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A b s t r a c t  
The paper presents an efficient algorithm for checking the satisfiability of a propo- 
sitional linear time temporal logic formula, which may have past as well as future 
operators. This algorithm can be used to check validity of such formulas over all 
models as well as over computations of a finite-state program (model checking). 
Unlike previous theoretical presentations of a decision method for checking satisfi- 
ability or validity, whose first step is to construct the full set of all possible atoms 
of a tableau (satisfaction graph) and immediately pay the worst case exponential 
complexity price, tile algorithm presented here builds the tableau incrementally. 
This means that the algorithm constructs only those atoms that are reachable from 
a possible initial atom, satisfying the formula to be checked. 
While incremental tableau construction for the future fragment of linear time tem- 
poral logic can be done in a single pass, the presence of past operators requires 
multiple passes that successively construct augmented versions of existing atoms, 
while still maintaining consistency and teachability. 
The proof of correctness of the algorithm is based on showhlg that any model of 
the considered formula is embedded as a path in the tableau at all the construction 
stages, and can be delineated when the construction terminates. 
The paper also describes an implementation of the algorithm with further attention 
to efficiency. This implementation is available as a support system for the book [8] 
under the name "temporal prover". It has been used to verify all the propositional 
temporal formulas and to model-check all the finite-state programs appearing in 
the book. 

Keywords :  temporal logic, satisfiability checking, validity checking, model check- 
ing, past and future operators, incremental tableau, automatic verification. 

1 Introduct ion  

We consider the ful l  language of linear t ime temporal  logic, as defined by Kamp  [5]. 
This  language includes opera tors  that  symmetr ica l ly  allow references to the fultzre 
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and past of any time instant. Temporal logic has been used successfully for specifying 
properties of reactive systems, including concurrent programs and hardware circuits. 

One of the important advantages of temporal logic is that its propositional version 
(PTL), while being expressive enough to specify interesting properties of programs, 
circuits, and communication protocols, is decidable. This has been exploited exten- 
sively for automatic verification of such systems. All of these applications used only 
the future fragment of the temporal language. 

The heart of many of these decision methods is an algorithm for checking the 
satisfiability of a given temporal formula ~. This algorithm is based on tableau 
construction. While the name temporal tableau is commonly used in the description 
of these algorithms, there are in fact two types of temporal tableaux, to which we 
may refer as declarative and incremental tableaux, respectively. In both cases, the 
algorithm constructs a graph (tableau) G, whose nodes (atoms) are labeled by sets 
of formulas derived from ~, such that every model of ~ is represented as an infinite 
path in G. The difference between the two constructions is that all possible atoms 
are present in declarative tableaux, while only atoms reachable from initial atoms 
are present in incremental tableaux. Declarative tableaux are clearer and easier to 
understand and analyze. They are used to prove properties of the logic, such as upper 
bounds on the complexity of decision procedures [2], [11]. Incremental tableaux, on 
the other hand, are more efficient, and are obviously better for implementation [1], 
[10], [9]. 

The reason for this difference in efficiency is that the declarative construction 
starts by constructing all possible atoms, immediately real;zing the worst case com- 
plexity which, as shown in [11], is exponential. The incremental construction, on the 
other hand, proceeds more conservatively, constructing only reachable atoms. As a 
result, in most cases, a much smaller number of atoms is ever explored. 

This paper presents an  implementation of an algorithm for deciding the satis- 
fiability of a propositional linear time temporal formula in the full language that 
includes both past and future operators, using incremental tableaux. 

For comparison, the decision procedure described in [7] is based on declarative 
tableaux and is, therefore, unsuitable for implementation. The algorithms described 
in [i0] and [9] are incremental but are restricted to the future fragment of the 
language. 

Other previous implementations of a decision procedure for the full language are 
presented in [4] and [3], but very little algorithmic detail is provided. 

One can clearly use any satisfiability checking algorithm to check validity over 
all models, since a formula ~ is valid iff -~9 is unsatisfiable. As shown in [6] and 
[11], a satisfiability (validity) checking algorithm for linear time temporal logic can 
be used to check validity of a formula ~ over all computations of a given finite-state 
program P (model checking). This can be done either by checking the validity of 
the formula S e m p  --~ ~P, where Setup is a formula characterizing the computations 
of program P, or by forming a cartesian product of the program's transition graph 
with the tableau constructed by the satisfiability checking algorithm applied to ~P. 

The implementation reported here has been used to verify all the propositional 
formulas appearing in the book [8] and to model-check all the finite-state programs 
appearing there. The implementation is available to readers of the book as a support 
tool. 
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Section 2 presents a high-level, simplified description of the algorithm. Section 3 
provides a proof of correctness for the simplified algorithm. Section 4 provides addi- 
tional details about our implementation, which is derived from the implementation 
reported in [12]. The section lists several points in which the implementation im- 
proves upon the simplified description of the algorithm by being more general and 
more efficient than the simplified algorithm. Section 5 presents an improved version 
of the basic algorithm which uses additional data structures removing some redun- 
dant and unnecessary construction steps. Section 6 summarizes the work, with a 
short discussion. 

2 A n  I n c r e m e n t a l  T a b l e a u  A l g o r i t h m  f o r  P T L  f o r m u l a s  

In this section, we present a simplified description of an algorithm for checking the 
satisfiability of a temporal formula ~. 

2.1 T h e  Language  P T L  

"In what follows, we refer to the PTL language, with syntax and semantics as defined 
in [S]. 

For a simpler presentation of the algorithm, we consider only the following op- 
erators; 

- Boolean operators: -~ , A. 
- Temporal operators: 0 - Next, H - Until, (~) - Previous, S - Since. 

It is well known that all the other boolean and temporal operators, such as V, ~ ,  
and I-1, can be defined in terms of these basic ones. As described in Section 4, the 
implementation accepts formulas using the full complement of boolean and temporal 
operators. 

We also use the formula true, which is always true, and the notations false and 
first as abbreviations for --,true and -~ (~ true, respectively. We further identify -,-,p 
with p and reduce double negations whenever they arise. 

Basic  a nd  Nonbas ic  fo rmulas  A formula is called basic if it has one of the fol- 
lowing forms: 

Proposition, true, 0 P, G P, 

or the negation of any of these forms. Otherwise, it is called nonbasic, 
Every nonbasic formula has one or two preconditions, which are sets of formulas, 

according to the following table: 

Formul a 
pAq 
pHq 
pSq 

-,(p ^ q) 
--,(pllq) 
-~(pSq) 

pre 1 
{P, q} 

{q} 
{q} 

{-,p} 
{-,q, -,,} 
{-"q, ~V} 

pre 2 

{p, O(pliq)} 
(p, (~(pSq)} 

{-,q} 
{-q, O(pUq)} 
{--,q,---, (~(p,.q q) } 
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!learly, a nonbasic formula  ~ holds at  a t ime-instant  t if and only if all the formulas  
.~ at  least one of its pre.conditions pre i hold at  t. 

2 .2 A t o m s  a n d  C o v e r a g e  

Let ~o be a formula whose sat isf iabi l i ty we wish to check. 

D e f i n i t i o n :  The closure of ~, CL(~), is the smallest  set of formulas  containing 
and satisfying: 

- first E CL(~). 
- p e C L ( ~ )  i f f  "~p E CL(~) .  
- If O P  e CL(~) or (~)p e CL(~), then p e CL(~~ 
- If a nonbasic formula p E CL(~), then all the formulas appear ing  in the precon- 

dit ions of p are in CL(~). 

