formulas Nezi(A) U B. As seen from Proposition 5 (and
Proposition 6), the situation is that we have some atom Y, belonging to the pre-
model 7 (called in these propositions A;;, while B is called B;41),suchthat BC Y,
and we are interested only in atoms B’ such that B C B’ C Y. Consequently, it is
sufficient to construct the incremental cover of B and Next(A).

Definition: A set {A;,..., A} of P-atoms is said to be an incremental cover of an
atom B and a set of formulas S C CL(¥) if:

— Each Ay, fori=1,...,k, contains BUS.
— Every atom Y generalized by B and containing S is generalized by some A;,
i=1,...,kie, BCACY.
The following recursive procedure is used in the implementation to calculate. the
incremental cover of B and S.

incremental-cover{base: alom, increment: set of formulas) : set of sels of formulas
new := increment — base
if new = {} then return base
Let p := longest formula in new
if p is basic then
A := incremental-cover(base, new — {p})

Otherwise, if p is nonbasic with preconditions pre,, ..., pre;, then
E
A= U incremental-cover(base, (new U pre;) ~ {p})
i=1

B:={Xu{p}|X A}
D :={X € B| X is locally consistent}
return D

end construct-initial

107

Additional Improvements Other improvements are:

— Unsatisfactory edges are truly deleted — not saved anywhere — except in certain
circumstances.

— Atoms that lose all their edges in either direction {except the past, for initial
atoms) are deleted.

It has been proven that correctness is maintained even with each of these changes
of the basic algorithm.

5 Improved Algorithm

The basic algorithm described in the section 2 is sound and complete, yet contains
some inefficiencies, for the following reasons:

— Non selective inheritance of edges: When an unsatisfactory edge (X,Y)q
is corrected (in direction d), for every Y’ € Cover(Y U f(X)), where f €
{Prev, Nezt}, it is ensured that Y/ € V;y;, and for every atom @ € V; such
that (Y Q)a € £F, it is ensured that (Y’,Q)s € &1;. We say that the edge
Y,Q)ais d-mherzted by the new atom Y’. Y’ will inherit all (Y, Q)4 edges, from
both &; and &;. This non selective inheritance is redundant, creating redundant
atoms and edges.

- Reinstatement of removed edges: An unsatisfactory edge in &, is corrected
and moved from £ to £. The same edge may me moved back to £ at a later
stage. We say that this edge has been reinstated. Reinstated edges, can not be
distinguished from unsatisfactory edges in £ which have never been corrected.
Their correction involves all correction activities, most of which are redundant
when performed for the second (or more) time.

Since both inheritance and reinstatement of edges are propagated through the graph,
both redundancies are multiplied.

The Improved algorithm corrects both of these deficiencies. Two corrections are
mtroduced:

— Clone Lists: For every atom A € £, we maintain two clone lists, denoted
Juture-clones(A) and past-clones(A). These lists are constructed incrementaly
as follows. Whenever a new atom B is created, both d-clones(B) are initialized
to empty-lists. Whenever an edge (A, B)4 is corrected in direction d, all atoms
B’ € Cover(B U f(A)) are added to d-clones(B).

- Selective Inheritance: Let (A, B)y € £ be an unsatisfactory edge currently
being corrected in direction d. Then, for every edge e = {B, Q)4 € £ and every
B' € Cover(A U f(B)), e is inherited by B’ only if e is d-satisfactory. Namely,
only d-satisfactory edges will be d-inherited. An edge which is unsatisfactory in
both directions, will be inherited prior to being corrected, but only by one of
the possible d-inheritance. Whenever a d-satisfactory edge (A, B) is being con-
structed, it is d-inherited recursively, starting with the atoms in the appropriate
clone list of either A or B.

108

The clone lists, together with recursive propagation of newly created d-satisfactory
edges, avoids the need for reinstatement of edges. An edge that has been removed
from &, will never be moved back to £.

The improved algorithm:

correct-graph
for each unsatisfactory edge {A, B)q € £ do
[if d = future then A := Cover(Neri(A)U B) 1
else A := Cover(Prev(A)U B)
d’ = inverse(d)
if (A, B)q is d'-unsatisfactory
for each clone-atom B’ € d’-clones(B) do
add-edge((A, B')q)
for each B’ € A do '
add B'to V
add B’ to d-clones(B)
add-edge({A, B')q)
for each (B,Y)q € € do
if {B,Y)4 is d-satisfactory
add-edge({B’,Y)q)

| move edge (A4, B)q from &£ to & §
eud correct-graph.

add-edge((X,Y)q)
d' = inverse(d)
ifedge (X, Y)g g EF
[add edge (X,Y)qto & 1
if (X,Y)q is d-satisfactory
for each X' € d-clones(X) do
add-edge((X',Y)a)
if (X,Y)q is d'-satisfactory
for each Y’ € &'-clones(Y') do
add-edge({Y', X)ar)

end add-edge

The first phase of the algorithm, construct-initial remains unchanged. The proof of
correctness of the algorithm proceeds along lines similar to the proof presented in

section 3

6 Discussion

The paper described an algorithm for checking the satisfiability of a PTL formula
that includes past and future operators. The algorithm is based on incremental
tableau construction and is expected to perform better on the average than previ-
ously available algorithms for this problem.

As explained above, the algorithm can be used for checking general validity as
well as for model checking of a temporal formula over a finite-state program.

109

At present, we are investigating the possibility of incorporating this algorithm as

a component in a general deductive system for first-order temporal logic.

Possible generalizations that are currently being investigated consider classes of

temporal logics with variables and equality that may still be decidable.

References

1
2
3
4
5
6

7

8
9
10
11

12

. M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic of branching time. Acta
Informatica, 20:207-226, 1983.

. M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. J.
Comp. Sys. Sci., 18:194-211, 1979.

. G. D. Gough and H. Barringer. A semantic driven temporal verification. In Proceedings
of ESOP’88, 1988.

. G. D. Gough. Decision procedures for temporal logic, Master’s thesis, University of
Manchester, England, 1984.

. JLAOW. Kamp. Tense Logic and the Theory of Order. PhD thesis, UCLA, 1968.

..O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proc. 12th ACM Symp. Princ. of Prog. Lang., pages 97—
107, 1985. ,

. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proe. Conf. Logics
of Programs, volume 193 of Lect. Notes in Comp. Sci., pages 196-218. Springer-Verlag,
1985.

. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic
specifications. ACM Trans. Prog. Lang. Sys., 6:68-93, 1984.

. A.Pnueli and R. Sherman. Semantic tableau for temporal logic. Technical Report
CS81 - 21, The Weizmann Institute, 1981. '

. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic. J.
ACM, 32:733-749, 1985.

. R. Sherman and A. Pnueli. Model checking for linear temporal logic: An efficient im-
plementation. Technical report, Information Science Institute, USC, 1989.

