
Compi l ing Haskell by Program Transformation:
A Report from the Trenches

Simon L Peyton Jones

Department of Computing Science, University of Glasgow, G12 8QQ
Email: simonpj �9 gla. ac. uk. Vy'VgV~: http: : I/www. dcs. gla. ac. uk/-s imonpj

Abstrac t . Many compilers do some of their work by means of correctness-
preserving, and hopefully performance-improving, program transforma-
tions. The Glasgow Haskell Compiler (GHC) takes this idea of "compi-
lation by transformation" as its war-cry, trying to express as much as
possible of the compilation process in the form of program transforma-
tions.

This paper reports on our practical experience of the transformational
approach to compilation, in the context of a substantial compiler.

1 Introduction

Using correctness-preserving transformations as a compiler optimisation is a
welI-established technique (Aho, Sethi & Ullman [1986]; Bacon, Graham & Sharp
[1994]). In the functional programming area especially, the idea of compilation
by transformation has received quite a bit of attention (Appel [1992]; Fradet
& Metayer [1991]; Kelsey [1989]; Kelsey & Hudak [1989]; Kranz [1988]; Steele
[1978]).

A transformational approach to compiler construction is attractive for two rea-
sons:

�9 Each transformation can be implemented, verified, and tested separately.
This leads to a more modular compiler design, in contrast to compilers that
consist of a few huge passes each of which accomplishes a great deal.

�9 In any framework (transformational or otherwise) each optimisation often
exposes new opportunities for other optimisations - - the "cascade effect".
This makes it difficult to decide a pr ior i what the best order to apply them
might be. In a transformational setting it is easy to "plug and play", by
re-ordering transformations, applying them more than once, or trading com-
pilation time for code quality by omitt ing some. It allows a late commitment
to phase ordering.

This paper reports on our experience in applying transformational techniques
in a particularly thorough-going way to the Glasgow Haskell Compiler (GHC)
(Peyton Jones et al. [1993]), a compiler for the non-strict functional language
Haskell (Hudak et al. [1992]). Among other things this paper may serve as a

19

useful jumping-off point, and annotated bibliography, for those interested in the
compiler.

A pervasive theme is the close interplay between theory and practice, a partic-
ularly satisfying aspect of functional-language research.

2 O v e r v i e w

Haskell is a non-strict, purely functional language. It is a relatively large lan-
guage, with a rich syntax and type system, designed for full-scale application
programming.

The overall structure of the compiler is conventional;

1. The front end parses the source, does scope analysis and type inference, and
translates the program into a small intermediate language called the Core
language. This latter stage is called de-sugaring.

2. The middle consists of a sequence of Core-to-Core transformations, and
forms the subject of this paper.

3. The back end code-generates the resulting Core program into C, whence it
is compiled to machine code (Peyton Jones [1992]).

To exploit the advantages of compilation by transformation mentioned above,
we have worked particularly hard to move work out of the front and back ends
- - especially the latter - - and re-express it in the form of a transformation. We
have taken the "plug and play" idea to an extreme, allowing the sequence of
transformation passes to be completely specified on the command line.

In practice, we find that transformations fall into two groups:

1. A large set of simple, local transformations (e.g. constant folding, beta re-
duction). These transformations are all implemented by a single relatively
complex compiler pass that we call the simplifier. The complexity arises from
the fact that the simplifier tries to perform as many transformations as possi-
ble during a single pass over the program, exploiting the "cascade effect". (It
would be unreasonably inefficient to perform just one at a time, starting from
the beginning each time.) Despite these efforts, the result of one simplifier
pass often still contains opportunities for further simplifier transformations,
so we apply the simplifier repeatedly until no further transformations occur
(with a set maximum to avoid pathological behaviour).

2. A small set of complex, global transformations (e.g. strictness analysis, spe-
cialising overloaded functions), each of which is implemented as a separate
pass. Most consist of an analysis phase, followed by a transformation pass
that uses the analysis results to identify appropriate sites for the transfor-
mation. Many also rely on a subsequent pass of the simplifier to "clean up"
the code they produce, thus avoiding the need to duplicate transformations
already embodied in the simplifier.

20

Rather than give a superficial overview of everything, we focus in this paper on
three aspects of our compiler that play a key role in compilation by transforma-
tion:

�9 The Core language itself (Section 3).

�9 Two groups of transformations implemented by the simplifier, inlining and
beta reduction (Section 4), and transformations involving case expressions
(Section 5).

�9 One global transformation pass, the one that performs and exploits strictness
analysis (Section 6).

We conclude with a brief enumeration of the other main transformations incor-
porated in GHC (Section 7), and a summary of the lessons we learned from our
experience (Section 8).

3 The Core language

The Core language clearly plays a pivotal role. Its syntax is given in Figure 1,
and consists essentially of the lambda calculus augmented with l e t and c a s e .

Though we do not give explicit syntax for them here, the Core language includes
algebraic data type declarations exactly as in any modern functional program-
ming language. For example, in Haskell one might declare the type of trees thus:

data Tree a = Leaf a i Branch (Tree a) (Tree a)

This declaration implicitly defines constructors Leaf and Branch, that are used
to construct data values, and can be used in the pattern of a case alternative.
Booleans, lists, and tuples are simply pre-declared algebraic data types:

data Boolean = False I True

data List a = Nil I Cons a (List a)

data Tuple3 a b c ffi T3 a b c -- One for each size of tuple

Throughout the paper we take a few liberties with the syntax: we allow ourselves
infix operators (e.g. E1 + E2), and special syntax for lists ([] for Nil and infix
: for Cons), and tuples (e.g. (a ,b ,c)) . We allow multiple definitions in a single
l e t expression to abbreviate a sequence of nested l e t expressions, and often use
layout instead of curly brackets and semicolons to delimit case alternatives. We
use an upper-case identifier, such as E, to denote an arbitrary expression.

3.1 T h e opera t iona l reading

The Core language is of course a functional language, and can be given the usual
denotational semantics. However, a Core program also has a direct operational
interpretation. If we are to reason about the usefulness of a transformation we
must have some model for how much it costs to execute it, so an operational
interpretation is very desirable.

21

Program

Binding

Expression

Atoms

Literals

Alternatives

Constr. alt

Literal alt

Default alt

P r o g --*

B i n d --,

I

E x p r

A t o m - *

I

L i t e r a l

A l t s ---}

I

Call -*

La i r ---,

D e f a u l t --*

I

B i n d l ; . . . ; B i n d n

v a t = E x p r

recvar l = S x p r l ; . . . ; y a r n = E x p r n

E z p r A t o m
E z p r t y

\ v a r l . . . ya rn -> E z p r

/ \ t y v a r l . . . t y v a r n -> E x p r

c a s e Expr of (Airs }
l e t B i n d in E x p r

con v a r l . . �9 yarn

p r i m v a r l , . �9 yarn
A t o m

?)at

L i t e r a l

i n t e g e r [f l o a t I . . .

C a l t l ; . . . ; Ca i rn ; D e f a u l t

Lair1 ; . . . ; Lalt,~ ; D e f a u l t

C o n va t1 . . . y a r n -> E~.pr

L i t e r a l -> E x p r

HoDef ault
v a t -> E z p r

n > l

Non-recursive
Recursive n > I

Application
Type application
Lambda abstraction
Type abstraction
Case expression
Local definition
Constructor n _> 0
Primitive n _> 0

Variable
Unbowed Object

n > O
n > O

n > O

Fig. 1. Syntax of the Core language

The operat ional model for Core requires a garbage-collected h e a p . The heap
contains:

* D a t a v a l u e s , such as list cells, tuples, booleans, integers, and so on.

e F u n c t i o n v a l u e s , such as \x -> x+l (the function tha t adds 1 to its argu-
ment).

e T h u n k s (or suspensions), tha t represent suspended (i.e. as yet unevaluated)
values.

Thunks are the implementat ion mechanism for Haskell 's non-strict semantics.
For example, consider the Haskell expression f (s i n x) y. Translated to Core
the expression would look like this:

l e t v = s i n x

22

in f v y

The l e t allocates a thunk in the heap for s i n x and then, when it subsequently
calls f , passes a pointer to the thunk. The thunk records all the information
needed to compute its body, s i n x in this case, but it is not evaluated before
the call. If f ever needs the value of v it will force the thunk which provokes
the computat ion of s i n x. When the thunk's evaluation is complete the thunk
itself is updated (i.e. overwritten) with the now-computed value. If f needs the
value of v again, the heap object now contains its value instead of the suspended
computation. If f never needs v then the thunk is not evaluated at all.

The two most important operational intuitions about Core are as follows:

1. l e t bindings (and only l e t bindings) perform heap allocation. For example:

let v = sin x

in
let w = (p,q)

in
f vw

Operationally, the first l e t allocates a thunk for s i n x, and then evaluates
the l e t ' s body. This body consists of the second l e t expression, which al-
locates a pair (p, q) in the heap, and then evaluates its body in turn. This
body consists of the call f v w, so the call is now made, passing pointers to
the two newly-allocated objects.

In our implementation, each allocated object (be it a thunk or a value)
consists only of a code pointer together with a slot for each free variable of the
right-hand side of the l e t binding. Only one object is allocated, regardless of
the size of the right-hand side (older implementations of graph reduction do
not have this property). We do not a t tempt to share environments between
thunks (hppel [1992]; Kranz et al. [1986]).

2. ca se expressions (and only case expressions) perform evaluation.
For example:

case x of

C] -> 0

(y:ys) -> y + g ys

The operational understanding is "evaluate x, and then scrutinise it to see
whether it is an empty list, [], or a Cons cell of form (y:ys), continuing

execution with the appropriate alternative".

case expressions subsume conditionals, of course. The Haskell expression

if C El E2 is de-sugared to

case C of {True -> El; False -> E2}

The syntax in Figure 1 requires that function arguments must be atoms I (that

1 This syntax is becoming quite widely used (Ariola et al. [1995]; Flanagan et al. [1993];
Flanagan et al. [1993]; Launchbury [1993]; Peyton Jones [1992]).

23

is, variables or literals), and now we can see why. If the language allowed us to
write

f (s i n x) (p , q)

the operational behaviour would still be exactly as described in (1) above, with
a thunk and a pair allocated as before. The l e t form is simply more explicit.
Furthermore, the l e t form gives us the opportuni ty of moving the binding for v
elsewhere, if that turns out to be desirable, which the apparently-simpler form
does not. Lastly, the l e t form is more economical, because many transforma-
tions on l e t expressions (concerning strictness, for example) would have to be
duplicated for function arguments if the latter were non-atomic.

It is also important to note where atoms are not required. In particular, the
scrutinee of a case expression is an arbitrary expression, not just an atom. For
example, the following is quite legitimate:

c a s e (r e v e r s e x s) o f { . . . }

Operationally, there is no need to build a thunk for r e v e r s e x s and then evalu-
ate it; rather, we can simply save a return address and call r e v e r s e xs . Again,
the operational model determines the syntax.

3.2 P o l y m o r p h i s m

Like any compiler for a strongly-typed language, GHC infers the type of every
expression and variable. An obvious question is: can this type assignment be
maintained through the translation to the Core language, and through all the
subsequent transformations that are applied to the program? If so, both transfor-
mations and code generator might (and in GHC sometimes do) take advantage
of type information to generate better code.

In a monomorphic language the answer is a clear "yes", but matters are not
initially so clear in a polymorphic setting. The trouble is tha t program transfor-
mation involves type manipulation. Consider, for example, the usual composition
function, compose, whose type is

c o m p o s e :: - -* - -* 8) - -* - *

The function might be defined like this in an untyped Core language:

compose = \f g x -> let y = g x in f y

Now, suppose that we wished to unfold a particular call to compose, say

compose show double v

where v is an In t , double doubles it, and show converts the result to a S t r i n g .
The result of unfolding the call to compose is an instance of the body of compose ,

thus:

let y = double v in show y

24

Now, we want to be able to identify the type of every variable and sub-expression,
so we must calculate the type of y. In this case, it has type In t , but in another
application of compose it may have a different type. All this is because its type
in the body of compose itself is just a type variable, f~. It is clear that in a
polymorphic world it is insufficient merely to tag every variable of the original
program with its type, because this information does not survive across program
transformations.

What , then, is to be done? Clearly, the program must be decorated with type
information in some way, and every program transformation must be sure to
preserve it. Deciding exactly how to decorate the program, and how to maintain
these decorations correctly during transformation, seemed rather difficult at first.
We finally realised that an off-the-shelf solution was available, namely the second-
order lambda calculus (Girard [1971]; Reynolds [1974]).

The idea is tha t every polymorphic function, such as compose has a type ab-
straction for each universally-quantified polymorphic variable in its type (a, ~,
and 7 in the case of compose), and whenever a polymorphic function is called,
it is passed extra type arguments to indicate the types to which its polymorphic
type variables are to be instantiated. The definition of compose now becomes:

compose = /\a b c ->
\f::(b->c) g::(a->b) x: :a ->

let y: :b = g x in f y

The function takes three type parameters (a, b and c), as well as its value pa-
rameters f , g and x. The types of the latter can now be given explicitly, as can
the type of the local variable y. A call of compose is now given three extra type
arguments, which instantiate a, b and c just as the "normal" arguments instan-
t iate f , g and x. For example, the call of compose we looked at earlier is now
written like this:

compose Int Int String show double v

It is now simple to unfold this call, by instantiating the body of compose with
the supplied arguments, to give the expression

let y::Int = double v in show y

Notice that the let-bound variable y is now automatically attributed the correct
type.

In short, the second-order lambda calculus provides us with a well-founded no-
tation in which to express and transform polymorphically-typed programs. It
turns out to be easy to introduce the extra type abstractions and applications
as part of the type inference process.

