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Abstrac t .  This paper describes a novel framework for performing re- 
lational graph matching using genetic search. The fitness measure is 
Bayesian in origin. It gauges relational consistency at both the sym- 
bolic and attribute levels. The basic measure of symbolic consistency 
is Hamming distance, while attribute consistency is measured using Ma- 
halanobis distance. We provide examples of the performance on synthetic 
graphs containing significant levels of clutter. We also demonstrate that 
the technique is capable of resolving multiple graphs with significant 
overlap. The performance advantages over deterministic hill climbing are 
also demonstrated. 

1 I n t r o d u c t i o n  
Although genetic search is new and imperfectly understood, it provides an at- 
tractive means of solving configurational optimisation problems [6, 11, 12]. Basic 
to genetic search is the idea of maintaining a population of alternative global 
solutions to the discrete optimisation problem in-hand. The initial population 
may be generated in a number of different ways, but  should in some sense uni- 
formly sample the feasible solution space. Associated with each of the different 
solutions is a cost function which in keeping with the evolutionary analogy is 
termed the "fitness" [6]. Genetic updates involve three distinct stages. Crossover 
maintains diversity by randomly selecting pairs of solutions from the current 
population and interchanging the symbols at corresponding configuration sites 
with a uniform probability [12]. Mutation aims to introduce new information 
into the population by randomly updating the component symbols for indi- 
vidual solutions with a uniform probability [12]. The net effect of modifying 
the population in this way is to randomly sample the landscape" of the fitness 
function. Configurations generated by crossover and mutation are subjected to 
a stochastic selection process in order to avoid convergence to a local optimum 
[11]. The probability that  a modified configuration enters the population is com- 
puted on the basis of the fitness measure. In many ways genetic search provides 
an interesting compromise between the continuous transformation of the discrete 
optimisation problem [5, 10] and its realisation by simulated annealing [1, 9, 7]. 

Our interest in this paper centres on exploiting genetic search in the match- 
ing of at t r ibuted relational graphs [13, 14, 16]. Here we aim to find a discrete 
matching configuration that  optimises a Bayesian fitness measure which guages 
relational consistency. This fitness measure is defined over connected subgraphs. 
The development of the consistency measure draws on the modelling of both 
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symbolic and at tr ibute errors in the matching process. Symbolic differences are 
measured by Hamming distance. Attribute differences are measured by Mahalan- 
obis distance. Genetic updates are aimed at locating the relational matches that  
the maximise probability measure. In order to realise the matching process effi- 
ciently, we augment the standard genetic search operator in two ways. Firstly, we 
incorporate a hill-climbing step which ensures that  the solutions in the popula- 
tion reside at the nearest local optimum prior to selection. The second algorithm 
refinement is to realise crossover at the subgraph level rather than selecting grpah 
nodes at random. As recently demonstrated, the two algorithm refinements sig- 
nificanlty accelerate convergence without compromising the global properties of 
genetic search [4].. 

The outline of this paper is as follows. In Section 2 we describe the basic 
graph formalism used in the remainder of the paper. Section 3 describes the 
development of our Bayesian fitness measure. Section 4 describes how the op- 
timisation of this measure may be mapped onto a genetic search procedure. 
Finally, Section 6 offers some conclusions. 

2 R e l a t i o n a l  G r a p h s  

We abstract the matching process in terms of at t r ibuted relational graphs [2, 
3, 13, 16]. We use the triple G = (V, E, A) to denote the graphs under match, 
where V is the set of nodes, E is the set of edges and A = {x~,Yi E V} is a set 
of unary measurements associated with the nodes. Our aim in matching is to 
associate nodes in a graph G1 = (V1, El, A1) representing data  to be matched 
against those in a graph G2 = (V.e, E2, A2) representing an available relational 
model. Formally, the matching is represented by a function f : 1/1 --+ 1/2 fi'om 
the nodes in the data graph G1 to those in the model graph G2. The function 
f consists of a set of Cartesian pairs drawn from the space of possible matches 
between the two graphs, i.e. f C_ 1/1 • 1/2. 

In performing the matches of the nodes in the data  graph G1 we will be 
interested in exploiting constraints provided by the model graph G2. There are 
two issues at play in selecting structures appropriate to this task. If the struc- 
tural units are too small then the matching process is impoverished in terms 
of the structural information upon which it can draw in locating a consistent 
match. This limits the effectiveness of the matching scheme, rendering it sus- 
ceptible to noise or error. If, on the other hand, the structural units are too 
large, then the matching process becomes excessively burdensome in terms of its 
computational requirements; the limitation stems from the need to explore the 
space of feasible relational mappings between representational subunits. We will 
strike a compromise by using subgraphs that  consist of neighbourhoods of nodes 
interconnected by edges; for convenience we refer to these structural subunits or 
N-ary relations as super-cliques. 

The super-clique of the node indexed j in the graph G1 with edge-set E 1 

is denoted by the set of nodes Cj = j U {il(i,j ) E El}. The corresponding set 
of attributes is denoted by TOy = {x=lu E Cj}. The matched realisation of this 
super-clique is denoted by the symbolic relation Pj = ( f  (ut),  f(u2),...., f(ulcjl)). 
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Our aim is to modify the match to optimise a measure of global relational con- 
sistency using the constraints provided by the model graph G2. There are two 
components to this consistency measure. The first of these is symbolic and in- 
volves comparing the matched relations, i.e. F j, from the data graph with their 
exact counterparts in the model graph. The second component relates to the 
consistency of the attribute relations associated with the symbolic matches. Our 
aim is therefore to compare the matched configuration of symbols and attributes 
denoted by "F j  : (F j, T2~j) with their counterparts in the model graph. 

Each of our constraint relations is formed on the super-cliques of the model 
graph G2. We compile the set of feasible relational matches, or structure pre- 
serving mappings, between the super-clique centred on the node j of the data 
graph and those of the model graph in a dictionary which we denote by Oj. Every 
entry in the dictionary is itself a relation defined over symbols and attributes. 
We denote the individual dictionary items by the mixed relation A" = (~ ' ,  $ ' )  
where # is an index over the dictionary. According to this notation ~" C V2 is 
the set of nodes which form the #th matchable super-clique. If k E V2 is the cent- 
ral node of the super-clique, then the set of symbols forming the pth s t r u c t u r e  
preserving mapping is ~" :tlVttl, vtt2, . . . .  VPlckl}" The unary attribute set for the 
structure preserving mapping is given by S" = {x~ll c ~ ' }  c A2. With these 
ingredients Oj = {A~I# =1 ,  Zj}. 

3 F i tnes s  

Our modelling of structural consistency is Bayesian and commences from the 
joint probabilities for the matched relations defined on the super-clique of the 
data graph, i.e. P(Tj).  This model of the matching probability can be viewed as 
providing a means of imposing constraints on consistent relational matches. The 
available constraints residing in the dictionary are mixed N-ary relations defined 
over both symbols and attributes. We develop a Bayesian model of relational 
corruption. This results in a consistency metric which is a compound exponential 
function of two relational distance measures. Symbolic differences are gauged 
by Hamming distance and attribute differences are gauged by the Mahalanobis 
distance. 

As we noted in Section 2, the consistent labellings available for gauging the 
quality of match are represented by the set of symbolic relational mappings from 
Cj onto G2, i.e. Oj. As demanded by the Bayes rule, we compute the probability 
of the required super-clique matching by expanding over the basis configurations 
belonging to the dictionary Oj 

P(Tj)  = ~ P(TjlA~).P(A ~) (1) 
A u E e j  

In order to develop this expression further we recall that each structure pre- 
serving mapping A" is composed of both symbolic and attribute components. 
The different dictionary items are assumed to occur with a uniformly distributed 
prior, i.e. P(A ") = 1 We further assume thai the attribute and symbol in- I-~T" 
formation may be dichotomised in the matching process. Accordingly we apply 
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the Bayes theorem to the probability P(Tj lA~ ) to separate the relations into 
their symbolic and at tr ibute components in the following way 

P(Tj IA") = P(F~ Io').p(~j IS") (2) 

The development of a useful graph-mapping measure from this expression 
requires a two-component model of the processes at play in matching and of 
their roles in producing errors. According to our dichotomy, there are separate 
models for the symbolic matching constraints which are represented by the con- 
ditional probability P (F j IC"  ) and for the at tr ibute matching constraints which 
are modelled by the conditional measurement density p(T~jI,Su ). 

