Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Surveillance of Crowded Environments: Modeling the Crowd by Its Global Properties

  • Chapter
  • First Online:
Modeling, Simulation and Visual Analysis of Crowds

Part of the book series: The International Series in Video Computing ((VICO,volume 11))

  • 2386 Accesses

Abstract

In this chapter, we consider aspects of the crowd that can be modeled holistically, by analyzing global properties. We first discuss the dynamic texture model for representing holistic motion flow, which treats the video as a sample from a linear dynamical system. By defining appropriate distances and kernels between dynamic textures, crowd motion can be recognized with standard classification algorithms. Besides motion flow, crowd size, i.e., the number of objects within a crowd can also be modeled holistically. From a suitable set of low-level features, crowd counts can be estimated with a regression function that directly maps features into the number of objects within the crowd. In both cases, the surveillance task is solvable by analyzing global scene properties, and there is no need to detect or track individual objects. In result, the solutions tend to be robust even when the crowd is large, there are substantial occlusions, complex object interactions, or the objects are small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here we focus on the case where the initial state x 0 is fixed. More generally, the initial state could be distributed as a Gaussian, \(x_{1} \sim \mathcal{N}(\mu,S)\)

  2. 2.

    One of these conditions is that the parameter n must be set to the true state-space dimension! Another condition is that the state noise and observation noise are realized from the same white noise process.

References

  1. Ali, S., Shah, M.: A Lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2007)

    Google Scholar 

  2. Bach, F., Lanckriet, G., Jordan, M.: Multiple kernel learning, conic duality, and the SMO algorithm. In: International Conference on Machine Learning, ACM Press (2004)

    Google Scholar 

  3. Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., Werman, M.: Texture mixing and texture movie synthesis using statistical learning. IEEE Trans. Vis. Comput. Graph. 7(2), 120–135 (2001)

    Article  Google Scholar 

  4. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12, 43–77 (1994)

    Article  Google Scholar 

  5. Bauer, D.: Comparing the CCA subspace method to pseudo maximum likelihood methods in the case of no exogenous inputs. J. Time Ser. Anal. 26, 631–668 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bissacco, A., Chiuso, A., Ma, Y., Soatto, S.: Recognition of human gaits. In: IEEE Conference on Computer Vision and Pattern Recognition 20, IEEE (2001)

    Google Scholar 

  7. Brostow, G.J., Cipolla, R.: Unsupervised Bayesian detection of independent motion in crowds. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, vol 1, pp. 594–601 (2006)

    Google Scholar 

  8. Cetingul, E., Chaudhry, R., Vidal, R.: A system theoretic approach to synthesis and classification of lip articulation. In: International Workshop on Dynamical Vision, Springer LNCS (2007)

    Google Scholar 

  9. Chan, A.B.: Beyond dynamic textures: a family of stochastic dynamical models for video with applications to computer vision. PhD thesis, UCSD (2008)

    Google Scholar 

  10. Chan, A.B., Dong, D.: Generalized gaussian process models. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2011)

    Google Scholar 

  11. Chan, A.B., Vasconcelos, N.: Probabilistic kernels for the classification of auto-regressive visual processes. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, vol. 1, pp. 846–851 (2005)

    Google Scholar 

  12. Chan, A.B., Vasconcelos, N.: Classifying video with kernel dynamic textures. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2007)

    Google Scholar 

  13. Chan, A.B., Vasconcelos, N.: Modeling, clustering, and segmenting video with mixtures of dynamic textures. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 909–926 (2008)

    Article  Google Scholar 

  14. Chan, A.B., Vasconcelos, N.: Bayesian Poisson regression for crowd counting. In: IEEE International Conference on Computer Vision, IEEE (2009a)

    Google Scholar 

  15. Chan, A.B., Vasconcelos, N.: Layered dynamic textures. IEEE Trans. Pattern Anal. Mach. Intell.: Spec. Issue Probab. Graph. Models Comput. Vis. 31(10), 1862–1879 (2009b)

    Google Scholar 

  16. Chan, A.B., Vasconcelos, N.: Variational layered dynamic textures. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2009c)

    Google Scholar 

  17. Chan, A., Vasconcelos, N.: Counting people with low-level features and Bayesian regression. IEEE Trans. Image Process. 21(4), 2160–2177 (2012)