Other compilers for polymorphic languages are beginning to carry type informa-
tion through to the back end, and use it to generate better code. Shao & Appel
[1995] use type information to improve data representation, though the system
they describe is monomorphic after the front end. Our implementation uses type
abstractions and applications only to keep the compiler's types straight; no types

25

are passed at runtime. It is possible to take the idea further, however, and pass
types at runtime to specialise data representations (Morrison et al. [1991]), give
fast access to polymorphic records (Ohori [1992]), guide garbage collection (Tol-
mach [1994]). The most recent and sophisticated work is Harper & Morrisett
[1995].

4 I n l i n i n g a n d b e t a r e d u c t i o n

Functional programs often consist of a myriad of small functions - - functional
programmers treat functions the way C programmers treat macros - - so good
inlining is crucial. Compilers for conventional languages get 10-15~0 performance
improvement from inlining (Davidson & Holler [1988]), while functional language
compilers gain 20-40% 2 (Appel [1992]; Santos [1995]). Inlining removes some
function-call overhead, of course, but an equally important factor is that inlining
brings together code that was previously separated, and thereby often exposes
a cascade of new transformation opportunities. We therefore implement inlining
in the simplifier.

We have found it useful to identify three distinct transformations related to
inlining:

InUning itseff replaces an occurrence of a le t-bound variable by (a copy of)
the right-hand side of its definition. Notice that inlining is not limited to
function definitions; any let-bound variable can potentially be inlined. (Re-
member, though, that occurrences of a variable in an argument position are
not candidates for inlining, because they are constrained to be atomic.)

Dead code e l iminat ion discards l o t bindings that are no longer used; this
usually occurs when all occurrences of a variable have been inlined.

B e t a r educ t ion replaces (\x->E) h by E[h/x]. (An analogous transformation
deals with type applications.)

Beta reduction is particularly simple in our setting. Since the argument A is
bound to be atomic, there is no risk of duplicating a redex, and we can simply
replace x by A throughout E. There is a worry about name capture, however:
what if a is also bound in E? We avoid this problem by the simple expedient
of renaming every identifier as we go, which costs little extra since we have
to construct a new, transformed expression anyway. Whilst beta reduction is
simple, inlining is more interesting.

4.1 Simple inllning

It is useful to distinguish two cases of inlining:

2 This difference may soon decrease as the increased use of object-oriented languages
leads to finer-gained procedures (Calder, Grunwald g~ Zorn [1994]).

26

W H N F s . If the variable concerned is bound to a weak head normal form
(WHNF) - - that is, an atom, lambda abstraction or constructor applica-
tion - - then it can be inlined without risking the duplication of work. The
only down-side might be an increase in code size.

N o n - W H N F s . Otherwise, inlining carries the risk of loss of sharing and hence
the duplication of work. For example,

let x = f I00 in ...x...x...

it might be be unwise to inline x, because then f 100 would be evaluated
twice instead of once. Informally, we say that a transformation is)4P-sale if
it guarantees not to duplicate work.

In the case of WHNFs everything is as one would expect. The trade-off is between
code size and the benefit of inlining and, like any compiler, we have a variety
of heuristics (but no formal analysis) for deciding when a function is "small
enough" to inline. Many functions are "small", though, and code size can actually
decrease when they are inlined, both because the calling code is eliminated, and
also because of other consequential transformations that are exposed.

The other sorts of WHNF, an atom or constructor application, is always small
enough to inline. (Recall that constructor applications must have atomic argu-
ments.)

For non-WHNFs, attention focuses on how the variable is used. If the variable
occurs just once, then presumably it is safe to inline it. Our first approach was
to perform a simple occurrence analysis tha t records for each variable how many
places it is used, and use this information to guide the inlinings done by the
simplifier. There are three complications with this naive approach.

The first is practical. As mentioned earlier, the simplifier tries to perform as many
transformations as possible during a single pass over the program. However,
many transformations (notably beta reduction and inlining itself) change the
number of occurrences of a variable. Our current solution to this problem is
to do a great deal of book-keeping to keep occurrence information up to date.
(Appel & Jim [1996] does something similar.)

The second complication is that a variable may occur multiple times with no risk
of duplicating work, namely if the occurrences are in different alternatives of a
case expression. In this case, the only issue to consider is the tradeoff between
code size and inlining benefit.

Lastly, inlining based on naive occurrence counting is not W-safe! Consider this
expression:

let x = f i00

g = \ y -> . . . x . . .
i n . . . (g a) . . . (g b) . . .

If we replace the single occurrence of x by (f 100) we will recompute the call to
f every t ime g is called, rather than sharing it among all calls to g. Our current
solution is conservative: we never inline inside a lambda abstraction. It turns

27

out, though, that this approach is sometimes too conservative. In higher-order
programs where lots of inlining is happening, it is not unusual to find functions
that are sure to be called only once, so it would be perfectly safe to inline inside
them.

4.2 U s i n g l i n e a r i t y

Because of these complications, the book-keeping required to track occurrence
information has gradually grown into the most intricate and bug-prone part of
the simplifier. Worse, work-duplication bugs manifest themselves only as per-
formance problems, and may go unnoticed for a long time 3. This complexity
is especially irritating because we have a strong intuitive notion of whether a
variable can be "used more than once", and that intuitive notion is an invariant
of)~V-safe transformations. That suggests that a linear type system would be
a good way to identify variables that can safely be inlined, even though they
occur inside lambdas, or that cannot safely be inlined even though they (cur-
rently) occur only once. Just as all transformations preserve the ordinary typing
of an expression (Section 3.2) so W-safe transformations preserve the linear type
information too, and hence guarantee not to duplicate work.

Unfortunately, most linear type systems are inappropriate because they do not
take account of call-by-need evaluation. For example, consider the expression

let x = 3*4
y = x+l

iny+y

Under call by need evaluation, even though y is evaluated many times, x will be
evaluated only once. Most linear systems would be too conservative, and would
attribute a non-linear type to x as well as y, preventing x from being inlined.

Thus motivated, we have developed a linear type system that does take account
of call by need evaluation (Wadler & Turner [1995]). The type system assigns
a type of Int ~ to y in the above example, the superscript w indicating that y
might be evaluated more than once. However, it assigns a type of Int I to x,
indicating that x can be evaluated at most once, and hence can W-safely be

inlined.

The type system is capable of dealing with "usage polymorphism". For example,
consider this definition of apply:

apply f x -- f x

In a particular application (apply g y), whether or not y is used more than
once depends on whether g uses its argument more than once. So the type of

3 One such bug caused the compiler, which is of course written in Haskell, to rebuild
its symbol table from scratch every time a variable was looked up in the table. The
compiler worked perfectly, albeit somewhat slowly, and it was months before we
noticed (Sansom [1994])!