The closure of ~o can be par t i t ioned into CL(~o) = CL+(~)U CL-(~), where CL-(~o) 
is the set of all formulas in CL(~) of the form "-,p, and CL+(~) is the set of all other  
formulas in CL(~). It  can be shown that  ]CL-(~o)] = ICL+(~)] < 1.5. ]~l + 2 ,  where 
]~] is the size of the formula ~.  

D e f i n i t i o n :  A ~-atom is a set of formulas A C CL(~) satisfying: 

- false • A. 
- I f - ~ p E A t h e n p ~ A .  
- If  f i r s / E  A then (~)p ~ A for any p. 
- If p E CL(~) is a nonbasic formula, then p E A iff pre i C A, for one of the 

precondit ions of p. 

I t  is possible to establish 3 ICL+(~~ _~ 31"5"1~1+2 as an upper  bound  on the number  
of ~ - a t o m s :  

D e f i n i t i o n :  An a tom A is said to generalize atom B, denoted A _E B, if: 

- A C B .  
- For every formulapUq E CL(~), ifpHq E A (hence also pHq E B) and q E B, 

then also q E A. Thus,  if B manages to satisfy pHq by sat isfying q, so should A. 

Note that ,  while B has more formulas than A, it  is more specific, in the sense tha t  
it  commits  itself to more formulas being true than A. Thus, A covers more cases 
than  B does. Atom A is a slrict generalization of B, denoted A E B, if A C B and 
A # B ( implying A C B). 

D e f i ~ i t i o n :  A set { A ~ , . . . ,  Ak} of ~O-atoms is said to be a (complete) cover of a set 
of formulas  S C CL(~) if: 

- Each Ai ,  for i = 1 , . . . , k ,  contains S; i.e:, S C At. 

4 A better upper bound of 31~1+2 can be obtained if we restrict ourselves to irreducible 
atoms. A formula in CL(~) is called extraneous if it is neither first nor a subformula of 
~. An atom A is called irreducible if there does not exist an extraneous formula p E A 
such that A - {p} is also an atom. It can be shown that the algorithm works correctly, 
constructing a somewhat smaller tableau, if only irreducible atoms are used. 
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- Every atom B containing S is generalized by some At, i = 1 . . . .  , k. 

There are many ways to compute a complete cover for a given set of formulas S C 
CL(~O). Section 4 describes one such algorithm, with attention to efficiency. Here, 
we assume only that  we have one such an Mgorithm, and denote the complete cover 
for S by Cover(S). Implementations usually at tempt to construct a minimal cover, 
which is a cover such that Ai [Z Aj for all i and j .  

The following property follows from the definition of a cover. 

P r o p e r t y  2.1 ( M o n o t o n i e i t y )  Given two sets of formulas $I C_ S~ C_ CL(~O), 
then each B2 6 Cover(S2) is generalized by some B1 6 Cover(S1), i.e., B1 E B2. 

2.3 T h e  T a b l e a u  A l g o r i t h m  

Def in i t ions :  
A set of formulas S is called locally consistent if it satisfies the first three require- 

ments of an atom. That  is, it does not contain the formula false, it does not contain 
two formulas of the form p and -~p, and it does not contain a formula of the form 
(~)p together with the formula first. 

An atom is called initial if it contains the formula first. 
For a set of formulas S, we define the following sets of formulas: 

- Next(S) = {Vl S} u { VI- OVe S}. 
- = {p I | P e S} U I | P e S}. 
- Basic(S) is the set of basic formulas among S. 

For two atoms A and B, we say that the pair (A,B) is neighborly consistent if 
Next(A) C B and Prey(B) C_ A. 

The algorithm constructs and manipulates a graph structure G consisting of 
vertices which are ~O-atoms, and directed edges connecting them. We denote the set 
of vertices by F, and the set of edges by g. In addition, we maintain a set ~ Of 
removed edges. These are edges that have been once in ,~ but have been removed 
from the graph, and their inclusion in ~c is intended to ensure that they will not be 
recreated. We denote the union ,~ U ~ by s 

An edge connecting atom A to atom B indicates that  B is a possible temporM 
successor of A. We refer to such an edge as either (A, B), (A, B)l,,t . . . .  or (B, A)past. 
An edge (A, B) may be marked as future-satisfactory, if Next(A) C B, and past- 
satisfactory, if Prey(B) C_ A. If an edge (A, B) is satisfactory in both directions (the 
pair (A, B) is neighborly consistent), it is said to be satisfactory. 

The algorithm comprises two construction phases: 

- Phase I: 
Given a formula ~, we construct an initial graph G : (]), g, ~), in which the set of 
vertices V comprises a set of initial (root) atoms, each containing the formulas ~o 
and first, and a generic future atom F containing no formulas. The set of edges 

comprises edges drawn from each element of "g to F. The set of forbidden 
edges ~c is initially empty. 
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Phase Ih 
As long as some edge (A, B) in the graph is unsatisfactory in some direction, we 
consider a new atom that augments either A or B (according to the direction in 
which the edge is unsatisfactory) by additional formulas that are necessary to 
make this direction satisfactory. This atom may already exist in the graph or, 
if not, will be added to the graph. The unsatisfactory edge will be replaced by 
a new edge connecting to this new atom, and some additional connections may 
be duplicated. The unsatisfactory edge is moved to L'. 
This process continues until Ml edges in s are satisfactory in both directions. 

Phase I of the algorithm is presented in procedure construct-initial, and phase II, in 
correct-graph. 

construct-initial(~) 
F := {} /* F is the generic future atom */ 
v := {F} 
s := {(F, F)} /* draw an edge from F to itself */ 

:= {} / ,  s is initially empty , /  
for each atom A E Cover({~,firsl}) do 

add A to l; / ,  create a new vertex for each initial atom , /  
add edge {A, F) to E / ,  draw an edge from A to the generic future */ 

end construct-init ial  

c o r r e c t - g r a p h  
for each unsatisfactory edge (A, B)a E s do 

ifd = future then A := Cover(Ne~t(A) U B) 
else ,4 := Cover(Prey(A) U B) 

for each atom B t E .A do 
add B I to V 
add-edge((A, B')d) 
for each edge (B, Y)~ E s do 

add-edge((B', Y)d) 
move edge (A, B)d from s to 

end  co r r ec t -g raph .  

Upon detecting an unsatisfactory edge (A, B)a, the algorithm considers an aug- 
mentation of the formulas in B by the formulas that A requires for neighborly 
consistency, and generates in ,4 a set of atoms that forms a complete cover of the 
augmentation. Then, there is a loop which adds to V each atom B' E A that is not 
already there. For each edge departing from atom B to some atom Y in direction d, 
we construct a duplicate edge, connecting B' to Y. This ensures that any previous 
path segment, traversing A, B, and Y in direction d, is now available as the segment 
A, B I, Y. 

add-edge( (X,  Y)d) 
if edge (X, Y)d ~ s 
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add (X, V)d to • ] 
for each edge (Y, Z)d e ~r do ] 

move (Y, Z)d from ~e to E [ 
for each edge (W, X)d e ~_ do [ 

move (W,X}d from g to g J  
end  add-edge  

The procedure add-edge constructs an edge from X to Y in direction d, provided 
it is not already there (not in C) and has not been constructed before and deleted 
(as would be evident by belonging to ~e). The newly constructed edge is registered 
in g. Also, since there is a new connection between X and Y, we move from E back 
to E (reinstate) all the edges entering X and departing from Y in direction d. This 
is so that the next time these edges will be considered, and surely removed again 
because they still connect neighborly inconsistent atoms, the newly added edge from 
X to Y will also be duplicated to the replacement of X or the replacement of Y. 

The entire algorithm: 

satisfy(~) 
conslruct-initial( ~o) 
co rrecl-graph 
strongly-connected-components-analysis 

end satisfy. 

The procedure slrongly-connected-components-analysis analyzes the graph by de- 
composing it into maximal strongly connected components and identifying those 
which are self-fulfilling [6]. A strongly connected component C is called self-fulfilling 
if every atom A E C has at least one successor, and for every formula pUq E A, 
there exists an atom B E C such that q E B. 

If the procedure finds a self-fulfilling component which is reachable from an initial 
atom (an atom containing firsi and ~o), the procedure reports success, claiming that 

is satisfiable. Otherwise, it reports failure, claiming that ~ is unsatisfiable ( ~  is 
valid). 

3 P r o o f  o f  c o r r e c t n e s s  f o r  t h e  T a b l e a u  A l g o r i t h m  

In this extended abstract we omit all proofs. They are provided in the fuller version 
of this paper. 

We fix our attention on a formula T whose satisfiability we wish to check. The 
first proposition states that the algorithm always terminates. 

P ropos i t i on  1 Termina t ion .  Algorithm satisfy terminates. 

The proof of termination is based on the following points: there are only finitely 
many possible atoms, so the set of possible new edges is bounded; only new edges 
cause later processing; and the processing for each edge is bounded. 

The main theorem of this paper is Theorem 9 stating that the Mgorithm succeeds 
iff formula ~ is satisfiable. One direction of the proof, showing that if the algorithm 



104 

succeeds then ~ is satisfiable, is rather straightforward. The algori thm reports  success 
only if there exists a self-flflfilling strongly connected subgraph C reachable from some 
initial a tom I.  It  can be shown that  the path  start ing at I ,  proceeding to C, and then 
repeatedly following a closed path  tha t  traverses all vertices in C, yields a model  for 

In the other direction, we have to show that  if there exists a model  cr for 9 ~, then 
the algori thm is guaranteed to find at least  one self-fulfilling subgraph C reachable 
from some initial a tom. This  proof  is based on the notion of embedding, showing 
that  the model a induces an infinite sequence of atoms (called a fulfilling pre-model 
in the proof below) which can be traced as a path  within the tableau at  all stages 
of its construction. 

D e f i n i t i o n s :  

- We write (A, B) ff (A ~, B') as abbreviation for the two generalizations A E A' 
and B ff B I. 

- A pre-model (for ~) is an infinite sequence of ~O-atoms 7r : A1, A 2 , . . . ,  such that:  
�9 {~ , f i rs t}  C_ A1 
�9 For every i >__ 1, first ~ At+l, and the pair (Ai, Ai+l) is neighborly consistent. 

- A fulfilling pre-model (for ~o) is a pre-model for ~, ~r : A1,A2, . . .  , such tha t  for 
every i > 1, i fpNq  E At, then there is a j >_ i such that  q E Aj.  

T h e o r e m  2. The formula ~ is satisfiable iff there is a fulfilling pre,model satisfying 

The proof of this theorem follows the lines of Proposition 1 of [7]. 

The  application of the algori thm of the preceding section constructs a sequence of 
graphs, G~ : Go,G1, . . . ,  where each Gi consists of the components  (Vi,gi,gl),  for 
i = 0, 1 , . . . .  The graph Go is the one obtained at the conclusion of procedure 
construct-initial. The graphs G1, G 2 , . . . ,  are the ones observed at  the end of each 
iteration of the main loop within procedure correct-graph. 

D e f i n i t i o n s :  

- Let r : A1,A2, . . . ,  be a pre-model.  A generalizalion of~r is an infinite sequence 
of a toms F : B1,B2, . . . ,  such tha t  Bi generalizes Ai, i.e., Bi U At, for all i > 1. 
We write F E r .  

- A paih in Gi : (Vi, gi, gi), is a (possibly infinite) sequence of a toms ~ : B1, B2, . . . ,  
where Bk E 1;i for all k >__ 1 and, for each pa i r  of consecutive a toms  Bk and Bk+l 
in or, there is an edge (Bk, Bk+l ) E ~r U ~i. 

- A path  cr in Gi is called a good path, if for each pair of consecutive a toms Bk 
and Bk+a in a,  the edge (Bk, Bk+l) belongs to s (rather than to L'i). 

- A prefix of a : B1, B 2 , . . .  is a finite sequence of a toms B1, B 2 , . . . ,  Bj ,  for some 
j > 1, and is denoted by a[1..j]. 
The  infinite subsequenee Bj, Bj+I . . . .  is a suffix of a and is denoted by a[j..]. 

- Let a : A n , . . . , A k  be a finite path,  and o a : B 1 , . . .  a possibly infinite path.  We 
denote the concatenation of ~r and a ~ by a; a '  = A n , . . . ,  Ak, B1,  . . . .  

P r o p o s i t i o n 3 .  Let 7r be a pre-model. For every Gi E ~ ,  there is a path ~ in Gi 
which generalizes ~r. 



105 

Propos i t ion4 .  Let Gi : (Vi,s be a graph in ~o. Let ( X , Y )  E g~. Then, one 
of the following two cases holds: 

(a) (X, Y)  is not past-satisfactory and, for each atom X '  E Cover(X U Prey(Y)) ,  
- X'  E Vi and (X', Y) E S + is past-satisfactory. 
- For every atom O e V~ such that (O, x )  e e~, <O, x')  ~ C .  

(b) {X, Y)  is not future-satisfactory and, for each atom Y'  E Gover(Y U Nex t (X) ) ,  
- Y'  E )21 and {X, Y')  E g+ is future-satisfactory. 
- For every atom Q E Vi such that (Y, Q) E s (Y',  Q) E s 

Defini t ion:  We say that the pair of atoms (A', B') clones the pair (A, B) in Gi i f  

- (A, B) _ (A', B'). 
Z For every X E ])i, if (X, A) E E/+ then (X, A') E g+. 
- For every Y E r l ,  if (B, Y) E s then (B', Y)  E s 

Propos i t ionS.  Let rr : A1,A~ . . . .  be a pre-modeL For some Gi E Ca~o, let the edge 
(Bj ,Bj+I)  e ~i be such that (Bj ,Bj+I)  E_ (Aj,Aj+I). Then, there exists an edge 
(B;, S~+,) e C ,  such that (B~, B}+,) clones (B~, Bj+~) in V, and 

(sj,Bi+l) c (Bj,B;+O E_ (A~,Ai+I) 

The following proposition improves on Proposition 5 by claiming the existence 
of a cloning edge, as above, but one that belongs to St, rather than to ~+. 

P ropos i t ion6 .  Let r : A1,A~,.~. be a pre.modeL For some Gi E CJ~o, let the edge 
(Bj ,Bj+I)  e ~i be such that (Bj ,Bj+I)  E (Aj ,Aj+I) .  Then, there exists an edge 
(BJ, B~+,) e s such that (B~, B~+,) clones (Bj, Bj+,) in lli and 

(Bj ,Bj+I)  ff (Bj,Bs+a) if_ (Aj ,Aj+t) .  

Propos i t ion  7. For every pre-model ~r and every Gi E ~o, there is a good path cr 9 
in Gi such that ~r 9 generalizes ~r. 

The following corollary specializes the preceding claim to the graph Goo obtained 
at the termination of procedure correct-graph. 

Corol lary  8. For every fulfilling pre-model lr, there exists a good path crg in Goo 
such that crg is a fulfilling pre-model generalizing rr. 

The o r e m 9. The algorithm reports success iff ~ is satisfiable. 

Proof:  First assume that tP is satisfiable. Then, from Theorem 2 and Corollary 8, 
there exists a good path ag : Ba, . . .  in Goo, such that crg is a fulfilling pre-model 
for ~o. Since a pre-model is infinite and Goo is a finite graph, there exists a strongly- 
connected-component C in Gor reachable from B1, such that all atoms appearing 
infinitely many times in ~rg are in C. Moreover, since a# is self-fulfilling, C is self 
fulfilling. 