    Article  MathSciNet  Google Scholar 

  18. Chan, A.B., Liang, Z.S.J., Vasconcelos, N.: Privacy preserving crowd monitoring: counting people without people models or tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2008)

    Google Scholar 

  19. Chan, A., Morrow, M., Vasconcelos, N.: Analysis of crowded scenes using holistic properties. In: 11th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS’09) (online) (2009)

    Google Scholar 

  20. Chan, A.B., Coviello, E., Lanckriet, G.R.G.: Clustering dynamic textures with the hierarchical EM algorithm. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2010a)

    Google Scholar 

  21. Chan, A.B., Mahadevan, V., Vasconcelos, N.: Generalized Stauffer-Grimson background subtraction for dynamic scenes. Mach. Vis. Appl. 22(5) 751–766 (2011)

    Article  Google Scholar 

  22. Chaudry, R., Ravichandran, A., Hager, G., Vidal, R.: Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: IEEE International Conference on Computer Vision and Pattern Recognition, IEEE (2009)

    Google Scholar 

  23. Cho, S.Y., Chow, T.W.S., Leung, C.T.: A neural-based crowd estimation by hybrid global learning algorithm. IEEE Trans. Syst. Man Cybern. 29, 535–541 (1999)

    Article  Google Scholar 

  24. Cock, K.D., Moor, B.D.: Subspace angles between linear stochastic models. In: IEEE Conference on Decision and Control, Proceedings, IEEE, pp. 1561–1566 (2000)

    Google Scholar 

  25. Cong, Y., Gong, H., Zhu, S.C., Tang, Y.: Flow mosaicking: real-time pedestrian counting without scene-specific learning. In: IEEE CVPR, IEEE (2009)

    Google Scholar 

  26. Cooper, L., Liu, J., Huang, K.: Spatial segmentation of temporal texture using mixture linear models. In: Dynamical Vision Workshop in the IEEE International Conference of Computer Vision, Springer LNCS (2005)

    Google Scholar 

  27. Costantini, R., Sbaiz, L., Süsstrunk, S.: Higher order SVD analysis for dynamic texture synthesis. IEEE Trans. Image Process. 17(1), 42–52 (2008)

    Article  MathSciNet  Google Scholar 

  28. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  29. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, vol. 2, pp. 886–893 (2005)

    Google Scholar 

  30. Davies, A.C., Yin, J.H., Velastin, S.A.: Crowd monitoring using image processing. Electron. Commun. Eng. J. 7, 37–47 (1995)

    Article  Google Scholar 

  31. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  32. Dong, L., Parameswaran, V., Ramesh, V., Zoghlami, I.: Fast crowd segmentation using shape indexing. In: IEEE International Conference on Computer Vision, IEEE (2007)

    Google Scholar 

  33. Doretto, G., Soatto, S.: Dynamic shape and appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2006–2019 (2006)

    Article  Google Scholar 

  34. Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51(2), 91–109 (2003a)

    Article  MATH  Google Scholar 

  35. Doretto, G., Cremers, D., Favaro, P., Soatto, S.: Dynamic texture segmentation. In: IEEE International Conference on Computer Vision, IEEE, vol. 2, pp. 1236–1242 (2003b)

    Article  Google Scholar 

  36. Doretto, G., Jones, E., Soatto, S.: Spatially homogeneous dynamic textures. In: ECCV, Springer-Verlag LNCS 3021–3024 (2004)

    Google Scholar 

  37. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2008)

    Google Scholar 

  38. Fitzgibbon, A.W.: Stochastic rigidity: image registration for nowhere-static scenes. In: IEEE International Conference on Computer Vision, IEEE, vol. 1, pp. 662–670 (2001)

    Google Scholar 

  39. Gelb, A.: Applied Optimal Estimation. MIT, Cambridge (1974)

    Google Scholar 

  40. Ghanem, B., Ahuja, N.: Phase based modelling of dynamic textures. In: IEEE Internationl Conference on Computer Vision, IEEE (2007)

    Google Scholar 

  41. Ghoreyshi, A., Vidal, R.: Segmenting dynamic textures with Ising descriptors, ARX models and level sets. In: Dynamical Vision Workshop in the European Conference on Computer Vision, Springer LNCS (2006)