3 . 1  S y m b o l i c  C o n s t r a i n t  V i o l a t i o n  

Our model of the symbolic constraint process follows Wilson and Hancock [16]. 
Accordingly, we assume that  the various types of matching error for nodes be- 
longing to the same super-clique are memoryless. In direct consequence of this 
assumption, we may factorize the probability P(FjI 'I '  ~) over the symbolic con- 
stituents of the relational mapping under consideration. As a result the condi- 
tional probability may be expressed in terms of a product over label confusion 
probabilities 

Icjr 

P(rj l~")  = I I  P(f(~)lv2) (3) 
k = l  

The matching errors at individual sites in the super-cliques are assumed to occm 
with a uniform and memoryless probability distribution. If the probability of 
matching errors is P~, then the following distribution rule applies 

(1 - Pc) if f (uk)  = v~ (4) 
P(f(uk)lv~) = p~ if f (uk)  r v ~ 

k 

As a natural consequence of this distribution rule the joint conditional probab- 
ility is a function of the Hamming distance H(r j ,  ~ . )  = ~iec~ (1 - 6f0~l ~[') 
between the assigned matching and the feasible symbolic relatioi~al mapping' ~"  
[16]. This quantity counts tile number of conflicts between the current matching 
assignment Fj residing on the super-clique Cj and those assignments demanded 
by the symbolic relational mapping 0" .  With these ingredients, the resulting ex- 
pression for the joint conditional probability acquires an exponential character 

P(rj l r  = Kcj exp[-koH(rj, 0")] (5) 

where Kcj = (1 - Pc) Ecjl. The exponential constant appearing in the above 

expression is related to the matching-error probability, i.e. ke = in (l-P,J The I~ �9 
probability distribution appearing in Equation (5) may be regarded as providing 
a natural way of softening the hard symbolic constraints operating in the model 
graph. 
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3.2 A t t r i b u t e  C o n s t r a i n t s  
Our modelling of the conditional measurement density p(7~j IS ~) is based on the 
assumption of Gaussian measurement errors in the attribute acquisition process. 
Accordingly we gauge differences between the attribute relations in the data 
graph and their counterparts in the dictionary using the Mahalanobis distance. 
The parameter of this distribution is the measurement covariance matrix Z. The 
corresponding multivariate Gaussian density is 

1 1 1 _ s.)] (6) p(njlS ~') - (2~),~, X / ~  exp [ - 2  (n j  s ')TE-I(T~j-  

With this ingredient the relational matching probability P(Tj )  becomes 

P ( T / ) =  fly E exp[-(keH(Fj,(~')+ ~(7~j-S ' )TE-I(~j  - S " ) ) ]  (7) 
AP'EOj 

where fii = Kcj 17r 
(2.) - r - Io j  I I~/~" 

In this way the separate roles of the symbolic and attribute components of 
the relations becomes explicit. All that now remains is to use the configurational 
probability P (T j )  to define a global fitness measure for use in genetic search for 
the optimal relational matches. 

3.3 Globa l  F i t n e s s  M e a s u r e  
The configurational probability P(Tj )  is the basic ingredient of our genetic 
search procedure. It represents the probability of a particular matching configur- 
ation evaluated over the state-space of feasible possibilities (i.e. the dictionary). 
We use as our global measure of consistency by the average clique matching 
probability enumerated over the cliques of the data graph i.e. 

