Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Local Segmentation for Pedestrian Tracking in Dense Crowds

  • Conference paper
MultiMedia Modeling (MMM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8325))

Included in the following conference series:

Abstract

People tracking in dense crowds is challenging due to the high levels of inter-pedestrian occlusions occurring continuously. After each successive occlusion, the surface of the tracked object that has never been hidden reduces. If not corrected, this shrinking problem eventually causes the system to stop as the area to track become too small. In this paper we investigate how hidden parts of one target object can be recovered after occlusions and propose challenging data to evaluate such segmentation-tracking technique in dense crowds. The segmentation/tracking problem is particularly difficult to solve for non-rigid objects. Here, we focus on pedestrians whose limbs and lower body parts often get occluded in crowded scene. We first investigate the unmet challenges of pedestrian tracking in crowds and propose a challenging video to evaluate segmentation-tracking robustness to inter-pedestrian occlusions. We then detail a fast segmentation-based method to overcome some aspects of the tracking-under-occlusion problem. We finally compare our results with two existing tracking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: CVPR, pp. 3457–3464 (June 2011)

    Google Scholar 

  2. Yang, B., Nevatia, R.: Multi-target tracking by online learning of non-linear motion patterns and robust appearance models. In: CVPR, pp. 1918–1925 (2012)

    Google Scholar 

  3. Andriyenko, A., Schindler, K., Roth, S.: Discrete-continuous optimization for multi-target tracking. In: CVPR (2012)

    Google Scholar 

  4. Bourdev, L., Maji, S., Brox, T., Malik, J.: Detecting people using mutually consistent poselet activations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 168–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Zhao, T., Nevatia, R.: Tracking multiple humans in crowded environment. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. 406–413 (2004)

    Google Scholar 

  6. Brostow, G.J., Cipolla, R.: Unsupervised bayesian detection of independent motion in crowds. In: IEEE Computer Vision and Pattern Recognition, pp. 594–601 (2006)

    Google Scholar 

  7. Iwasaki, M., Komoto, A., Nobori, K.: Dense motion segmentation of articulated objects in crowds. In: ICPR, pp. 861–865 (2012)

    Google Scholar 

  8. Fragkiadaki, K., Zhang, W., Zhang, G., Shi, J.: Two-granularity tracking: Mediating trajectory and detection graphs for tracking under occlusions. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 552–565. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–6 (2007)

    Google Scholar 

  10. Aeschliman, C., Park, J., Kak, A.: A probabilistic framework for joint segmentation and tracking. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1371–1378 (2010)

    Google Scholar 

  11. Simons, D.J., Chabris, C.F.: Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28, 1059–1074 (1999)

    Article  Google Scholar 

  12. Johansson, G.: Visual perception of biological motion and a model for its analysis. Perception & Psychophysics 14(2), 201–211 (1973)

    Article  MathSciNet  Google Scholar 

  13. Mitra, N.J., Chu, H.K., Lee, T.Y., Wolf, L., Yeshurun, H., Cohen-Or, D.: Emerging images. ACM Transactions on Graphics 28(5), 163:1–163:8(2009)

    Google Scholar 

  14. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679 (1981)

    Google Scholar 

  15. Ren, C.Y., Reid, I.: gslic: a real-time implementation of slic superpixel segmentation. Technical report, University of Oxford, Department of Engineering Science (2011)

    Google Scholar 

  16. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Baumberg, A., Hogg, D.: Generating spatiotemporal models from examples. Image and Vision Computing 14(8), 525–532 (1996)

    Article  Google Scholar 

  18. Apostoloff, N., Fitzgibbon, A.W.: Automatic video segmentation using spatiotemporal t-junctions. In: BMVC, pp. 1089–1098 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Creusot, C. (2014). Local Segmentation for Pedestrian Tracking in Dense Crowds. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8325. Springer, Cham. https://doi.org/10.1007/978-3-319-04114-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04114-8_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04113-1

  • Online ISBN: 978-3-319-04114-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics