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Abstrac t .  Many compilers do some of their work by means of correctness- 
preserving, and hopefully performance-improving, program transforma- 
tions. The Glasgow Haskell Compiler (GHC) takes this idea of "compi- 
lation by transformation" as its war-cry, trying to express as much as 
possible of the compilation process in the form of program transforma- 
tions. 

This paper reports on our practical experience of the transformational 
approach to compilation, in the context of a substantial compiler. 

1 Introduction 

Using correctness-preserving transformations as a compiler optimisation is a 
welI-established technique (Aho, Sethi & Ullman [1986]; Bacon, Graham & Sharp 
[1994]). In the functional programming area especially, the idea of compilation 
by transformation has received quite a bit of attention (Appel [1992]; Fradet 
& Metayer [1991]; Kelsey [1989]; Kelsey & Hudak [1989]; Kranz [1988]; Steele 
[1978]). 

A transformational approach to compiler construction is attractive for two rea- 
sons: 

�9 Each transformation can be implemented, verified, and tested separately. 
This leads to a more modular compiler design, in contrast to compilers that  
consist of a few huge passes each of which accomplishes a great deal. 

�9 In any framework (transformational or otherwise) each optimisation often 
exposes new opportunities for other optimisations - -  the "cascade effect". 
This makes it difficult to decide a pr ior i  what the best order to apply them 
might be. In a transformational setting it is easy to "plug and play", by 
re-ordering transformations, applying them more than once, or trading com- 
pilation time for code quality by omitt ing some. It allows a late commitment 
to phase ordering. 

This paper reports on our experience in applying transformational techniques 
in a particularly thorough-going way to the Glasgow Haskell Compiler (GHC) 
(Peyton Jones et al. [1993]), a compiler for the non-strict functional language 
Haskell (Hudak et  al. [1992]). Among other things this paper may serve as a 
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useful jumping-off point, and annotated bibliography, for those interested in the 
compiler. 

A pervasive theme is the close interplay between theory and practice, a partic- 
ularly satisfying aspect of functional-language research. 

2 O v e r v i e w  

Haskell is a non-strict, purely functional language. It is a relatively large lan- 
guage, with a rich syntax and type system, designed for full-scale application 
programming. 

The overall structure of the compiler is conventional; 

1. The front end parses the source, does scope analysis and type inference, and 
translates the program into a small intermediate language called the Core 
language. This latter stage is called de-sugaring. 

2. The middle consists of a sequence of Core-to-Core transformations, and 
forms the subject of this paper. 

3. The back end code-generates the resulting Core program into C, whence it 
is compiled to machine code (Peyton Jones [1992]). 

To exploit the advantages of compilation by transformation mentioned above, 
we have worked particularly hard to move work out of the front and back ends 
- -  especially the latter - -  and re-express it in the form of a transformation. We 
have taken the "plug and play" idea to an extreme, allowing the sequence of 
transformation passes to be completely specified on the command line. 

In practice, we find that transformations fall into two groups: 

1. A large set of simple, local transformations (e.g. constant folding, beta re- 
duction). These transformations are all implemented by a single relatively 
complex compiler pass that we call the simplifier. The complexity arises from 
the fact that the simplifier tries to perform as many transformations as possi- 
ble during a single pass over the program, exploiting the "cascade effect". (It 
would be unreasonably inefficient to perform just one at a time, starting from 
the beginning each time.) Despite these efforts, the result of one simplifier 
pass often still contains opportunities for further simplifier transformations, 
so we apply the simplifier repeatedly until no further transformations occur 
(with a set maximum to avoid pathological behaviour). 

2. A small set of complex, global transformations (e.g. strictness analysis, spe- 
cialising overloaded functions), each of which is implemented as a separate 
pass. Most consist of an analysis phase, followed by a transformation pass 
that uses the analysis results to identify appropriate sites for the transfor- 
mation. Many also rely on a subsequent pass of the simplifier to "clean up" 
the code they produce, thus avoiding the need to duplicate transformations 
already embodied in the simplifier. 
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Rather than give a superficial overview of everything, we focus in this paper on 
three aspects of our compiler that play a key role in compilation by transforma- 
tion: 

�9 The Core language itself (Section 3). 

�9 Two groups of transformations implemented by the simplifier, inlining and 
beta reduction (Section 4), and transformations involving case expressions 
(Section 5). 

�9 One global transformation pass, the one that performs and exploits strictness 
analysis (Section 6). 

We conclude with a brief enumeration of the other main transformations incor- 
porated in GHC (Section 7), and a summary of the lessons we learned from our 
experience (Section 8). 

3 The Core language 

The Core language clearly plays a pivotal role. Its syntax is given in Figure 1, 
and consists essentially of the lambda calculus augmented with l e t  and c a s e .  

Though we do not give explicit syntax for them here, the Core language includes 
algebraic data type declarations exactly as in any modern functional program- 
ming language. For example, in Haskell one might declare the type of trees thus: 

data Tree a = Leaf a i Branch (Tree a) (Tree a) 

This declaration implicitly defines constructors Leaf and Branch, that are used 
to construct data values, and can be used in the pattern of a case alternative. 
Booleans, lists, and tuples are simply pre-declared algebraic data types: 

data Boolean = False I True 

data List a = Nil I Cons a (List a) 

data Tuple3 a b c ffi T3 a b c -- One for each size of tuple 

Throughout the paper we take a few liberties with the syntax: we allow ourselves 
infix operators (e.g. E1 + E2), and special syntax for lists ( [] for Nil and infix 
: for Cons), and tuples (e.g. (a ,b ,c ) ) .  We allow multiple definitions in a single 
l e t  expression to abbreviate a sequence of nested l e t  expressions, and often use 
layout instead of curly brackets and semicolons to delimit case alternatives. We 
use an upper-case identifier, such as E, to denote an arbitrary expression. 