1 
Pc = IVl--  Z P(Tj) (8) 

j~Vl 
With the ingredients described above, our global fitness measure draws on 

both attributes and symbols in gauging the quality of match. In this way it nat- 
urally provides and interesting compromise between the purely symbolic consist- 
ency measure of Wilson and Hancock [15, 16] on the one hand, and the attribute 
oriented relational consistency measures of Boyer and Kak [3] or of Yang and 
Kittler [17] on the other hand. 

4 G e n e t i c  S e a r c h  

Genetic search [6, 11, 12] provides a very natural way of locating the global 
optimum of the global consistency measure described in the previous section. In 
essence the approach relies on generating a population of random global match- 
ing configurations. These undergo cross-over, mutation and selection to locate 
the match that optimises a fitness measure. The main stages of the algorithm 
are outlined below and more detailed discussion can be found in [4]. 
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Initial population generation: The initial population is generated either to 
be uniformly distributed or to be biassed towards the initial matches suggested 
by unary measurement information. Whereas, the uniform distribution is ap- 
propriate if the at tr ibute information is uncertain or unreliable, biassing may 
be employed to direct the search procedure towards favourable portions of the 
solution space. 

C ros sove r :  Crossover exchanges information between graph pairs in the pop- 
ulation. Rather than using a uniform crossover [12], we realise the process at 
the level of disjoint subgraphs. This mixing of partially consistent subgraphs 
accelerates convergence [4]. 

Mutation: Mutation operations ensure that  the fitness landscape is uniformly 
sampled by randomly swapping matches. This can be viewed as introducing 
uniform noise into the population. This not only introduces diversity, it also 
inhibits premature convergence. 

Hil l  C l imb ing :  One of the novel features of our genetic search process is the in- 
corporation of a deterministic hill-climbing stage. This additional step is applied 
to the fitness measure once mutations have occurred and is used to accelerate 
convergence to the nearest optimum of the average consistency measure. The 
hill-climbing step ensures that  each solution in the genetic population resides at 
a local optimum of the fitness measure. In this way local sub-optima may be 
rapidly rejected by the selection process. 

G r a p h  E d i t i n g :  One of the critical ingredients in effective relational matching 
is the way in which unmatchable entities or clutter are accommodated. Here we 
follow a graph-edit philosophy which removes the clutter nodes and recomputes 
the edge-set of the graph as necessary [14]. This process is incorporated into the 
hill-climbing stage in the following way. Each node in turn is deleted from the 
graph and the edge-set recomputed. Our decision concerning node deletion or 
re-insertion is based on the value of Pc-  If the value of P c  increases due to the 
deletion process, then the node is edited from the graph. If, on the other hand, 
the value of PG increases as a result of node re-insertion at a later stage, then it 
is reinstated. 

Selection: The final stochastic element of genetic search is the selection process. 
The aim here is to randomly admit the configurations refined by the hill climbing 
process to the population on the basis of their fitness measure. The probability 
distribution defined in equation (5) lends itself naturally to the definition of a 

population membership probability. Suppose that  P(i) denotes the global con- 
figurational probability for the i Lh member of the pool (population) of graphs. 
By normalising the sum of clique configuration probabilities over the population 
of matches, the probability for randomly admitting the i th solution to the pool 

p(c, ~) of graphs 7 ) is P~ -- V" p(~) " 
Z--~iE T, G 
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5 S y n t h e t i c  M a t c h i n g  E x a m p l e s  

Our aim in this Section is evaluate the behaviour of the genetic search procedure 
on synthetic data-sets with known ground-truth. The main goals here are to 
provide a study of the systematics of the method when structural corruption is 
a limiting factor. We also provide some examples to illustrate the effectiveness 
of the method at matching overlapped or highly corrupted graphs. 

Figures la  and lb illustrate some typical matching results on synthetic 
graphs. Figure la shows the fittest solution from the initial population. The left- 
hand graph is the model while the right-hand graph is the data; lines between 
the two graphs indicate matches. The data graph has been obtained by adding 
random clutter to the model and perturbing the nodes with Gaussian position 
errors. Associated with each node in the model graph is a single unary attribute 
which has been generated at random from a uniform distribution. The corres- 
ponding attributes in the data graph have been obtained by adding Gaussian 
measurement errors to the unary attributes of the model. It should be noted that 
the unary attributes are entirely uncorrelated to either the absolute or relative 
positions of the nodes. In other words, we make no use of any kind of transform- 
ational information between the two scenes. The original model graph contains 
20 nodes while the corrupted data graph contains 40 nodes. Figure lb shows 
the fittest match from the genetic population after 3 iterations. There are two 
features worth noting. Firstly, the overall consistency of match has improved. 
The lines connecting the nodes in the data and model graphs are no longer 
randomly distributed. Secondly, the added clutter nodes have all been correctly 
identified and deleted from the data graph; they appear as disjoint points on the 
right-hand image of Figure lb. The overall accuracy of match in this example is 
100%. 

The example described above is typical of the problem of matching a rela- 
tional description that is subsumed in noise or clutter. Another common problem 
in computer vision is to match scenes containing multiple objects. Under partic- 
ularly severe imaging conditions these objects may be significantly overlapped. 
The following two examples illustrate the capacity of our genetic search proced- 
ure to match under these two sets of conditions. 

We commence with the simpler example which involves the matching of mul- 
tiple non-overlapping models. Figure 2a shows the fittest initial match while 
Figure 2b shows the final match. The data graph, on the left hand side of Fig- 
ures 2a and 2b, is a non-overlapping union of the three models on the right-hand 
side of the figures. Here the genetic search algorithm correctly partitions the 
data graph into three disjoint subgraphs. As indicated by the lines between the 
data and model, each of the subgraphs is correctly matched. 

A more complex case in which the three graphs are overlapped is illustrated 
in Figures 3a and 3b. Here our genetic matching technique is again capable 
not only of correctly partitioning the nodes of the data graph into the three 
disjoint subgraphs but also of locating the consistent matches. In fact these 
results indicate that our matching technique has considerable potential as a tool 
for extracting relational clusters from highly overlapped data. 
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Fig. 1. a) An initial guess b) Recovered Solution 
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Fig. 2. a) An initial guess b) Recovered Solution 

In order to illustrate the effectiveness of the genetic search technique, we 
have compared its performance with deterministic hill climbing. The determin- 
istic algorithm aims to optimise the global cost function given in equation (8) 
by gradient ascent; in other words, the label update that  results in the greatest 
increase in P c  is always accepted at a particular node. The comparison has been 
performed under conditions of controlled structural corruption. We have gener- 
ated random graphs and added a controlled fraction of spurious noise. Figure 4 
shows the fraction of the graph correctly recovered and matched as a function 
of the fraction of added noise nodes. The lower curve is the result obtained by 
iterating the deterministic method to convergence. The intermediate curve is the 
result after performing one iteration of genetic search with a population size of 
100 graphS. After two iterations of genetic search the upper curve is obtained. 
The main conclusion from this study is that  once the corruption level exceeds 
207o, the gradient ascent technique is likely to become trapped in a local min- 
imum. By exploring a much greater fraction of the search-space, genetic search 
is capable of finding good results even at very severe corruption levels. In other 
words, when combined with the probabilistic cost function, genetic search can 
recover significantly better  results than its deterministic counterpart .  
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Fig. 3. a) An initial guess b) Recovered Solution 

\ 

Noise 

Genetic Hill Climbing vs. Gradient Ascent 

Fig. 4. The effect of controlled structural corruption. 

6 C o n c l u s i o n s  
To conclude, we have shown how the optimisation of a Bayesian relational con- 
sistency measure naturally maps onto genetic search. This measure gauges re- 
lational consistency using both symbolic and attribute information. Symbolic 
differences are represented in terms of Hamming distance while attribute dif- 
ferences are represented by Mahalanobis distance. The genetic optimisation of 
our relational consistency measure is capable not only of correcting initialisa- 
tion errors, but also of rectifying structural differences. Moreover, the technique 
can accurately partition merged or overlapping graphs into component model 
subgraphs. 
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