28

a p p l y is 4

Vu, v.W,/~. (~ - , / ~) ~ ~ ~ / ~

The two occurrences of a u indicate that the usage u of g's argument is the same
as tha t of y.

Our implementation of this linear type system is incomplete, so we do not yet
have practical experience of its utility, but we are optimistic tha t it will provide
a systematic way of addressing an area we have only dealt with informally to
date, and which has bitten us badly more than once.

5 Transforming conditionals

Most compilers have special rules to optimise conditionals. For example, consider
the expression

if (not x) then E1 else E2

No decent compiler would actually negate the value of x at runtime! Let us
see, then, what happens if we simply turn the transformation handle. After de-
sugaring the conditional, and inlining the definition of not , we get

case (case x of (True -> False; False -> True}) of

True -> E1

False -> E2

Here, the outer case scrutinises the value returned by the inner case. This
observation suggests that we could move the outer case inside the the branches
of the inner one, thus:

case x of

True -> case False of (True -> El; False -> E2}

False -> case True of (True -> El; False -> E2}

Notice that the originally-outer case expression has been duplicated, but each
copy is now scrutinising a known value, and so we can make the obvious simpli-
fication to get exactly what we might originally have hoped:

c a s e x o f

True -> E2

False -> E1

Both of these transformations are generally applicable. The second, the case-of-
known-constructor transformation, eliminates a case expression tha t scrutinises
a known value. This is always a Good Thing, and many other transformations are
aimed at exposing opportunities for such case elimination. We consider another
useful variant of case elimination in Section 5.3. The first, which we call the
case-of-case transformation, is certainly correct in general, but it appears to risk
duplicating E1 and /or E2. We turn to this question next.

4 In fact, for the purposes of this paper we have simplified the type a little.

5.1 Jo in points

29

How can we gain the benefits of the case-of-case transformation without risking
code duplication? A simple idea is to make local definitions for the right-hand
sides of the outer case, like this:

case (case S of {True -> RI; False -> R2}) of
True -> E1
False -> E2

let el = El; e2 = E2
in case S of

True -> case R1 of {True -> el; False -> e2}
False -> case R2 of {True -> el; False -> e2}

Now E1 and E2 are not duplicated, though we incur instead the cost of imple-
menting the bindings for el and e2. In the not example, though, the two inner
cases are eliminated, leaving only a single occurrence of each of el and e2, so
their definitions will be inlined leaving exactly the same result as before.

We certainly cannot guarantee that the newly-introduced bindings will be elim-
inated, though. Consider, for example, the expression:

if (x [i y) then E1 else E2

Here, I I is the boolean disjunction operation, defined thus:

I[= \a b -> case a of {True -> True; False -> b}

De-sugaring the conditional and inlining I I gives:

case (case x of {True -> True; False -> y}) of
True -> El
False -> E2

Now applying the (new) case-of-case transformation:

let el = El ; e2 = E2
in case x of

True -> case True of {True -> el; False -> e2}
False -> case y of {True -> el; False -> e2}

Unlike the not example, only one of the two inner cases simplifies, so only e2
will certainly be inlined, because el is still mentioned twice:

let el = E1

in case x of
True -> el
False -> case y of {True -> el; False -> E2}

The interesting thing here is that el plays exactly the role of a label in con-
ventional compiler technology. Given the original conditional, a C compiler will
"short-circuit" the evaluation of the condition if x turns out to be True gener-

30

ating code like:

i f (x) {goto 11);
i f (y) {goto 11);
goto 12 ;

11: . . . c o d e fo r E l . . . ; goto 13
12: ...code for E2...

13: . . .

Here, 11 is a label where two possible execution paths (if x is True or if x is
False and y is True) join up; we call it a "join point". That suggests in turn
that our code generator should be able to implement the binding for el, not
by allocating a thunk as it would usually do, but rather by simply jumping to
some common code (after perhaps adjusting the stack pointer) wherever e l is
subsequently evaluated. Our compiler does exactly this. Rather than somehow
mark e l as special, the code generator does a simple syntactic escape analysis
to identify variables whose evaluation is certain to take place before the stack
retreats, and implements their evaluation as a simple adjust-stack-and-jump. As
a result we get essentially the same code as a C compiler for our conditional.

Seen in this light, the act of inlining E2 is what a conventional compiler might
call "jump elimination". A good C compiler would probably eliminate the jump
to 12 thus:

if (x) (goto ii);

if (y) {goto 11};

12: ...code for E2...

13: ...

11: ...code for El... ; goto 13

Back in the functional world, if E1 is small then the inliner might decide to
inline e l at its two occurrences regardless, thus eliminating a jump in favour of
a slight increase in code size. Conventional compilers do this too, notably in the
case where the code at the destination of a jump is just another jump, which
would correspond in our setting to E1 being just a simple variable.

The point is not that the transformations achieve anything that conventional
compiler technology does not, but rather that a single mechanism (inlining),
which is needed anyway, deals uniformly with jump elimination as well as its
more conventional effects.

5.2 General is ing join points

Does all this work generalise to data types other than booleans? At first one
might think the answer is "yes, of course", but in fact the modified case-of-case
transformation is simply nonsense if the originally-outer case expression binds
any variables. For example, consider the expression

f (if b then B1 else B2)

31

where f is defined thus:

f = \as -> case as of {[] -> El; (b:bs) -> E2}

De-sugaring the if and inlining f gives:

case (case b of {True -> BI; False -> B2}) of

[] -> El

(b:bs) -> E2

But now, since E2 may mention b and bs we cannot let-bind a new variable e2

as we did before! The solution is simple, though: simply let-bind a function e2
that takes b and/or bs as its arguments. Suppose, for example, that E2 mentions
bs but not b. Then we can perform a case-of-case transformation thus:

let el = El; e2 = \bs -> E2
in case b of

True -> case B1 of {[] -> el; (b:bs) -> e2 bs}
False -> case B2 of {[] -> el; (b:bs) -> e2 bs}

All the inlining mechanism discussed above for eliminating the binding for e2

if possible works just as before. Furthermore, even if e2 is not inlined, the code
generator can still implement e2 efficiently: a call to e2 is compiled to a code

sequence that loads bs into a register, adjusts the stack pointer, and jumps to

the join point.

This goes beyond what conventional compiler technology achieves. Our join
points can now be parameterised by arguments that embody the differences
between the execution paths that led to that point. Better still, the whole setup
works for arbitrary user-defined data types, not simply for booleans and lists.

5.3 G e n e r a l i s i n g case e l i m i n a t i o n

Earlier, we discussed the case-of-known-constructor transformation that elimi-
nates a case expression. There is a useful variant of this transformation that
also eliminates a case expression. Consider the expression:

if null xs then r else tail xs

where null and tail are defined as you might expect:

null = \as -> case as of {[] -> True; (b:bs) -> False)
tail = \cs -> case cs of {[] -> error "tail"; (d:ds) -> ds}

After the usual inlining we get:

case (case xs of {[] -> True; (b:bs) -> False)) of

True -> r
False -> case xs of

[] -> error "tail"
(d:ds) -> ds

Now we can do the case-of-case transformation as usual, giving after a few extra

steps:

32

case xs of

[3 -> r

(b:bs) -> case xs of

[] -> error "tail"

(d:ds) -> ds

Now, it is obvious that the inner evaluation of xs is redundant, because in
the (b:bs) branch of the outer case we know that xs is certainly of the form
(b: bs)! Hence we can eliminate the inner case, selecting the (d: ds) alternative,
but substituting b for d and bs for ds:

case xs of

[] -> r

(b:bs) ~> bs

We will see another application of this form of case elimination in Section 6.1.

5.4 S u m m a r y

We have described a few of the most important transformations involving c a s e

expressions, but there are quite a few more, including case merging, dead alter-
native elimination, and default elimination. They are described in more detail
by Santos [1995] who also provides measurements of their frequency.

Like many good ideas, the case-of-case transformation - - limited to booleans,
but including the idea of using let-bound variables as join points - - was incor-
porated in Steele's Rabbit compiler for Scheme (Steele [1978]). We re-invented
it, and generalised it for case expressions and parameterised join points, l e t -
bound join points are also extremely useful when desugaring complex pattern
matching. Lacking join points, most of the standard descriptions are complicated
by a special FAIL value, along with special semantics and compilation rules, to
express the "joining up" of several execution paths when a pattern fails to match
(Augustsson [1987]; Peyton Jones [1987]).

6 Unboxed data types and strictness analysis

Consider the expression x+y, where x and y have type Int. Because Core is non-
strict, x and y must each be represented by a pointer to a possibly-unevaluated
object. Even if x, say, is already evaluated, it will still therefore be represented by
a pointer to a "boxed" value in the heap. The addition operation must evaluate
x and y as necessary, unbox them, add them, and box the result.

Where arithmetic operations are cascaded we would like to avoid boxing the
result of one operation only to unbox it immediately in the next. Similarly, in
the expression x+x we would like to avoid evaluating and unboxing x twice.

33

6.1 E x p o s i n g b o x i n g to t r a n s f o r m a t i o n

Such boxing/unboxing optimisations are usually carried out by the code gener-
ator, but it would be better to find a way to express them as program trans-
formations. We have achieved this goal as follows. Instead of regarding the da ta
types I n t , F l o a t and so on as primitive, we define them using algebraic da ta
type declarations:

data Int = I# Int#

data Float = F# Float#

Here, I n t # is the truly-primitive type of unboxed integers, and F l o a t # is the
type of unboxed floats. The constructors I# and F# are, in effect, the boxing
operations. (The # characters are merely cues to the human reader; the com-
piler treats # as part of a name, like any other letter.) Now we can express the
previously-primitive + operation thus:

+ = \a b -> case a of

I# a# -> case b of

I# b# -> case a# +# b# of

r# -> I# r#

where +# is the primitive addition operation on unboxed values. You can read
this definition as "evaluate and unbox a, do the same to y, add the unboxed
values giving r#, and return a boxed version thereof".

Now, simple transformations do the Right Thing to x+x. We begin by inlining +
to give:

case x of

I# a# -> case x of

I# b# -> case a# +# b# of

r# -> I# r#

But now the inner case can be eliminated (Section 5.3), since it is scrutinising
a known value, x, giving the desired outcome:

case x of

I# a# -> case a# +# a# of

r# -> I# r#

Similar transformations (this time involving case-of-case) ensure that in expres-
sions such as (x+y)*z the intermediate result is never boxed. The details are
given by Peyton Jones & Launchbury [1991], but the important points are these:

�9 By making the Core language somewhat more expressive (i.e. adding un-
boxed data types) we can expose many new evaluation and boxing operations
to program transformation.

�9 Rather than a few ad hoc optimisations in the code generator, the full range
of transformations can now be applied to the newly-exposed code.

34

�9 Optimising evaluation and unboxing may itself expose new transformation
opportunities; for example, a function body may become small enough to
inline.

6.2 S t r i c t n e s s analysis

Strictness analysers at tempt to figure out whether a function is sure to evaluate
its argument, giving the opportunity for the compiler to evaluate the argument
before the call, instead of building a thunk that is forced later on. There is an
enormous literature on strictness analysis itself, but virtually none explaining
how to exploit its results, apart from general remarks that the code generator
can use it. Our approach is to express the results of strictness analysis as a
program transformation, for exactly the reasons mentioned at the end of the
previous section.

As an example, consider the factorial function with an accumulating parameter,
which in Haskell might look like this:

a f a c : : I n t -> I n t -> I n t
a f a c a 0 = a
a f a c a n = a f a c (n . a) (n - l)

Translated into the Core language, it would take the following form:

one = I# 1#
a f a c = \ a n -> case n of

I# n# -> case n# of

O# -> a

n# ~ -> let a' = n,a; n ' = n-one

in afac a ~ n ~

In a naive implementation this function sadly uses linear space to hold a growing
chain of unevaluated thunks for a ' .

Now, suppose that the strictness analyser discovers that a f a c is strict in both its
arguments. Based on this information we split it into two functions, a wrapper
and a worker thus:

a f a c = \ a n -> case a of I# a# -> case n of I# n# -> a f ac# a# n#

one = I# 1#

afac# = \a# n# -> let n = I# n#; a = I# a#

in case n of

I# n# -> case n# of

O# -> a

n#' -> let a ' = n,a; n' = n-one

in afac a ~ n ~

The wrapper, a fac , implements the original function by evaluating the strict
arguments and passing them unboxed to the worker, afac#. The wrapper is

35

also marked as "always-inline-me", which makes the simplifier extremely keen
to inline it at every call site, thereby effectively moving the argument evaluation
to the call site.

The code for the worker starts by reconstructing the original arguments in boxed
form, and then concludes with the original unchanged code for a f ac . Re-boxing
the arguments may be correct, but it looks like a weird thing to do because
the whole point was to avoid boxing the arguments at all! Nevertheless, let us
see what happens when the simplifier goes to work on a fac# . I t just inlines the
definitions of *, - , and a f a c itself,, and applies the t ransformations described
earlier. A few moments work should convince you tha t the result is this:

a f a c # = \ a # n# -> c a s e n # o f

0# -> I# a#
n ' # -> case (n# *# a#) of

a l # -> case (n# -# 1#) of
n l # -> a f a c # a l # n l #

Bingo! a f a c # is just what we hoped for: a strict, constant-space, efficient facto-
rial function. The reboxing bindings have vanished, because a c a s e elimination
t ransformat ion has left them as dead code. Even the recursive call is made di-
rectly to a f ac# , rather than going via a f a c - - it is worth noticing the importance
of inlining the wrapper in the body of the worker, even though the two are mu-
tually recursive. Meanwhile, the wrapper a f a c acts as an "impedance-matcher"
to provide a boxed interface to a fac# .

6 . 3 D a t a s t r u c t u r e s

We have found it very worthwhile to extend the strictness analyser a bit further.
Suppose we have the following function definition:

f : : (I n t , I n t) -> I n t
f = \p -> E

It is relatively easy for the strictness analyser to discover not only f ' s strictness
in the pair p, but also f ' s strictness in the two components of the pair. For
example, suppose tha t the strictness analyser discovers tha t f is strict both in
p and in the first component of p, but not in the second. Given this information
we can t ransform the definition of f into a worker and a wrapper like this,

f = \ p - > c a s e p o f (x , y) - > c a s e x o f I # x # - > f # x # y

f# = \x# y -> l e t x = I# x#; p --- (x , y)
in E

The pair is passed to the worker unboxed (i.e. the two components are passed
separately), and so is the first component of the pair.

We soon learned that looking inside (non-recursive) da ta structures in this way
exposed a new opportunity: absence analysis. Wha t if f does not use the second

36

component of the pair at all? Then it is a complete waste of t ime to pass y to f #
at all. Whilst it is unusual for programmers to write functions with arguments
tha t are completely unused, it is rather common for them to write functions tha t
do not use some parts of their arguments. We therefore perform both strictness
analysis and absence analysis, and use the combined information to guide the
worker/wrapper split.

Matters are more complicated if the argument type is recursive or has more than
one constructor. In these cases we are content simply to evaluate the argument
before the call, as described in the next section.

Notice the importance of type information to the whole endeavour. The type of a
function guides the "resolution" of the strictness analysis, and the worker/wrapper
splitting.

6.4 S t r i c t l e t b i n d i n g s

An important , but less commonly discussed, outcome of strictness analysis is
tha t it is possible to tell whether a l e t binding is strict; tha t is, whether the
variable bound by the l e t is sure to be evaluated in the body. If so there is no
need to build a thunk. Consider the expression:

let x = R in E

where x has type In t , and E is strict in x. Using a similar strategy to the
worker/wrapper scheme, we can transform to

case R of { I# x# -> l e t x = I# x# in E }

As before, the reboxing binding for x will be eliminated by subsequent transfor-
mation. If x has a recursive or multi-constructor type then we transform instead
to this:

c a s e R o f { x -> E }

This expression simply generates code to evaluate R, bind the (boxed) result to x
and then evaluate E. This is still an improvement over the original l e t expression
because no thunk is built.

6.5 S u m m a r y

Strictness analysis, exploited via unboxed data types, is a very worth while anal-
ysis and transformation. Even the relatively simple analyser we use improves ex-
ecution t ime by 10-20~0 averaged across a wide range of programs (Peyton Jones
& Par ta in [1993]).

37

7 Othe r G H C t r ans fo rma t ions

We have focused so far on three particular aspects of GHC's transformation sys-
tem. This section briefly summarises the other main transformations performed
by GHC:

T h e simplifier contains many more transformations than those described in
Sections 4 and 5. A full list can be found in Peyton Jones & Santos [1994]
and Santos [1995]; the latter also contains measurements of the frequency
and usefulness of each transformation.

The specialiser uses partial evaluation to create specialised versions of over-
loaded functions.

Let - f loat ing is a group of transformations that concern the placement of l e t
bindings, and hence determine where allocation occurs. There are three main
let-floating transformations:

�9 Floating inwards moves bindings as near their site of use as possible.

�9 The full laziness transformation floats constant sub-expressions out of
lambda abstractions (Hughes [1983]; Peyton Jones & Lester [1991]); it
generalises the standard idea of loop-invariant code motion (Aho, Sethi
& Ullman [1986]).

�9 Local let-floating fine-tunes the location of each let binding.

Details of all three are given by Peyton Jones, Partain & Santos [1996],
along with detailed measurements. Let-floating alone gives an average im-
provement in execution time of around 15%.

E t a expans ion is an unexpectedly-useful transformation (Gill [1996, Chapter
4]). We found that other transformations sometimes produce expressions of
the form:

let f = \x -> let ... in \y -> E
in B

If f is always applied to two arguments in B, then we can)'V-safely - that
is, without risk of duplicating work - - transform the expression to:

let f ffi \x y -> let ... in E

in B

(It turns out that a lambda abstraction that binds multiple arguments can
be implemented much more efficiently than a nested series of lambdas.)
The most elegant way to achieve the transformation is to perform an eta-
expansion - - the opposite of eta reduction - - on f 's right hand side:

\x -> R ~ \x a -> R a

Once that is done, normal beta reduction will make the application to a
"cancel" with the \y, to give the desired overall effect.

38

The crucial question is this: when is eta expansion guaranteed to be W-safe?
Unsurprisingly, this turns out to be another fruitful application for the linear
type system sketched in Section 4.2.

Defores ta t ion is a transformation that removes intermediate lists (Wadler
[1990]). For example, in the expression sum (map double xs) an interme-
diate list (map double xs) is created, only to be consumed immediately
by sum. Successful deforestation removes this intermediate list, giving a sin-
gle pass algorithm that traverses the list xs, doubling each element before
adding it to the total.

Full-blown Wadler-style deforestation for higher-order programs is difficult;
the only example we know of is described by Marlow [1996] and even that
does not work for large programs. Instead, we developed a new, more prac-
tical, technique called short cut deforestat ion (Gill, Launchbury & Pey-
ton Jones [1993]). As the name implies, our method does not remove all
intermediate lists, but in exchange it is relatively easy to implement. Gill
[1996] describes the technique in detail, and gives measurements of its ef-
fectiveness. Even on programs written without deforestation in mind the
transformation reduces execution time by some 3% averaged over a range of
programs.

L a m b d a lift ing is a well-known transformation that replaces local function
declarations with global ones, by adding their free variables as extra param-
eters (Johnsson [1985]). For example, consider the definition

f = \x -> letrec g = \y -> ...x...y...g...

in . . .g...

Here, x is free in the definition of g. By adding x as an extra argument to g

we can transform the definition to:

f = \x -> . . . (g ' x) . . .
g ' = \x y -> . . . x . . . y . . . (g ' x) . . .

Some back ends require lambda-lifted programs. Our code generator can han-
dle local functions directly, so lambda lifting is not required. Even so, it turns
out that lambda lifting is sometimes beneficial, but on other occasions the
reverse is the case. That is, the exact opposite of lambda lifting - - lambda
dropping, also known as the static argument transformation - - sometimes
improves performance. Santos [1995, Chapter 7] discusses the tradeoff in
detail. GHC implements both lambda lifting and the static argument trans-
formation. Each buys only a small performance gain (a percentage point or
two) on average.

The "average" performance improvements mentioned in this paper are geometric
means taken over the large nof ib suite of benchmark programs, many of which
are real applications (Partain [1993]). They are emphatically not best-case results
on toy programs! Nevertheless, they should be taken only as a crude summary
of the general scale of the effect; the papers cited give much more detail.

39

8 Lessons and conclusions

What general lessons about compilation by transformation have we learned from
our experience?

T h e i n t e r a c t i o n o f t h e o r y a n d p r a c t i c e is genuine, not simply window dress-
ing. Apart from aspects already mentioned - - second order lambda calculus,
linear type systems, strictness and absence analysis - - here are three other
examples described elsewhere:

�9 We make extensive use of monads (Wadler [1992]), particularly to express
inpu t /ou tpu t (Peyton Jones & Wadler [1993l) and stateful computat ion
(Launchbury & Peyton Jones [1994]).

�9 Parametricity, a deep semantic consequence of polymorphism, turns out
to be crucial in establishing the correctness of cheap deforestation (Gill,
Launchbury & Peyton Jones [1993]), and secure encapsulation of stateful
computat ion (Launchbury & Peyton Jones [1994]).

�9 GHC's time and space profiler is based on a formal model of cost at tr ibu-
tion (Sansom [1994]; Sansom & Peyton Jones [1995]), an unusual prop-
erty for a highly operational activity such as profiling. In this case the
implementation came first, but the subtleties caused by non-strictness
and higher-order functions practically drove us to despair, and forced us
to develop a formal foundation.

P l u g a n d p l a y r ea l ly works . The modular nature of a transformational com-
piler, and its late commitment to the order of transformation, is a big win.
The ability to run a transformation pass twice (at least when going for max-
imum optimisation) is sometimes very useful.

T h e " c a s c a d e e f f ec t " is i m p o r t a n t . One transformation really does expose
opportunities for another. Transformational passes are easier to write in the
knowledge that subsequent transformations can be relied on to "clean up"
the result of a transformation. For example, a transformation that wants to
substitute x for y in an expression E can simply produce (\y ->E) x, leaving
the simplifier to perform the substitution later.

T h e c o m p i l e r n e e d s a lot o f b u l l e t s in i ts gu n . It is common for one par-
ticular transformation to have a dramatic effect on a few programs, and a
very modest effect on most others. There is no substitute for applying a large
number of transformations, each of which will "hit" some programs.

S o m e n o n - o b v i o u s t r a n s f o r m a t i o n s a r e i m p o r t a n t . We found that it was
important to add a significant number of obviously-correct transformations
that would never apply directly to any reasonable source program. For ex-
ample:

case (error "Wurble") of { ... } ===~ error "Wurble"

(error is a function that prints its argument string and halts execution.
Semantically its value is just bottom.) No programmer would write a case

40

expression that scrutinises a call to error , but such case expressions cer-
tainly show up after transformation. For example, consider the expression

if head xs then El else E2

After de-sugaring, and inlining head we get:

case (case xs of ([] -> error "head"; p:ps -> p } of
True -> El
False -> E2

Applying the case-of-case transformation (Section 5) makes (one copy of)
the outer case scrutinise the call to error.

Other examples of non-obvious transformations include eta expansion (Sec-
tion 7) and absence analysis (Section 6.3). We identified these extra trans-
formations by eye-bailing the code produced by the transformation system,
looking for code that could be improved.

Elegant generalisations of traditional optimisations have often cropped up,
that either extend the "reach" of the optimisation, or express it as a spe-
cial case of some other transformation that is already required. Examples
include jump elimination, copy propagation, boolean short-circuiting, and
loop-invariant code motion. Similar generalisations are discussed by Steele
[19781 �9

Main ta in ing types is a big win. It is sometimes tiresome, but never diffi-
cult, for each transformation to maintain type correctness. On the other
hand it is sometimes indispensable to know the type of an expression, no-
tably during strictness analysis.

Perhaps the largest single benefit came from an unexpected quarter: it is
very easy to check a Core program for type correctness. While developing
the compiler we run "Core Lint" (the Core type-checker) after every trans-
formation pass, which turns out to be an outstandingly good way to detect
incorrect transformations. Before we used Core Lint, bogus transformations
usually led to a core dump when running the transformed program, followed
by a long gdb hunt to isolate the cause. Now most bogus transformations
are identified much earlier, and much more precisely. One of the dumbest
things we did was to delay writing Core Lint.

Cross-module optimisation is important . Functional programmers make heavy
use of libraries, abstract data types, and modules. It is essential that inlin-
ing, strictness analysis, specialisation, and so on, work between modules. So
far we have achieved this goal by generating increasingly baroque textual
"interface files" to convey information from the exporting module to the
importing one. As the information becomes more elaborate this approach
is less and less attractive. Like the object-oriented community (Chambers,
Dean & Grove [1995]), we regard a serious assault on global (cross-module)
optimisation as the most plausible next "big win".

41

Acknowledgements

The Glasgow Haskell Compiler was built by many people, including Will Par-
tain, Jim Mattson, Kevin Hammond, Andy Gill, Andr6 Santos, Patrick Sansom,
Cordelia Hall, and Simon Marlow. I'm very grateful to Sigbjorn Finne, Hanne
Nielson, Will Partain, Patrick Sansom, and Phil Trinder for helpful feedback on
drafts of this paper.

The Glasgow Haskell Compiler is freely available at

http :/lwww. dcs. gla. ac. uk/fplsof tware/ghc, html

References

AV Aho, R Sethi & JD Ullman[1986], Compilers- principles, techniques and
tools, Addison Wesley.

AW Appel [1992], Compiling with continuations, Cambridge University Press.

AW Appel & T Jim [1996], "Shrinking Lambda-Expressions in Linear Time,"
Department of Computer Science, Princeton University.

Z Ariola, M Felleisen, J Maraist, M Odersky & P Wadler[Jan 1995], "A call
by need lambda calculus," in 22nd ACM Symposium on Principles of
Programming Languages, San Francisco, ACM, 233-246.

L Augustsson [1987], "Compiling lazy functional languages, part II," PhD thesis,
Dept Comp Sci, Chalmers University, Sweden.

DF Bacon, SL Graham & OJ Sharp [Dec 1994], "Compiler transformations for
high-performance computing," ACM Computing Surveys 26, 345-420.

B Calder, D Grunwald & B Zorn [Dec 1994], "Quantifying behavioural differences
between C and C++ programs," Journal of Programming Languages 2,
313-351.

C Chambers, J Dean & D Grove [Apr 1995], "A framework for selective recom-
pilation in the presence of complex intermodule dependencies," in Proc
International Conference on Software Engineering, Seattle.

JW Davidson & AM Holler [1988], "A study of a C function inliner," Software
- Practice and Experience 18, 775-790.

C Flanagan, A Sabry, B Duba & M Felleisen [June 1993], "The essence of com-
piling with continuations," SIGPLAN Notices 28, 237-247.

P Fradet & D Le Metayer [Jan 1991], "Compilation of functional languages
by program transformation," A CM Transactions on Programming Lan-
guages and Systems 13, 21-51.

42

A Gill, J Launchbury & SL Peyton Jones [June 1993], "A short cut to defor-
estation," in Proc Functional Programming Languages and Computer
Architecture, Copenhagen, ACM, 223-232.

AJ Gill [Jan 1996], "Cheap deforestation for non-strict functional languages,"
PhD thesis, Department of Computing Science, Glasgow University.

J Girard [1971], "Une extension de l'interpretation de GSdel a l'analyse, et son
application a l'elimination de coupures dans l'analyse et la theorie des
types," in 2nd Scandinavian Logic Symposium, JE Fenstad, ed., North
Holland, 63-92.

R Harper & G Morrisett [Jan 1995], "Compiling polymorphism using intensional
type analysis," in 22nd A CM Symposium on Principles of Programming
Languages, San Francisco, ACM, 130-141.

P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel, J Fairbairn, J Fasel, M
Guzman, K Hammond, J Hughes, T Johnsson, R Kieburtz, RS Nikhil,
W Partain & J Peterson [May 1992], "Report on the functional program-
ming language Haskell, Version 1.2," SIGPLAN Notices 27.

RJM Hughes [July 1983], "The design and implementation of programming lan-
guages," PhD thesis, Programming Research Group, Oxford.

Thomas Johnsson [1985], "Lambda lifting: transforming programs to recursive
equations," in Proc IFIP Conference on Thnctional Programming and
Computer Architecture, Jouannaud, ed., LNCS 201, Springer Verlag,
190-205.

R Kelsey [May 1989], "Compilation by program transformation," YALEU/DCS/RR-
702, PhD thesis, Department of Computer Science, Yale University.

R Kelsey & P Hudak [Jan 1989], "Realistic compilation by program transfor-
mation," in Proc ACM Conference on Principles of Programming Lan-
guages, ACM, 281-292.

DA Kranz [May 1988], "ORBIT - an optimising compiler for Scheme," PhD
thesis, Department of Computer Science, Yale University.

DA Kranz, R Kelsey, J Rees, P Hudak, J Philbin & N Adams [1986], "ORBIT -
an optimising compiler for Scheme," in Proc SIGPLAN Symposium on
Compiler Construction, ACM.

J Launchbury[Jan 1993], "A natural semantics for lazy evaluation," in 20th
A CM Symposium on Principles of Programming Languages, Charleston,
ACM, 144-154.

J Launchbury & SL Peyton Jones [June 1994], "Lazy functional state threads,"
in SIGPLAN Symposium on Programming Language Design and Imple-
mentation (PLDI'94), Orlando, ACM, 24-35.

43

S Marlow [March 1996], "Deforestation for Higher Order Functional Programs,"
PhD thesis, Department of Computing Science, University of Glasgow.

R Morrison, A Dearie, RCH Connor & AL Brown [July 1991], "An ad hoc ap-
proach to the implementation of polymorphism," ACM Transactions on
Programming Languages and Systems 13, 342-371.

A Ohori [Jan 1992], "A compilation method for ML-style polymorphic record
calculi," in 19th ACM Symposium on Principles of Programming Lan-
guages, Albuquerque, ACM, 154-165.

WD Partain [1993], "The nofib Benchmark Suite of Haskell Programs," in Func-
tional Programming, Glasgow 1992, J Launchbury & PM Sansom, eds.,
Workshops in Computing, Springer Verlag, 195-202.

SL Peyton Jones [1987], The Implementation of Functional Programming Lan-
guages, Prentice Hall.

SL Peyton Jones [Apr 1992], "Implementing lazy functional languages on stock
hardware: the Spineless Tagless G-machine," Journal of Functional Pro-
gramming 2, 127-202.

SL Peyton Jones, CV Hall, K Hammond, WD Partain & PL Wadler [March
1993], "The Glasgow Haskell compiler: a technical overview," in Pro-
ceedings of Joint Framework for Information Technology Technical Con-
ference, Keele, DTI/SERC, 249-257.

SL Peyton Jones & J Launchbury [Sept 1991], "Unboxed values as first class
citizens," in Functional Programming Languages and Computer Archi-
tecture, Boston, Hughes, ed., LNCS 523, Springer Verlag, 636-666.

SL Peyton Jones & D Lester [May 1991l, "A modular fully-lazy lambda lifter in
HASKELL," Software - Practice and Experience 21,479-506.

SL Peyton Jones & WD Partain [1993], "Measuring the effectiveness of a sim-
ple strictness analyser," in Functional Programming, Glasgow 1993, K
Hammond & JT O'Donnell, eds., Workshops in Computing, Springer
Verlag, 201-220.

SL Peyton Jones, WD Partain & A Santos IMay 1996], "Let-floating: moving
bindings to give faster programs," in Proc International Conference on
Functional Programming, Philadelphia, ACM.

SL Peyton Jones & A Santos [1994], "Compilation by transformation in the Glas-
gow Haskell Compiler," in Functional Programming, Glasgow 1994, K
Hammond, DN Turner & PM Sansom, eds., Workshops in Computing,
Springer Verlag, 184-204.

SL Peyton Jones & PL Wadler [Jan 1993], "Imperative functional programming,"
in 20th A CM Symposium on Principles of Programming Languages,
Charleston, ACM, 71-84.

44

JC Reynolds [1974], "Towards a theory of type structure," in International Pro-
gramming Symposium, Springer Verlag LNCS 19, 408-425.

PM Sansom [Sept 1994], "Execution profiling for non-strict functional languages,"
PhD thesis, Technical Report FP-1994-09, Department of Computer
Science, University of Glasgow, (f t p : / / f t p . dcs. glasgow, ac. uk/pub/
glasgow-fp/ tech.reports /FP-94-09_execut ion-prof i l i ng , ps. Z).

PM Sansom & SL Peyton Jones [Jan 1995], "Time and space profiling for non-
strict, higher-order functional languages," in 22nd ACM Symposium on
Principles of Programming Languages, San Francisco, ACM, 355-366.

A Santos [Sept 1995], "Compilation by transformation in non-strict functional
languages," PhD thesis, Department of Computing Science, Glasgow
University.

Z Sha~ & AW Appel [June 1995], "A type-based compiler for Standard ML," in
SIGPLAN Symposium on Programming Language Design and Imple-
mentation (PLDI'95), La Jolla, ACM, 116-129.

GL Steele [1978], "Rabbit: a compiler for Scheme," AI-TR-474, MIT Lab for
Computer Science.

A Tolmach [June 1994], "Tag-free garbage collection using explicit type param-
eters," in ACM Symposium on Lisp and Functional Programming, Or-
lando, ACM, 1-11.

PL Wadler[1990], "Deforestation: transforming programs to eliminate trees,"
Theoretical Computer Science 73, 231-248.

PL Wadler [Jan 1992], "The essence of functional programming," in 19th ACM
Symposium on Principles of Programming Languages, Albuquerque,
ACM, 1-14.

PL Wadler & DN Turner [June 1995], "Once upon a type," in Proc Functional
Programming Languages and Computer Architecture, La Jolla, ACM,
1-11.