3.1 T h e  opera t iona l  reading 

The Core language is of course a functional language, and can be given the usual 
denotational semantics. However, a Core program also has a direct operational 
interpretation. If we are to reason about the usefulness of a transformation we 
must have some model for how much it costs to execute it, so an operational 
interpretation is very desirable. 
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Program 

Binding 

Expression 

Atoms 

Literals 

Alternatives 

Constr. alt 

Literal alt 

Default alt 

P r o g  --* 

B i n d  --, 

I 

E x p r  

A t o m  - *  

I 

L i t e r a l  

A l t s  ---} 

I 

Call -* 

La i r  ---, 

D e f a u l t  --* 

I 

B i n d l  ; . . .  ; B i n d n  

v a t  = E x p r  

recvar l  = S x p r l  ; . . .  ; y a r n  = E x p r n  

E z p r  A t o m  
E z p r  t y  

\ v a r l  . . .  ya rn  -> E z p r  

/ \  t y v a r l  . . .  t y v a r n  -> E x p r  

c a s e  Expr of  ( Airs } 
l e t  B i n d  in E x p r  

con  v a r l  . .  �9 yarn  

p r i m  v a r l  , . �9 yarn  
A t o m  

?)at 

L i t e r a l  

i n t e g e r  [ f l o a t  I . . .  

C a l t l  ; . . .  ; Ca i rn  ; D e f a u l t  

Lair1 ; . . .  ; Lalt,~ ; D e f a u l t  

C o n  va t1  . . .  y a r n  -> E~.pr 

L i t e r a l  -> E x p r  

HoDef ault  
v a t  -> E z p r  

n > l  

Non-recursive 
Recursive n > I 

Application 
Type application 
Lambda abstraction 
Type abstraction 
Case expression 
Local definition 
Constructor n _> 0 
Primitive n _> 0 

Variable 
Unbowed Object 

n > O  
n > O  

n > O  

Fig. 1. Syntax of the Core language 

The  operat ional  model for Core requires a garbage-collected h e a p .  The  heap 
contains: 

* D a t a  v a l u e s ,  such as list cells, tuples, booleans, integers, and so on. 

e F u n c t i o n  v a l u e s ,  such as \x  -> x+l  (the function tha t  adds 1 to its argu- 
ment).  

e T h u n k s  (or suspensions), tha t  represent suspended (i.e. as yet  unevaluated) 
values. 

Thunks  are the  implementat ion mechanism for Haskell 's  non-strict  semantics. 
For example,  consider the Haskell expression f ( s i n  x) y. Translated to Core 
the expression would look like this: 

l e t  v = s i n  x 
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in  f v y  

The l e t  allocates a thunk in the heap for s i n  x and then, when it subsequently 
calls f ,  passes a pointer to the thunk. The thunk records all the information 
needed to compute its body, s i n  x in this case, but it is not evaluated before 
the call. If f ever needs the value of v it will force the thunk which provokes 
the computat ion of s i n  x. When the thunk's evaluation is complete the thunk 
itself is updated (i.e. overwritten) with the now-computed value. If f needs the 
value of v again, the heap object now contains its value instead of the suspended 
computation.  If f never needs v then the thunk is not evaluated at all. 

The  two most important  operational intuitions about Core are as follows: 

1. l e t  bindings (and only l e t  bindings) perform heap allocation. For example: 

let v = sin x 

in 
let w = (p,q) 

in 
f vw 

Operationally, the first l e t  allocates a thunk for s i n  x, and then evaluates 
the l e t ' s  body. This body consists of the second l e t  expression, which al- 
locates a pair (p,  q) in the heap, and then evaluates its body in turn. This 
body consists of the call f v w, so the call is now made, passing pointers to 
the two newly-allocated objects. 

In our implementation, each allocated object (be it a thunk or a value) 
consists only of a code pointer together with a slot for each free variable of the 
right-hand side of the l e t  binding. Only one object is allocated, regardless of 
the size of the right-hand side (older implementations of graph reduction do 
not have this property). We do not a t tempt  to share environments between 
thunks (hppel  [1992]; Kranz et al. [1986]). 

2. ca se  expressions (and only case  expressions) perform evaluation. 
For example: 

case x of 

C] -> 0 

(y:ys) -> y + g ys 

The operational understanding is "evaluate x, and then scrutinise it to see 
whether it is an empty list, [], or a Cons cell of form (y:ys), continuing 

execution with the appropriate alternative". 

case expressions subsume conditionals, of course. The Haskell expression 

if C El E2 is de-sugared to 

case C of {True -> El; False -> E2} 

The syntax in Figure 1 requires that function arguments must be atoms I (that 

1 This syntax is becoming quite widely used (Ariola et al. [1995]; Flanagan et al. [1993]; 
Flanagan et al. [1993]; Launchbury [1993]; Peyton Jones [1992]). 



23 

is, variables or literals), and now we can see why. If the language allowed us to 
write 

f ( s i n  x)  ( p , q )  

the operational behaviour would still be exactly as described in (1) above, with 
a thunk and a pair allocated as before. The l e t  form is simply more explicit. 
Furthermore, the l e t  form gives us the opportuni ty of moving the binding for v 
elsewhere, if that  turns out to be desirable, which the apparently-simpler form 
does not. Lastly, the l e t  form is more economical, because many transforma- 
tions on l e t  expressions (concerning strictness, for example) would have to be 
duplicated for function arguments if the latter were non-atomic. 

It is also important  to note where atoms are not required. In particular, the 
scrutinee of a case  expression is an arbitrary expression, not just  an atom. For 
example, the following is quite legitimate: 

c a s e  ( r e v e r s e  x s )  o f  { . . .  } 

Operationally, there is no need to build a thunk for r e v e r s e  x s  and then evalu- 
ate it; rather, we can simply save a return address and call r e v e r s e  xs .  Again, 
the operational model determines the syntax. 

3.2 P o l y m o r p h i s m  

Like any compiler for a strongly-typed language, GHC infers the type of every 
expression and variable. An obvious question is: can this type assignment be 
maintained through the translation to the Core language, and through all the 
subsequent transformations that  are applied to the program? If so, both transfor- 
mations and code generator might (and in GHC sometimes do) take advantage 
of type information to generate better code. 

In a monomorphic language the answer is a clear "yes", but  matters  are not 
initially so clear in a polymorphic setting. The trouble is tha t  program transfor- 
mation involves type manipulation. Consider, for example, the usual composition 
function, compose, whose type is 

c o m p o s e  :: - -*  - -*  8 )  - -*  - *  

The function might be defined like this in an untyped Core language: 

compose = \f g x -> let y = g x in f y 

Now, suppose that  we wished to unfold a particular call to compose, say 

compose show double v 

where v is an In t ,  double  doubles it, and show converts the result to a S t r i n g .  
The result of unfolding the call to compose is an instance of the body of compose ,  

thus: 

let y = double v in show y 
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Now, we want to be able to identify the type of every variable and sub-expression, 
so we must calculate the type of y. In this case, it has type In t ,  but in another 
application of compose it may have a different type. All this is because its type 
in the body of compose itself is just a type variable, f~. It  is clear that  in a 
polymorphic world it is insufficient merely to tag every variable of the original 
program with its type, because this information does not survive across program 
transformations. 

What ,  then, is to be done? Clearly, the program must be decorated with type 
information in some way, and every program transformation must be sure to 
preserve it. Deciding exactly how to decorate the program, and how to maintain 
these decorations correctly during transformation, seemed rather difficult at first. 
We finally realised that  an off-the-shelf solution was available, namely the second- 
order lambda calculus (Girard [1971]; Reynolds [1974]). 

The  idea is tha t  every polymorphic function, such as compose has a type ab- 
straction for each universally-quantified polymorphic variable in its type (a,  ~, 
and 7 in the case of compose), and whenever a polymorphic function is called, 
it is passed extra type arguments to indicate the types to which its polymorphic 
type variables are to be instantiated. The definition of compose now becomes: 

compose = /\a b c -> 
\f::(b->c) g::(a->b) x: :a -> 

let y: :b = g x in f y 

The function takes three type parameters (a, b and c), as well as its value pa- 
rameters f ,  g and x. The types of the latter can now be given explicitly, as can 
the type of the local variable y. A call of compose is now given three extra type 
arguments, which instantiate a, b and c just as the "normal" arguments instan- 
t iate f ,  g and x. For example, the call of compose we looked at earlier is now 
written like this: 

compose Int Int String show double v 

It is now simple to unfold this call, by instantiating the body of compose with 
the supplied arguments, to give the expression 

let y::Int = double v in show y 

Notice that the let-bound variable y is now automatically attributed the correct 
type. 

In short, the second-order lambda calculus provides us with a well-founded no- 
tation in which to express and transform polymorphically-typed programs. It 
turns out to be easy to introduce the extra type abstractions and applications 
as part of the type inference process. 

Other compilers for polymorphic languages are beginning to carry type informa- 
tion through to the back end, and use it to generate better code. Shao & Appel 
[1995] use type information to improve data representation, though the system 
they describe is monomorphic after the front end. Our implementation uses type 
abstractions and applications only to keep the compiler's types straight; no types 
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are passed at runtime. It is possible to take the idea further, however, and pass 
types at runtime to specialise data representations (Morrison et al. [1991]), give 
fast access to polymorphic records (Ohori [1992]), guide garbage collection (Tol- 
mach [1994]). The most recent and sophisticated work is Harper & Morrisett 
[1995]. 

4 I n l i n i n g  a n d  b e t a  r e d u c t i o n  

Functional programs often consist of a myriad of small functions - -  functional 
programmers treat functions the way C programmers treat macros - -  so good 
inlining is crucial. Compilers for conventional languages get 10-15~0 performance 
improvement from inlining (Davidson & Holler [1988]), while functional language 
compilers gain 20-40% 2 (Appel [1992]; Santos [1995]). Inlining removes some 
function-call overhead, of course, but an equally important factor is that inlining 
brings together code that was previously separated, and thereby often exposes 
a cascade of new transformation opportunities. We therefore implement inlining 
in the simplifier. 

We have found it useful to identify three distinct transformations related to 
inlining: 

InUning itseff replaces an occurrence of a le t-bound variable by (a copy of) 
the right-hand side of its definition. Notice that inlining is not limited to 
function definitions; any let-bound variable can potentially be inlined. (Re- 
member, though, that occurrences of a variable in an argument position are 
not candidates for inlining, because they are constrained to be atomic.) 

Dead code e l iminat ion  discards l o t  bindings that are no longer used; this 
usually occurs when all occurrences of a variable have been inlined. 

B e t a  r educ t ion  replaces (\x->E) h by E[h/x]. (An analogous transformation 
deals with type applications.) 

Beta reduction is particularly simple in our setting. Since the argument A is 
bound to be atomic, there is no risk of duplicating a redex, and we can simply 
replace x by A throughout E. There is a worry about name capture, however: 
what if a is also bound in E? We avoid this problem by the simple expedient 
of renaming every identifier as we go, which costs little extra since we have 
to construct a new, transformed expression anyway. Whilst beta reduction is 
simple, inlining is more interesting. 

4.1 Simple inllning 

It is useful to distinguish two cases of inlining: 

2 This difference may soon decrease as the increased use of object-oriented languages 
leads to finer-gained procedures (Calder, Grunwald g~ Zorn [1994]). 
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W H N F s .  If the variable concerned is bound to a weak head normal form 
(WHNF) - -  that  is, an atom, lambda abstraction or constructor applica- 
tion - -  then it can be inlined without risking the duplication of work. The 
only down-side might be an increase in code size. 

N o n - W H N F s .  Otherwise, inlining carries the risk of loss of sharing and hence 
the duplication of work. For example, 

let x = f I00 in ...x...x... 

it might be be unwise to inline x, because then f 100 would be evaluated 
twice instead of once. Informally, we say that  a transformation is )4P-sale if 
it guarantees not to duplicate work. 

In the case of WHNFs everything is as one would expect. The trade-off is between 
code size and the benefit of inlining and, like any compiler, we have a variety 
of heuristics (but no formal analysis) for deciding when a function is "small 
enough" to inline. Many functions are "small", though, and code size can actually 
decrease when they are inlined, both because the calling code is eliminated, and 
also because of other consequential transformations that  are exposed. 

The other sorts of WHNF,  an atom or constructor application, is always small 
enough to inline. (Recall that  constructor applications must have atomic argu- 
ments.) 

For non-WHNFs, attention focuses on how the variable is used. If the variable 
occurs just once, then presumably it is safe to inline it. Our first approach was 
to perform a simple occurrence analysis tha t  records for each variable how many 
places it is used, and use this information to guide the inlinings done by the 
simplifier. There are three complications with this naive approach. 

The first is practical. As mentioned earlier, the simplifier tries to perform as many 
transformations as possible during a single pass over the program. However, 
many transformations (notably beta reduction and inlining itself) change the 
number of occurrences of a variable. Our current solution to this problem is 
to do a great deal of book-keeping to keep occurrence information up to date. 
(Appel & Jim [1996] does something similar.) 

The  second complication is that  a variable may occur multiple times with no risk 
of duplicating work, namely if the occurrences are in different alternatives of a 
case  expression. In this case, the only issue to consider is the tradeoff between 
code size and inlining benefit. 

Lastly, inlining based on naive occurrence counting is not W-safe! Consider this 
expression: 

let x = f i00 

g = \ y  -> . . . x . . .  
i n  . . . ( g  a ) . . . ( g  b ) . . .  

If we replace the single occurrence of x by ( f  100) we will recompute the call to 
f every t ime g is called, rather than sharing it among all calls to g. Our current 
solution is conservative: we never inline inside a lambda abstraction. It turns 
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out, though, that  this approach is sometimes too conservative. In higher-order 
programs where lots of inlining is happening, it is not unusual to find functions 
that  are sure to be called only once, so it would be perfectly safe to inline inside 
them. 

4.2 U s i n g  l i n e a r i t y  

Because of these complications, the book-keeping required to track occurrence 
information has gradually grown into the most intricate and bug-prone part  of 
the simplifier. Worse, work-duplication bugs manifest themselves only as per- 
formance problems, and may go unnoticed for a long time 3. This complexity 
is especially irritating because we have a strong intuitive notion of whether a 
variable can be "used more than once", and that  intuitive notion is an invariant 
of )~V-safe transformations. That  suggests that  a linear type system would be 
a good way to identify variables that  can safely be inlined, even though they 
occur inside lambdas, or that  cannot safely be inlined even though they (cur- 
rently) occur only once. Just as all transformations preserve the ordinary typing 
of an expression (Section 3.2) so W-safe transformations preserve the linear type 
information too, and hence guarantee not to duplicate work. 

Unfortunately, most linear type systems are inappropriate because they do not 
take account of call-by-need evaluation. For example, consider the expression 

let x = 3*4 
y = x+l 

iny+y 

Under call by need evaluation, even though y is evaluated many times, x will be 
evaluated only once. Most linear systems would be too conservative, and would 
attribute a non-linear type to x as well as y, preventing x from being inlined. 

Thus motivated, we have developed a linear type system that does take account 
of call by need evaluation (Wadler & Turner [1995]). The type system assigns 
a type of Int ~ to y in the above example, the superscript w indicating that y 
might be evaluated more than once. However, it assigns a type of Int I to x, 
indicating that x can be evaluated at most once, and hence can W-safely be 

inlined. 

The type system is capable of dealing with "usage polymorphism". For example, 
consider this definition of apply: 

apply f x -- f x 

In a particular application (apply g y), whether or not y is used more than 
once depends on whether g uses its argument more than once. So the type of 

3 One such bug caused the compiler, which is of course written in Haskell, to rebuild 
its symbol table from scratch every time a variable was looked up in the table. The 
compiler worked perfectly, albeit somewhat slowly, and it was months before we 
noticed (Sansom [1994])! 
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a p p l y  is 4 

Vu, v.W,/~. ( ~  - , / ~ )  ~ ~ ~ / ~  

The  two occurrences of a u indicate that  the usage u of g's argument is the same 
as tha t  of y. 

Our implementation of this linear type system is incomplete, so we do not yet 
have practical experience of its utility, but we are optimistic tha t  it will provide 
a systematic way of addressing an area we have only dealt with informally to 
date, and which has bitten us badly more than once. 

5 Transforming conditionals 

Most compilers have special rules to optimise conditionals. For example, consider 
the expression 

if (not x) then E1 else E2 

No decent compiler would actually negate the value of x at runtime! Let us 
see, then, what happens if we simply turn the transformation handle. After de- 
sugaring the conditional, and inlining the definition of not ,  we get 

case (case x of (True -> False; False -> True}) of 

True -> E1 

False -> E2 

Here, the outer case scrutinises the value returned by the inner case. This 
observation suggests that  we could move the outer case  inside the the branches 
of the inner one, thus: 

case x of 

True -> case False of (True -> El; False -> E2} 

False -> case True of (True -> El; False -> E2} 

Notice that  the originally-outer case expression has been duplicated, but each 
copy is now scrutinising a known value, and so we can make the obvious simpli- 
fication to get exactly what we might originally have hoped: 

c a s e  x o f  

True -> E2 

False -> E1 

Both of these transformations are generally applicable. The second, the case-of- 
known-constructor transformation, eliminates a case  expression tha t  scrutinises 
a known value. This is always a Good Thing, and many other transformations are 
aimed at exposing opportunities for such case  elimination. We consider another 
useful variant of case  elimination in Section 5.3. The first, which we call the 
case-of-case transformation, is certainly correct in general, but it appears to risk 
duplicating E1 and /or  E2. We turn to this question next. 

4 In fact, for the purposes of this paper we have simplified the type a little. 
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How can we gain the benefits of the case-of-case transformation without risking 
code duplication? A simple idea is to make local definitions for the right-hand 
sides of the outer case, like this: 

case (case S of {True -> RI; False -> R2}) of 
True -> E1 
False -> E2 

let el = El; e2 = E2 
in case S of 

True -> case R1 of {True -> el; False -> e2} 
False -> case R2 of {True -> el; False -> e2} 

Now E1 and E2 are not duplicated, though we incur instead the cost of imple- 
menting the bindings for el and e2. In the not example, though, the two inner 
cases are eliminated, leaving only a single occurrence of each of el and e2, so 
their definitions will be inlined leaving exactly the same result as before. 

We certainly cannot guarantee that the newly-introduced bindings will be elim- 
inated, though. Consider, for example, the expression: 

if (x [i y) then E1 else E2 

Here, I I is the boolean disjunction operation, defined thus: 

I[ = \a b -> case a of {True -> True; False -> b} 

De-sugaring the conditional and inlining I I gives: 

case (case x of {True -> True; False -> y}) of 
True -> El 
False -> E2 

Now applying the (new) case-of-case transformation: 

let el = El ; e2 = E2 
in case x of 

True -> case True of {True -> el; False -> e2} 
False -> case y of {True -> el; False -> e2} 

Unlike the not example, only one of the two inner cases simplifies, so only e2 
will certainly be inlined, because el is still mentioned twice: 

let el = E1 

in case x of 
True -> el 
False -> case y of {True -> el; False -> E2} 

The interesting thing here is that el plays exactly the role of a label in con- 
ventional compiler technology. Given the original conditional, a C compiler will 
"short-circuit" the evaluation of the condition if x turns out to be True gener- 
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ating code like: 

i f  (x) {goto 11); 
i f  (y) {goto 11); 
goto 12 ; 

11: . . . c o d e  fo r  E l . . . ;  goto 13 
12: ...code for E2... 

13: . . . 

Here, 11 is a label where two possible execution paths (if x is True or if x is 
False  and y is True) join up; we call it a "join point". That suggests in turn 
that our code generator should be able to implement the binding for el,  not 
by allocating a thunk as it would usually do, but rather by simply jumping to 
some common code (after perhaps adjusting the stack pointer) wherever e l  is 
subsequently evaluated. Our compiler does exactly this. Rather than somehow 
mark e l  as special, the code generator does a simple syntactic escape analysis 
to identify variables whose evaluation is certain to take place before the stack 
retreats, and implements their evaluation as a simple adjust-stack-and-jump. As 
a result we get essentially the same code as a C compiler for our conditional. 

Seen in this light, the act of inlining E2 is what a conventional compiler might 
call "jump elimination". A good C compiler would probably eliminate the jump 
to 12 thus: 

if (x) (goto ii); 

if (y) {goto 11}; 

12: ...code for E2... 

13: ... 

11: ...code for El... ; goto 13 

Back in the functional world, if E1 is small then the inliner might decide to 
inline e l  at its two occurrences regardless, thus eliminating a jump in favour of 
a slight increase in code size. Conventional compilers do this too, notably in the 
case where the code at the destination of a jump is just another jump, which 
would correspond in our setting to E1 being just a simple variable. 

The point is not that the transformations achieve anything that conventional 
compiler technology does not, but rather that a single mechanism (inlining), 
which is needed anyway, deals uniformly with jump elimination as well as its 
more conventional effects. 

5.2 General is ing join  points  

Does all this work generalise to data types other than booleans? At first one 
might think the answer is "yes, of course", but in fact the modified case-of-case 
transformation is simply nonsense if the originally-outer case expression binds 
any variables. For example, consider the expression 

f (if b then B1 else B2) 
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where f is defined thus: 

f = \as -> case as of {[] -> El; (b:bs) -> E2} 

De-sugaring the if and inlining f gives: 

case (case b of {True -> BI; False -> B2}) of 

[] -> El 

(b:bs) -> E2 

But now, since E2 may mention b and bs we cannot let-bind a new variable e2 

as we did before! The solution is simple, though: simply let-bind a function e2 
that takes b and/or bs as its arguments. Suppose, for example, that E2 mentions 
bs but not b. Then we can perform a case-of-case transformation thus: 

let el = El; e2 = \bs -> E2 
in case b of 

True -> case B1 of {[] -> el; (b:bs) -> e2 bs} 
False -> case B2 of {[] -> el; (b:bs) -> e2 bs} 

All the inlining mechanism discussed above for eliminating the binding for e2 

if possible works just as before. Furthermore, even if e2 is not inlined, the code 
generator can still implement e2 efficiently: a call to e2 is compiled to a code 

sequence that loads bs into a register, adjusts the stack pointer, and jumps to 

the join point. 

This goes beyond what conventional compiler technology achieves. Our join 
points can now be parameterised by arguments that embody the differences 
between the execution paths that led to that point. Better still, the whole setup 
works for arbitrary user-defined data types, not simply for booleans and lists. 

5.3 G e n e r a l i s i n g  case  e l i m i n a t i o n  

Earlier, we discussed the case-of-known-constructor transformation that  elimi- 
nates a case  expression. There is a useful variant of this transformation that  
also eliminates a case  expression. Consider the expression: 

if null xs then r else tail xs 

where null and tail are defined as you might expect: 

null = \as -> case as of {[] -> True; (b:bs) -> False) 
tail = \cs -> case cs of {[] -> error "tail"; (d:ds) -> ds} 

After the usual inlining we get: 

case (case xs of {[] -> True; (b:bs) -> False)) of 

True -> r 
False -> case xs of 

[] -> error "tail" 
(d:ds) -> ds 

Now we can do the case-of-case transformation as usual, giving after a few extra 

steps: 
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case xs of 

[3 -> r 

(b:bs) -> case xs of 

[] -> error "tail" 

(d:ds) -> ds 

Now, it is obvious that the inner evaluation of xs is redundant, because in 
the (b:bs) branch of the outer case we know that xs is certainly of the form 
(b: bs)! Hence we can eliminate the inner case, selecting the (d: ds) alternative, 
but substituting b for d and bs for ds:  

case xs of 

[] -> r 

(b:bs) ~> bs 

We will see another application of this form of case elimination in Section 6.1. 

5.4 S u m m a r y  

We have described a few of the most important transformations involving c a s e  

expressions, but there are quite a few more, including case merging, dead alter- 
native elimination, and default elimination. They are described in more detail 
by Santos [1995] who also provides measurements of their frequency. 

Like many good ideas, the case-of-case transformation - -  limited to booleans, 
but including the idea of using let-bound variables as join points - -  was incor- 
porated in Steele's Rabbit compiler for Scheme (Steele [1978]). We re-invented 
it, and generalised it for case expressions and parameterised join points, l e t -  
bound join points are also extremely useful when desugaring complex pattern 
matching. Lacking join points, most of the standard descriptions are complicated 
by a special FAIL value, along with special semantics and compilation rules, to 
express the "joining up" of several execution paths when a pattern fails to match 
(Augustsson [1987]; Peyton Jones [1987]). 

6 Unboxed data types and strictness analysis 

Consider the expression x+y, where x and y have type Int.  Because Core is non- 
strict, x and y must each be represented by a pointer to a possibly-unevaluated 
object. Even if x, say, is already evaluated, it will still therefore be represented by 
a pointer to a "boxed" value in the heap. The addition operation must evaluate 
x and y as necessary, unbox them, add them, and box the result. 

Where arithmetic operations are cascaded we would like to avoid boxing the 
result of one operation only to unbox it immediately in the next. Similarly, in 
the expression x+x we would like to avoid evaluating and unboxing x twice. 
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6.1 E x p o s i n g  b o x i n g  to  t r a n s f o r m a t i o n  

Such boxing/unboxing optimisations are usually carried out by the code gener- 
ator, but  it would be better to find a way to express them as program trans- 
formations. We have achieved this goal as follows. Instead of regarding the da ta  
types I n t ,  F l o a t  and so on as primitive, we define them using algebraic da ta  
type declarations: 

data Int = I# Int# 

data Float = F# Float# 

Here, I n t #  is the truly-primitive type of unboxed integers, and F l o a t #  is the 
type of unboxed floats. The constructors I# and F# are, in effect, the boxing 
operations. (The # characters are merely cues to the human reader; the com- 
piler treats # as part of a name, like any other letter.) Now we can express the 
previously-primitive + operation thus: 

+ = \a b -> case a of 

I# a# -> case b of 

I# b# -> case a# +# b# of 

r# -> I# r# 

where +# is the primitive addition operation on unboxed values. You can read 
this definition as "evaluate and unbox a, do the same to y, add the unboxed 
values giving r#, and return a boxed version thereof". 

Now, simple transformations do the Right Thing to x+x. We begin by inlining + 
to give: 

case x of 

I# a# -> case x of 

I# b# -> case a# +# b# of 

r# -> I# r# 

But now the inner case  can be eliminated (Section 5.3), since it is scrutinising 
a known value, x, giving the desired outcome: 

case x of 

I# a# -> case a# +# a# of 

r# -> I# r# 

Similar transformations (this time involving case-of-case) ensure that  in expres- 
sions such as (x+y)*z  the intermediate result is never boxed. The details are 
given by Peyton Jones & Launchbury [1991], but  the important  points are these: 

�9 By making the Core language somewhat more expressive (i.e. adding un- 
boxed data  types) we can expose many new evaluation and boxing operations 
to program transformation. 

�9 Rather  than a few ad hoc optimisations in the code generator, the full range 
of transformations can now be applied to the newly-exposed code. 
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�9 Optimising evaluation and unboxing may itself expose new transformation 
opportunities; for example, a function body may become small enough to 
inline. 

6.2 S t r i c t n e s s  analysis 

Strictness analysers at tempt to figure out whether a function is sure to evaluate 
its argument, giving the opportunity for the compiler to evaluate the argument 
before the call, instead of building a thunk that  is forced later on. There is an 
enormous literature on strictness analysis itself, but virtually none explaining 
how to exploit its results, apart from general remarks that the code generator 
can use it. Our approach is to express the results of strictness analysis as a 
program transformation, for exactly the reasons mentioned at the end of the 
previous section. 

As an example, consider the factorial function with an accumulating parameter, 
which in Haskell might look like this: 

a f a c  : :  I n t  -> I n t  -> I n t  
a f a c  a 0 = a 
a f a c  a n = a f a c  (n . a )  ( n - l )  

Translated into the Core language, it would take the following form: 

one = I# 1# 
a f a c  = \ a n  -> case  n of  

I# n# -> case n# of 

O# -> a 

n# ~ -> let a' = n,a; n ' = n-one 

in afac a ~ n ~ 

In a naive implementation this function sadly uses linear space to hold a growing 
chain of unevaluated thunks for a ' .  

Now, suppose that  the strictness analyser discovers that  a f a c  is strict in both its 
arguments. Based on this information we split it into two functions, a wrapper 
and a worker thus: 

a f a c  = \ a  n -> case  a of  I#  a# -> case  n of I# n# -> a f ac#  a# n# 

one = I# 1# 

afac# = \a# n# -> let n = I# n#; a = I# a# 

in case n of 

I# n# -> case n# of 

O# -> a 

n#' -> let a ' = n,a; n' = n-one 

in afac a ~ n ~ 

The wrapper, a fac ,  implements the original function by evaluating the strict 
arguments and passing them unboxed to the worker, afac#.  The wrapper is 
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also marked as "always-inline-me", which makes the simplifier extremely keen 
to inline it at  every call site, thereby effectively moving the argument  evaluation 
to the call site. 

The  code for the worker starts  by reconstructing the original arguments  in boxed 
form, and then concludes with the original unchanged code for a f ac .  Re-boxing 
the arguments  may be correct, but  it looks like a weird thing to do because 
the whole point was to avoid boxing the arguments at  all! Nevertheless, let us 
see what  happens when the simplifier goes to work on a fac# .  I t  just  inlines the 
definitions of *, - ,  and a f a c  itself,, and applies the t ransformations described 
earlier. A few moments  work should convince you tha t  the result is this: 

a f a c #  = \ a #  n# -> c a s e  n #  o f  

0# -> I#  a# 
n ' #  -> case  (n# *# a#) of  

a l #  -> case  (n# -#  1#) of  
n l #  -> a f a c #  a l #  n l #  

Bingo! a f a c #  is just what  we hoped for: a strict, constant-space, efficient facto- 
rial function. The  reboxing bindings have vanished, because a c a s e  elimination 
t ransformat ion has left them as dead code. Even the recursive call is made  di- 
rectly to a f ac# ,  rather than going via a f a c  - -  it is worth noticing the importance 
of inlining the wrapper in the body of the worker, even though the two are mu- 
tually recursive. Meanwhile, the wrapper a f a c  acts as an "impedance-matcher" 
to provide a boxed interface to a fac# .  

6 . 3  D a t a  s t r u c t u r e s  

We have found it very worthwhile to extend the strictness analyser a bit  further. 
Suppose we have the following function definition: 

f : :  ( I n t , I n t )  -> I n t  
f = \p -> E 

It  is relatively easy for the strictness analyser to discover not only f ' s  strictness 
in the pair p, but also f ' s  strictness in the two components  of the pair. For 
example,  suppose tha t  the strictness analyser discovers tha t  f is strict both  in 
p and in the first component  of p, but  not in the second. Given this information 
we can t ransform the definition of f into a worker and a wrapper  like this, 

f = \ p  - >  c a s e  p o f  ( x , y )  - >  c a s e  x o f  I #  x #  - >  f #  x #  y 

f#  = \x#  y -> l e t  x = I#  x#; p --- ( x , y )  
in  E 

The  pair is passed to the worker unboxed (i.e. the two components  are passed 
separately),  and so is the first component  of the pair. 

We soon learned that  looking inside (non-recursive) da ta  structures in this way 
exposed a new opportunity:  absence analysis. Wha t  if f does not use the second 
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component of the pair at all? Then it is a complete waste of t ime to pass y to f #  
at all. Whilst it is unusual for programmers to write functions with arguments 
tha t  are completely unused, it is rather common for them to write functions tha t  
do not use some parts of their arguments. We therefore perform both strictness 
analysis and absence analysis, and use the combined information to guide the 
worker/wrapper split. 

Matters are more complicated if the argument type is recursive or has more than 
one constructor. In these cases we are content simply to evaluate the argument 
before the call, as described in the next section. 

Notice the importance of type information to the whole endeavour. The type of a 
function guides the "resolution" of the strictness analysis, and the worker/wrapper 
splitting. 

6.4 S t r i c t  l e t  b i n d i n g s  

An important ,  but  less commonly discussed, outcome of strictness analysis is 
tha t  it is possible to tell whether a l e t  binding is strict; tha t  is, whether the 
variable bound by the l e t  is sure to be evaluated in the body. If so there is no 
need to build a thunk. Consider the expression: 

let x = R in E 

where x has type In t ,  and E is strict in x. Using a similar strategy to the 
worker/wrapper  scheme, we can transform to 

case  R of  { I# x# -> l e t  x = I# x# in  E } 

As before, the reboxing binding for x will be eliminated by subsequent transfor- 
mation. If x has a recursive or multi-constructor type then we transform instead 
to this: 

c a s e  R o f  { x ->  E } 

This expression simply generates code to evaluate R, bind the (boxed) result to x 
and then evaluate E. This is still an improvement over the original l e t  expression 
because no thunk is built. 

6.5 S u m m a r y  

Strictness analysis, exploited via unboxed data  types, is a very worth while anal- 
ysis and transformation. Even the relatively simple analyser we use improves ex- 
ecution t ime by 10-20~0 averaged across a wide range of programs (Peyton Jones 
& Par ta in  [1993]). 
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7 Othe r  G H C  t r ans fo rma t ions  

We have focused so far on three particular aspects of GHC's transformation sys- 
tem. This section briefly summarises the other main transformations performed 
by GHC: 

T h e  simplifier contains many more transformations than those described in 
Sections 4 and 5. A full list can be found in Peyton Jones & Santos [1994] 
and Santos [1995]; the latter also contains measurements of the frequency 
and usefulness of each transformation. 

The  specialiser uses partial evaluation to create specialised versions of over- 
loaded functions. 

Let - f loat ing is a group of transformations that concern the placement of l e t  
bindings, and hence determine where allocation occurs. There are three main 
let-floating transformations: 

�9 Floating inwards moves bindings as near their site of use as possible. 

�9 The full laziness transformation floats constant sub-expressions out of 
lambda abstractions (Hughes [1983]; Peyton Jones & Lester [1991]); it 
generalises the standard idea of loop-invariant code motion (Aho, Sethi 
& Ullman [1986]). 

�9 Local let-floating fine-tunes the location of each let binding. 

Details of all three are given by Peyton Jones, Partain & Santos [1996], 
along with detailed measurements. Let-floating alone gives an average im- 
provement in execution time of around 15%. 

E t a  expans ion  is an unexpectedly-useful transformation (Gill [1996, Chapter 
4]). We found that other transformations sometimes produce expressions of 
the form: 

let f = \x -> let ... in \y -> E 
in B 

If f is always applied to two arguments in B, then we can )'V-safely - that 
is, without risk of duplicating work - -  transform the expression to: 

let f ffi \x y -> let ... in E 

in B 

(It turns out that a lambda abstraction that binds multiple arguments can 
be implemented much more efficiently than a nested series of lambdas.) 
The most elegant way to achieve the transformation is to perform an eta- 
expansion - -  the opposite of eta reduction - -  on f 's  right hand side: 

\x -> R ~ \x a -> R a 

Once that is done, normal beta reduction will make the application to a 
"cancel" with the \y, to give the desired overall effect. 
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The crucial question is this: when is eta expansion guaranteed to be W-safe? 
Unsurprisingly, this turns out to be another fruitful application for the linear 
type system sketched in Section 4.2. 

Defores ta t ion  is a transformation that removes intermediate lists (Wadler 
[1990]). For example, in the expression sum (map double xs) an interme- 
diate list (map double xs) is created, only to be consumed immediately 
by sum. Successful deforestation removes this intermediate list, giving a sin- 
gle pass algorithm that traverses the list xs, doubling each element before 
adding it to the total. 

Full-blown Wadler-style deforestation for higher-order programs is difficult; 
the only example we know of is described by Marlow [1996] and even that 
does not work for large programs. Instead, we developed a new, more prac- 
tical, technique called short  cut deforestat ion (Gill, Launchbury & Pey- 
ton Jones [1993]). As the name implies, our method does not remove all 
intermediate lists, but in exchange it is relatively easy to implement. Gill 
[1996] describes the technique in detail, and gives measurements of its ef- 
fectiveness. Even on programs written without deforestation in mind the 
transformation reduces execution time by some 3% averaged over a range of 
programs. 

L a m b d a  lift ing is a well-known transformation that replaces local function 
declarations with global ones, by adding their free variables as extra param- 
eters (Johnsson [1985]). For example, consider the definition 

f = \x -> letrec g = \y -> ...x...y...g... 

in . . .g... 

Here, x is free in the definition of g. By adding x as an extra argument to g 

we can transform the definition to: 

f = \x  -> . . . ( g '  x ) . . .  
g '  = \x y -> . . . x . . . y . . . ( g '  x ) . . .  

Some back ends require lambda-lifted programs. Our code generator can han- 
dle local functions directly, so lambda lifting is not required. Even so, it turns 
out that lambda lifting is sometimes beneficial, but on other occasions the 
reverse  is the case. That is, the exact opposite of lambda lifting - -  lambda 
dropping, also known as the static argument transformation - -  sometimes 
improves performance. Santos [1995, Chapter 7] discusses the tradeoff in 
detail. GHC implements both lambda lifting and the static argument trans- 
formation. Each buys only a small performance gain (a percentage point or 
two) on average. 

The "average" performance improvements mentioned in this paper are geometric 
means taken over the large nof ib  suite of benchmark programs, many of which 
are real applications (Partain [1993]). They are emphatically not best-case results 
on toy programs! Nevertheless, they should be taken only as a crude summary 
of the general scale of the effect; the papers cited give much more detail. 
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8 Lessons and conclusions 

What  general lessons about compilation by transformation have we learned from 
our experience? 

T h e  i n t e r a c t i o n  o f  t h e o r y  a n d  p r a c t i c e  is genuine, not simply window dress- 
ing. Apart  from aspects already mentioned - -  second order lambda calculus, 
linear type systems, strictness and absence analysis - -  here are three other 
examples described elsewhere: 

�9 We make extensive use of monads (Wadler [1992]), particularly to express 
inpu t /ou tpu t  (Peyton Jones & Wadler [1993l) and stateful computat ion 
(Launchbury & Peyton Jones [1994]). 

�9 Parametricity, a deep semantic consequence of polymorphism, turns out  
to be crucial in establishing the correctness of cheap deforestation (Gill, 
Launchbury & Peyton Jones [1993]), and secure encapsulation of stateful 
computat ion (Launchbury & Peyton Jones [1994]). 

�9 GHC's  time and space profiler is based on a formal model of cost at tr ibu- 
tion (Sansom [1994]; Sansom & Peyton Jones [1995]), an unusual prop- 
erty for a highly operational activity such as profiling. In this case the 
implementation came first, but  the subtleties caused by non-strictness 
and higher-order functions practically drove us to despair, and forced us 
to develop a formal foundation. 

P l u g  a n d  p l a y  r ea l ly  works .  The modular nature of a transformational com- 
piler, and its late commitment to the order of transformation, is a big win. 
The ability to run a transformation pass twice (at least when going for max- 
imum optimisation) is sometimes very useful. 

T h e  " c a s c a d e  e f f ec t "  is i m p o r t a n t .  One transformation really does expose 
opportunities for another. Transformational passes are easier to write in the 
knowledge that  subsequent transformations can be relied on to "clean up" 
the result of a transformation. For example, a transformation that  wants to 
substitute x for y in an expression E can simply produce ( \y ->E)  x, leaving 
the simplifier to perform the substitution later. 

T h e  c o m p i l e r  n e e d s  a lot  o f  b u l l e t s  in i ts  gu n .  It is common for one par- 
ticular transformation to have a dramatic effect on a few programs, and a 
very modest effect on most others. There is no substitute for applying a large 
number of transformations, each of which will "hit" some programs. 

S o m e  n o n - o b v i o u s  t r a n s f o r m a t i o n s  a r e  i m p o r t a n t .  We found that  it was 
important  to add a significant number of obviously-correct transformations 
that  would never apply directly to any reasonable source program. For ex- 
ample: 

case (error "Wurble") of { ... } ===~ error "Wurble" 

(error is a function that  prints its argument string and halts execution. 
Semantically its value is just bottom.)  No programmer would write a case 
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expression that scrutinises a call to error ,  but such case expressions cer- 
tainly show up after transformation. For example, consider the expression 

if head xs then El else E2 

After de-sugaring, and inlining head we get: 

case (case xs of ( [] -> error "head"; p:ps -> p } of 
True -> El 
False -> E2 

Applying the case-of-case transformation (Section 5) makes (one copy of) 
the outer case scrutinise the call to error. 

Other examples of non-obvious transformations include eta expansion (Sec- 
tion 7) and absence analysis (Section 6.3). We identified these extra trans- 
formations by eye-bailing the code produced by the transformation system, 
looking for code that could be improved. 

Elegant generalisations of traditional optimisations have often cropped up, 
that either extend the "reach" of the optimisation, or express it as a spe- 
cial case of some other transformation that is already required. Examples 
include jump elimination, copy propagation, boolean short-circuiting, and 
loop-invariant code motion. Similar generalisations are discussed by Steele 
[19781 �9 

Main ta in ing  types  is a big win. It is sometimes tiresome, but never diffi- 
cult, for each transformation to maintain type correctness. On the other 
hand it is sometimes indispensable to know the type of an expression, no- 
tably during strictness analysis. 

Perhaps the largest single benefit came from an unexpected quarter: it is 
very easy to check a Core program for type correctness. While developing 
the compiler we run "Core Lint" (the Core type-checker) after every trans- 
formation pass, which turns out to be an outstandingly good way to detect 
incorrect transformations. Before we used Core Lint, bogus transformations 
usually led to a core dump when running the transformed program, followed 
by a long gdb hunt to isolate the cause. Now most bogus transformations 
are identified much earlier, and much more precisely. One of the dumbest 
things we did was to delay writing Core Lint. 

Cross-module optimisation is important .  Functional programmers make heavy 
use of libraries, abstract data types, and modules. It is essential that inlin- 
ing, strictness analysis, specialisation, and so on, work between modules. So 
far we have achieved this goal by generating increasingly baroque textual 
"interface files" to convey information from the exporting module to the 
importing one. As the information becomes more elaborate this approach 
is less and less attractive. Like the object-oriented community (Chambers, 
Dean & Grove [1995]), we regard a serious assault on global (cross-module) 
optimisation as the most plausible next "big win". 
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