    Google Scholar 

  42. Horn, B.K.P.: Robot Vision. McGraw-Hill, New York (1986)

    Google Scholar 

  43. Horn, B., Schunk, B.: Determining optical flow. Artif. Intell. 17, 185–204 (1981)

    Article  Google Scholar 

  44. Hu, M., Ali, S., Shah, M.: Detecting global motion patterns in complex videos. In: IEEE International Conference on Pattern Recognition, IEEE (2008a)

    Google Scholar 

  45. Hu, M., Ali, S., Shah, M.: Learning motion patterns in crowded scenes using motion flow field. In: IEEE International Conference on Pattern Recognition, IEEE (2008b)

    Google Scholar 

  46. Isard, M., Blake, A.: Condensation – conditional density propagation for visual tracking. Int. J. Comput. Vis. 29(1), 5–28 (1998)

    Article  Google Scholar 

  47. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  48. Kong, D., Gray, D., Tao, H.: Counting pedestrians in crowds using viewpoint invariant training. In: British Machine Vision Conference, BMVA (2005)

    Google Scholar 

  49. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.: Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)

    MATH  Google Scholar 

  50. Larimore, W.E.: Canonical variate analysis in identification, filtering, and adaptive control. In: IEEE Conference on Decision and Control, IEEE, vol. 2, pp. 596–604 (1990)

    Article  Google Scholar 

  51. Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, vol. 1, pp. 875–885 (2005)

    Google Scholar 

  52. Leibe, B., Schindler, K., Van Gool, L.: Coupled detection and trajectory estimation for multi-object tracking. In: IEEE International Conference on Computer Vision, IEEE (2007)

    Google Scholar 

  53. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Advances in Neural Information Processing Systems, NIPS (2010)

    Google Scholar 

  54. Lin, S.F., Chen, J.Y., Chao, H.X.: Estimation of number of people in crowded scenes using perspective transformation. IEEE Trans. Syst. Man Cybern. 31(6), 645–654 (2001)

    Article  Google Scholar 

  55. Liu, C.B., Lin, R.S., Ahuja, N., Yang, M.H.: Dynamic texture synthesis as nonlinear manifold learning and traversing. In: British Machine Vision Conference, vol. 2, pp. 859–868. BMVA (2006)

    Google Scholar 

  56. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceeding on DARPA Image Understanding Workshop, pp. 121–130. Morgan Kaufmann Publishers, (1981)

    Google Scholar 

  57. Mahadevan, V., Vasconcelos, N.: Spatiotemporal saliency in highly dynamic scenes. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 171–177 (2010)

    Article  Google Scholar 

  58. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (2010)

    Google Scholar 

  59. Marana, A.N., Costa, L.F., Lotufo, R.A., Velastin, S.A.: On the efficacy of texture analysis for crowd monitoring. In: IEEE Proceedings of Computer Graphics, Image Processing, and Vision, IEEE, pp. 354–361 (1998)

    Google Scholar 

  60. Marana, A.N., Costa, L.F., Lotufo, R.A., Velastin, S.A.: Estimating crowd density with minkoski fractal dimension. In: IEEE Proceedings of International Conference Acoustics, Speech, Signal Processing, IEEE, vol. 6, pp. 3521–3524 (1999)

    Google Scholar 

  61. Martin, R.J.: A metric for ARMA processes. IEEE Trans. Signal Process. 48(4), 1164–1170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2009)

    Google Scholar 

  63. Mehran, R., Moore, B., Shah, M.: A streakline representation of flow in crowded scenes. In: European Conference on Computer Vision, LNCS (2010)

    Google Scholar 

  64. Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and subtraction of dynamic scenes. In: CVPR, IEEE (2003)

    Google Scholar 

  65. Overschee, P.V., Moor, B.D.: N4SID: subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30, 75–93 (1994)

    Article  MATH  Google Scholar 

  66. Paragios, N., Ramesh, V.: A MRF-based approach for real-time subway monitoring. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, vol. 1, pp. 1034–1040 (2001)

    Google Scholar 

  67. Polana, R., Nelson, R.C.: Recognition of motion from temporal texture. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp. 129–134 (1992)

    Google Scholar 

  68. Rabaud, V., Belongie, S.J.: Counting crowded moving objects. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2006)

    Google Scholar 

  69. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT, Cambridge (2006)

    MATH  Google Scholar 

  70. Ravichandran, A., Vidal, R.: Video registration using dynamic textures. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), pp. 158–171 (2011)