In the other direction, assume that the algorithm reports success. Namely, the 
algorithm finds a self-flflfilling, strongly-connected-component C, reachable from an 
initial atom B1. Let Ba , . . . ,  B~ be a path in Go~, such that Bk is contained in C. 
Then, any infinite path B~, . . . ,  Bk, . . .  is a fulfilling pre-model for ~. From Theo- 
rem 2, tO is satisfiable. 
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4 I m p l e m e n t a t i o n  a n d  I m p r o v e m e n t s  

In this section, we consider several aspects in which the implementation improves 
on the simplified description of the algorithm, as presented in Section 2, by being 
more general and more efficient. 

A M o r e  Ge ne r a l  Language  The implementation accepts a much richer temporal 
language than the one described in Section 2. It recognizes the boolean operators: 

-% V, A, --% ~---*, 

and the temporal operators: 

O ,  0 ,  ~ ,  H, W(waiting-for), G ,  [ ] ,  ~ ,  S, B(back-to).  

The additional operators are not translated into primitive ones; they are han- 
dled directly. Avoiding translation conserves formulas' sizes and keeps the imple- 
mentation's outputs reasonably understandable. The notions of basic and nonbasic 
formulas extend to the richer language in an obvious way. 

I n c r e m e n t a l  Cover  Consider the situation in procedure correct.graph in which the 
edge (A, B).f,~t,,,-e is found to be unsatisfactory (in direction .future), and we construct 
in A a cover of the set of formulas NezL(A) U B. As seen from Proposition 5 (and 
Proposition 6), the ~situatJo~ is that we have some atom Y, belonging to the pre- 
model ~r (called in these propositions Aj+I, while B is called Bj+I), such that B E_ Y ,  
and we are interested only in atoms B' such that B D B' _ Y. Consequently, i t  is 
sufficient to construct the incremental cover of B and Next(A). 
Defini t ion:  A set {A~,. . . ,  Ak} of ~-atoms is said to be an incremental cover of an 
atom B and a set of formulas S C CL(~) if: 

- Each Ai, for i = 1 , . . . ,k ,  contains B U S .  
- Every atom Y generalized by B and containing S is generalized by some Ai, 

i =  1 , . . . , k ; i . e . , B D A i D Y .  

The following recursive procedure is used in the implementation to calculate the 
incremental cover of B and S. 

incremental-cover(base: atom, increment: set of formulas) :set of sets of formulas 
new := increment - base 
if new = {} then return base 
Let p := longest formula in new 
if p is basic then 

A := incremental-cover(base, new - {p}) 
Otherwise, if p is nonbasic with preconditions pre l , . . . ,  pre k, then 

k 

.A := U incrementabcover(base, (new u prei) - {p}) 
i = l  

:= {x  u {p} IX e .4}  
:= {X E B IX is locally consistent} 

return 79 
e n d  cons t ruc t - in i t i a l  
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Addi t iona l  I m p r o v e m e n t s  Other improvements are: 

- Unsatisfactory edges are truly deleted - -  not saved anywhere - -  except in certain 
circumstances. 

- Atoms that lose all their edges in either direction (except the past, for initial 
atoms) are deleted. 

It has been proven that correctness is maintained even with each of these changes 
of the basic algorithm. 

5 I m p r o v e d  A l g o r i t h m  

The basic algorithm described in the section 2 is sound and complete, yet contains 
some inefficiencies, for the following reasons: 

- Non  se lec t ive  i n h e r i t a n c e  of  edges: When an unsatisfactory edge (X, Y)~ 
is corrected (in direction d), for every Y' e Cover(Y U f(X)),  where f E 
{Prev, Next}, it is ensured that Y~ E 121+1, and for every atom Q E l)i such 
that (Y, Q)d e Si +, it is ensured that {Y', Q)d e s We say that the edge 
(Y, Q)a is d-inherited by the new atom Y'. Y' will inherit all (Y, Q)~ edges, from 
both ,~i and L'i. This non selective inheritance is redundant, creating redundant 
atoms and edges. 

- R e i n s t a t e m e n t  of  r e m o v e d  edges: An unsatisfactory edge in C, is corrected 
and moved from g to ~e. The same edge may me moved back to g at a later 
stage. We say that this edge has been reinstated, l~einstated edges, can not be 
distinguished from unsatisfactory edges in ~ which have never been corrected. 
Their correction involves all correction activities, most of which are redundant 
when performed for the second (or more) time. 

Since both inheritance and reinstatement of edges are propagated through the graph, 
both redundancies are multiplied. 

The Improved algorithm corrects both of these deficiencies. Two corrections are 
introduced: 

- Clone  Lists: For every atom A E S+, we maintain two clone lists, denoted 
future-clones(A) and past-clones(A). These lists are constructed incrementaly 
as follows. Whenever a new atom B is created, both d-clones(B) are initialized 
to empty-lists. Whenever an edge (A, B)a is corrected in direction d, all atoms 
B' e Cover(B U f(A)) are added to d-clones(B). 

- Se lec t ive  Inhe r i t ance :  Let /A, B)a E S be an unsatisfactory edge currently 
being corrected in direction d. Then, for every edge e = (B, O)d E s and every 
B' E Cover(A U y(B)), e is inherited by B' only if e is d-satisfactory. Namely, 
only d-satisfactory edges will be d-inherited. An edge which is unsatisfactory in 
both directions, will be inherited prior to being corrected, but only by one of 
the possible d-inheritance. Whenever a d-satisfactory edge (A, B) is being con- 
structed, it is d-inherited recursively, starting with the atoms in the appropriate 
clone list of either A or B. 
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The clone lists, together with recursive propagation of newly created d-satisfactory 
edges, avoids the need for reinstatement of edges. An edge that has been removed 
from s will never be moved back to g. 
The improved algorithm: 

cor rec t -graph  
for each unsatisfactory edge (A, B)d E g do 

ifd = future then A := Cover(Nexl(A) U B) 
else ,4 := Cover(Prey(A) U B) 

d ~ = inverse(d) 
if (A, B)~ is dl-unsatisfactory 

for each clone-at0m B ~ E d'-clones(B) do 
add-edge((A,S')a) 

for each B ~ E ,4 do 
I add B t to 12 

add B I to d-clones(B) 
add-edge((A, B')a) 
for each (B, Y)a E g do 

if (B, Y)d is d-satisfactory 
add.edge((B', Y)d) 

move edge (A, B)a from g to ~e 

end  correct-graplt .  

add-edge((X,Y)d) 
d' = inverse(d) 
if edge (X, Y)a ~ g+ 

"add edge {X,Y)d to g 
if (X, Y)d is d-satisfactory 

for each X' G d-clones(X) do 
add-edge((Z',Y)a) 

if (X, Y)a is d~-satisfactory 
for each Y' E if.clones(Y) do 

add-edge((Y',X)a,) 
end  add-edge  

The first phase of the algorithm, construct-inilial remains unchanged. The proof of 
correctness of the algorithm proceeds along lines similar to the proof presented in 
section 3 

6 D i s c u s s i o n  

The paper described an algorithm for checking the satisfiability of a PTL formula 
that includes past and future operators, The algorithm is based on incremental 
tableau construction and is expected to perform better on the average than previ- 
ously available algorithms for this problem. 

As explained above, the algorithm can be used for checking general validity as 
well as for model checking of a temporal formula over a fini.te-state program. 
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At present, we are investigating the possibility of incorporating this algorithm as 
a component in a general deductive system for first-order temporal logic. 

Possible generalizations that  are currently being investigated consider classes of 
temporal logics with variables and equality that  may still be decidable. 
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