    Article  Google Scholar 

  71. Ravichandran, A., Chaudhry, R., Vidal, R.: View-invariant dynamic texture recognition using a bag of dynamical systems. Video Registration using Dynamic Textures. In: IEEE International Conference on Computer Vision and Pattern Recognition, IEEE 33(1) 158–171 (2011)

    Google Scholar 

  72. Regazzoni, C.S., Tesei, A.: Distributed data fusion for real-time crowding estimation. Signal Process. 53, 47–63 (1996)

    Article  MATH  Google Scholar 

  73. Saisan, P., Doretto, G., Wu, Y., Soatto, S.: Dynamic texture recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, vol. 2, pp. 58–63 (2001)

    Google Scholar 

  74. Saleemi, I., Hartung, L., Shah, M.: Scene understanding by statistical modeling of motion patterns. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE (2010)

    Google Scholar 

  75. Shumway, R.H., Stoffer, D.S.: An approach to time series smoothing and forecasting using the EM algorithm. J. Time Ser. Anal. 3(4), 253–264 (1982)

    Article  MATH  Google Scholar 

  76. Siddiqi, S.M., Boots, B., Gordon, G.J.: A constraint generation approach to learning stable linear dynamical systems. In: Advances in Neural Information Processing Systems, NIPS (2007)

    Google Scholar 

  77. Szummer, M., Picard, R.: Temporal texture modeling. In: IEEE Conference on Image Processing, IEEE, vol. 3, pp. 823–826 (1996)

    Article  Google Scholar 

  78. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  79. Vidal, R.: Online clustering of moving hyperplanes. In: Neural Information and Processing Systems, NIPS (2006)

    Google Scholar 

  80. Vidal, R., Favaro, P.: Dynamicboost: boosting time series generated by dynamical systems. In: IEEE International Conference on Computer Vision, IEEE

    Google Scholar 

  81. Vidal, R., Ravichandran, A.: Optical flow estimation & segmentation of multiple moving dynamic textures. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 516–521 (2005)

    Google Scholar 

  82. Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005)

    Article  Google Scholar 

  83. Vishwanathan, S.V.N., Smola, A.J., Vidal, R.: Binet-cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes. Int. J. Comput. Vis. 73(1), 95–119 (2007)

    Article  Google Scholar 

  84. Wang, J., Adelson, E.: Representing moving images with layers. IEEE Trans. Image Proc. 3(5), 625–638 (1994)

    Article  Google Scholar 

  85. Washington State Department of Transportation. http://www.wsdot.wa.gov (2005)

  86. Woolfe, F., Fitzgibbon, A.: Shift-invariant dynamic texture recognition. In: ECCV, Springer LNCS (2006)

    Google Scholar 

  87. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: IEEE International Conference on Computer Vision, IEEE, vol. 1, pp. 90–97 (2005)

    Google Scholar 

  88. Yang, Y., Liu, J., Shah, M.: Video scene understanding using multi-scale analysis. In: IEEE International Conference on Computer Vision, IEEE (2009)

    Google Scholar 

  89. Yuan, L., Wen, F., Liu, C., Shum, H.Y.: Synthesizing dynamic textures with closed-loop linear dynamic systems. In: European Conference on Computer Vision, pp. 603–616. Springer LNCS (2004)

    Google Scholar 

  90. Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situations. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, vol. 2, pp. 459–466 (2003)

    Google Scholar 

  91. Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured background via a robust Kalman filter. In: IEEE ICCV, IEEE (2003)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Washington State DOT for the videos of highway traffic [85], Jeffrey Cuenco and Zhang-Sheng John Liang for annotating part of the pedestrian video data, Navneet Dalal and Pedro Felzenszwalb for the people detection algorithms [29, 37], and Piotr Dollar for running these algorithms. This work was supported by NSF CCF-0830535, IIS-0812235, IIS-0534985, NSF IGERT award DGE-0333451, and the Research Grants Council of the Hong Kong Special Administrative Region, China (CityU 110610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni B. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chan, A.B., Vasconcelos, N. (2013). Surveillance of Crowded Environments: Modeling the Crowd by Its Global Properties. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds) Modeling, Simulation and Visual Analysis of Crowds. The International Series in Video Computing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8483-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8483-7_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8482-0

  • Online ISBN: 978-1-4614-8483-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics