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Abstract. This paper presents an investigation of differentially private
analysis of distance-based outliers. Outlier detection aims to identify
instances that are apparently distant from other instances. Meanwhile,
the objective of differential privacy is to conceal the presence (or absence)
of any particular instance. Outlier detection and privacy protection are
therefore intrinsically conflicting tasks. In this paper, we present dif-
ferentially private queries for counting outliers that appear in a given
subspace, instead of reporting the outliers detected. Our analysis of the
global sensitivity of outlier counts reveals that regular global sensitivity-
based methods can make the outputs too noisy, particularly when the
dimensionality of the given subspace is high. Noting that the counts of
outliers are typically expected to be small compared to the number of
data, we introduce a mechanism based on the smooth upper bound of the
local sensitivity. This study is the first trial to ensure differential privacy
for distance-based outlier analysis. The experimentally obtained results
show that our method achieves better utility than global sensitivity-
based methods do.
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1 Introduction

Data mining technologies are now becoming increasingly influential in our daily
life. When data mining is processed over personal data collected from individuals,
the acquired knowledge might be used to infer private information. In this paper,
we investigate differentially private outlier analysis.

Outlier detection is a task to identify instances that are apparently distant
from the remaining instances. The objective of differential privacy [3] is to pre-
vent adversaries from learning of the presence (or absence) of any particular
instance from released information. Outlier detection and privacy protection are
therefore intrinsically conflicting tasks. It presents a challenging difficulty. To
overcome this difficulty, instead of identifying outliers, we consider reporting
information which helps to recognize the occurrence of anomalous situations.
More specifically, we examine the problem of counting outliers that appear in a
given subspace with a guarantee of differential privacy.
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Related Works. We introduce existing studies of privacy aspects of outlier
analysis. Secure multiparty computation (SMC) is a cryptographic tool that
facilitates the evaluation of a specified function over their private inputs jointly,
while maintaining these inputs as private. Vaidya et al. [20] introduced a SMC
for distance-based outlier detection from horizontally and vertically partitioned
private databases using random shares. Xue et al. [21] investigated a SMC for
spatial outlier detection. Dung et al. [1] presented a SMC for distance-based
outlier detection with the Mahalanobis distance. Li et al. [12] presented a SMC
for density-based outlier detection. The objective of these works is to detect
outliers securely without mutually sharing privately distributed data; privacy
invasion caused by observing detected outliers is not considered.

Studies of differential privacy for outlier analysis are few, presumably because
of its intrinsic difficulty, as described. Only one report in the literature [5]
describes a study that considers the differential privacy of outlier analysis. This
study was conducted to detect anomalous changes from a time series under a
guarantee of differential privacy. The objective of this study is closely related to
ours, whereas this method releases a one-dimensional time series with differen-
tial privacy; outlier detection is applied to the released data as a post process.
Consequently, the approach differs from ours.

Lui et al. [14] introduced a novel privacy notion, outlier privacy, as a gener-
alization of differential privacy. Outlier privacy measures an individual’s privacy
parameter by how much of an “outlier” the individual is. The objective of this
study is to define privacy using the notion of outliers, but not for differentially
private outlier analysis.

Our Contribution. We examine the problem of counting outliers that appear
in a given subspace with a guarantee of differential privacy (Section 2). Random-
ization of query responses based on the global sensitivity analysis is the most
straightforward approach for realization of differential privacy [4]. We derive
the lower and upper bound of the global sensitivity of outlier counts (Section
4.1). From the derived bounds, we reveal that the global sensitivity-based ran-
domization can make the outputs too noisy, particularly when the dimensional-
ity of the given subspace is high. We specifically examine the observation that
the counts of outliers are expected to be small compared to the number of
data in typical datasets. Taking advantage of this, we develop a randomiza-
tion mechanism for the counts of outliers based on the smooth upper bound of
local sensitivity [18] (Section 4.2). A randomization mechanism based on the
smooth upper bound typically has better utility because of its data-dependency.
However, its evaluation is often costly. To alleviate this, we provide an effi-
cient algorithm for evaluation of the smooth upper bound for counting outliers
(Section 4.2). We demonstrated our methods with synthesized datasets and real
datasets (Section 5). The experimentally obtained results demonstrate that our
methods achieve better utility than that achieved using global sensitivity-based
methods.
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2 Differential Privacy

Let X = {x1,x2, . . . ,xN} ∈ R
d×N be a database. An analyst issues a query

q : Rd×N → T ; then the database returns an output, where T denotes the range
of the outputs. Differential privacy measures the privacy breach of database X
caused by releasing output T ∈ T with no assumptions of the background knowl-
edge of adversaries. The outputs are typically modified using a randomization
mechanism A : Rd×N → T before release to preserve differential privacy.

Let H(X,X ′) = |{i : xi �= x′
i}| denote the Hamming distance, the number

of different records in X and X ′. If H(X,X ′) = 1, then it can be said that X
and X ′ are neighbor databases. In the following, we presume |X| = |X ′| = N .
Then, mechanism A guarantees (ε, δ)-differential privacy if, ∀X ′ : H(X,X ′) = 1
and ∀T ⊆ T ,

Pr[A(X) ∈ T ] ≤ eεPr[A(X ′) ∈ T ] + δ.

The parameter ε and δ are designated as privacy parameters. Randomization
based on the global sensitivity is the most straightforward realization of differ-
ential privacy for continuous outputs [3].

Global Sensitivity. Presuming that the output domain of query q is in R
p,

then randomization based on the global sensitivity [3] provides a mechanism
that guarantees differential privacy for queries of any type, as long as its global
sensitivity is evaluable. The �2 global sensitivity of query q : R

d×N → R
p is

defined by GSq = maxX,X′:H(X,X′)=1 ‖q(X) − q(X ′)‖2 where ‖ · ‖ denotes �2
norm of vectors. Given the global sensitivity GSq for query q, the following
mechanism A that randomizes the output of the query by eq. (1) provides (ε, δ)-
differential privacy [2]:

Aq(X) = q(X) + Y, (1)

where Y is an sample drawn from the Gaussian distribution with mean 0 and

variance GS2
q ·2 log (2/δ)

ε2 .

Smooth Sensitivity. For some functions, the global sensitivity can be imprac-
tically large even when the sensitivities are small with almost all neighboring
pairs. This large sensitivity occurs because it is evaluated as the greatest differ-
ence of outputs among possible neighboring pair of databases. For example, the
global sensitivity of median is N , the whole sample size, but this arises only in
a pathological situation. Randomization based on the smooth sensitivity [18]
enables the use of moderate sensitivity for such overly sensitive queries. For a
given database X, the �2 local sensitivity for query q is defined as the greatest
difference of outputs for ∀X ′ s.t. X ′ : H(X,X ′) = 1:

LSq(X) = max
X′:H(X,X′)=1

||q(X) − q(X ′)||2.

It is noteworthy that GSq = maxX∈Rd×N LSq(X) holds.
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Nissim et al. presented the smooth sensitivity [18], which is a class of smooth
upper bounds to the local sensitivity. Given β > 0, the smooth sensitivity of
query q : Rd×N → R

p is defined by

S∗
q,β(X) = max

X′∈Rd×N
(LSq(X ′) · e−βH(X,X′)).

[18] also showed that adding noise proportional to the smooth sensitivity yields
a differentially private mechanism if the noise distribution satisfies some prop-
erties. Let Y be a noise generated from the Gaussian distribution with mean
0 and variance 1. Let Sq,β be a β-smooth upper bound of query q. Then, if
α = ε

5
√

2 ln 2/δ
and β = ε

4(p+ln 2/δ) , mechanism Aq guarantees (ε, δ)-differential

privacy [18]:

Aq(X) = q(X) +
Sq,β(X)

α
· Y.

3 Problem Statement

Our objective is to analyze outliers that are included in a private database in
a differentially private manner. Outlier detection is a problem to identify an
instance that is significantly distant from other instances. Therefore, the result
of outlier detection is fundamentally privacy-invasive in terms of differential
privacy. In order to understand the behavior of the outliers in the target dataset
without identifying outliers, we investigate counting outliers in a given subspace
under the constraint of differential privacy.

3.1 Counting Outliers

In this study, we use distance-based outliers [9]. Presuming that records are real-
valued vectors, xi ∈ R

d, and letting X = {xi}N
i=1 denote the database, we let

S ∈ {1, 2, . . . , d} denote a subspace. The Euclidean distance between x,y ∈ R
d

in subspace S is denoted by distS(x,y) =
√∑

i∈S(xi−yi)2

|S| [7]. Let r > 0 and
k ∈ {1, . . . , N}. Then, the set of neighborhood vectors of x in subspace S is
defined by

NS(X, r,x) = {y ∈ X : distS(x,y) ≤ r,x �= y}.

With this definition of the neighboring vectors, the outliers in subspace S are
defined by

OS(X, k, r) = {x ∈ X : |NS(X, r,x)| < k}.

Then, the task of the outlier count is to find the number of outliers in S:

qcount(X, k, r, S) = |OS(X, k, r)|.

If the subspace is not specified, then O(X, k, r) denotes the set of outliers in
the full space. Distance-based outliers are definable with any type of object and
distance defined for the corresponding objects, but we presume that the objects
are represented as real vectors and that the Euclidean distance is used as the
distance definition.
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3.2 Differential Privacy of Outlier Analysis

We introduce several typical scenarios of differentially private outlier analysis
using query qcount.

Scenario 1. Given threshold k and radius r, presume that the objective is to
inspect that the outliers exists in the given dataset. The analyst issues a query
z = qcount(X, k, r); then checking z > θ yields the final result where θ denotes a
prescribed threshold parameter for outlier counts. Let z′ = qcount(X ′, k, r). For
guarantee of (ε, δ)-differential privacy, we require, for ∀X ′ : H(X,X ′) = 1 and
∀T ∈ T ,

Pr[T = A(z)] ≤ eεPr[T = A(z′)] + δ.

Scenario 2. Let the data dimension be d = 3. Given threshold k
and radius r, presume that the objective is to identify the subspaces that
cause the largest numbers of outliers. Then, the target subspace set is
S = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. The analyst issues query
qcount(X, k, r, Si) for each Si ∈ S. Let zi = qcount(X, k, r, Si). For the guarantee
of (ε, δ)-differential privacy, we require, ∀X ′ : H(X,X ′) = 1 and ∀T ∈ S,

Pr[T = A(z1, . . . , , z7)] ≤ eεPr[T = A(z1, . . . , z7)] + δ.

4 Differentially Private Count of Outliers

As explained in this section, we investigate the problem of differentially private
count of outliers in a given subspace. The discussion herein holds for any subspace
including the full space. Therefore, for this discussion, we presume that the
outlier is counted in the full space.

4.1 Difficulties in Global Sensitivity Method

Analytical evaluation of the global sensitivity of determination of qcount is not
trivial, partly because it needs the kissing number. The kissing number Kd is the
largest number of hyperspheres with same radius in R

d that can touch equivalent
hyperspheres with no intersections [15–17]. The kissing numbers in d = 1 and
d = 2 are readily derived respectively as K1 = 2 and K2 = 6 (see Fig. 1 for
K2 = 6). However, finding the kissing number in d ≥ 3 is not trivial. In addition,
the kissing number in general dimensions remains as an open problem [15–17].
We derive the upper and lower bound of the global sensitivity of qcount presuming
that the kissing number in general dimensions is given.

Theorem 1 (Upper and lower bound on the global sensitivity of qcount).
Let Kd be the kissing number in R

d. Then, the upper and lower bound on the
global sensitivity of qcount is

min(N, 2dk + 1) ≤ GSqcount,d(k) ≤ min(N, kKd + 1). (2)
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Fig. 1. This figure shows an example of the upper bound of the global sensitivity in two
dimension. Six surrounding hyperspheres can be packed around the center hypersphere
because the kissing number is K2 = 6. We here suppose k datapoints exist at the center
of each surrounding hypersphere and no datapoint exists at x0, the center of the center
hypersphere. Then, kK2 outliers become inliers by adding a point to x0. Suppose the
added point is an outlier, Then, the added point can be changed from an outlier to
an inlier, too. The upper bound of the global sensitivity for two dimension is thus
kK2 + 1 = 6k + 1.

Sketch of Proof. The lower bound is trivial so we omit the proof. We show the
sketch of the proof for the upper bound. Suppose the radius of the center hyper-
sphere and the hyperspheres touching the center hyperspheres (referred to as the
surrounding hyperspheres) are r/2. Let x0 be the center of the center hypersphre.
Note that intersection between the surrounding hyperspheres does not exist. We
further suppose k datapoints exist at the center of each surrounding hypersphere.
These datapoints are outliers by definition, and become inliers by adding a point
to the center x0 of the center hypersphere. By definition of the kissing number,
the number of the surrounding hyperspheres that do not touch or intersect mutu-
ally is at most Kd. No more surrounding hyperspheres can be packed around x0,
so kKd + 1 is the upper bound of the outlier count. Since the global sensitivity
is at most N , we can conclude that GSqcount,d(k) ≤ min(N, kKd + 1).

We empirically investigate the tightness of the bound in low dimensions. In
d = 1 and d = 2, the global sensitivity is given respectively as GSqcount,1(k) =
2k+1 and GSqcount,2(k) = 5k+1. Noting that K1 = 2 and K2 = 6, the bound is
tight in d = 1 but not in d = 2. Fig. 2 shows the upper and lower bounds of the
global sensitivity of qcount evaluated using known upper bounds on the kissing
number [15–17]. As the figure shows, the upper bound of the global sensitivity
grows exponentially with respect to the dimensionality, which indicates that the
guarantee of differential privacy by perturbation based on the global sensitivity
can be impractical, especially when the dimensionality of the target subspace is
large.

The global sensitivity can be prohibitively large simply because the global
sensitivity is evaluated considering the worst case. However, one can typically
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Fig. 2. The bounds of the global sensitivity for counting outliers

expect that the number of outliers in the database is much smaller than the
number of instances. To improve the utility of the count query, we introduce the
smooth sensitivity, which is a sensitivity definition depending on the database.

4.2 Local Sensitivity and Smooth Sensitivity

For convenience of discussion later, several notations are introduced here. Given
radius r, deg(x) denotes the size of neighborhoods of x:

deg(X, r,x) = |N(X, r,x)|.

We say that the degree of x is k if deg(X, r,x) = k. A set of vectors in X whose
degree is exactly k is denoted as

V (X, k, r) = {x ∈ X : deg(x) = k}.

Unless specifically stated otherwise, the radius r and target database X is fixed.
Therefore, they are omitted as deg(x) and V (k). Finally, a set of degree-k neigh-
borhoods of x in X is denoted as

CV (X,x, k, r) = B(x, r) ∩ V (k),

where B(x, r) denotes the sphere with radius r and centered at x.

Local Sensitivity. Given database X, let X1 be a database s.t. H(X,X1) = 1.
Then, following the definition of the local sensitivity in Section 2, the local
sensitivity of qcount is defined as

LS(0)
qcount

(X, k, r) = max
X1:H(X,X1)=1

‖qcount(X0, k, r) − qcount(X1, k, r)‖.

Exact evaluation of the exact local sensitivity is intractable. Instead, the follow-
ing theorem gives the upper bound of the local sensitivity.
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Theorem 2. Given X, the local sensitivity of qcount for X is bounded above as

LS(0)
qcount

(X, k, r) ≤

max
{

max
x∈X

{|CV (X,x, k, r)|}, max
x∈Rd

{|CV (X,x, k − 1, r)|}
}

+ 1.

Proof. CV (X,x, k, r) is the set of non-outliers that become outliers if x is
removed; CV (X,x, k − 1, r) is the set of outliers that become inliers if a vector
is placed at x. Thus, if vector x0 ∈ X is moved to x′

0, the number of out-
liers increases by |CV (X,x0, k, r)| by removing x0 and the number of inliers
decreases by |CV (X,x′

0, k − 1, r)| by adding x′
0. With this understanding, the

local sensitivity is given as:

LS(0)
qcount

(X, k, r)

= max
X1:H(X,X1)=1

‖qcount(X, k, r) − qcount(X1, k, r)‖

≤ max
x0∈X,x′

0∈Rd
|CV (X,x0, k, r) \ CV (X,x′

0, k − 1, r)| + 1

≤ max
x0∈X,x′

0∈Rd
max {|CV (X,x0, k, r)|, |CV (X,x′

0, k − 1, r)|} + 1

= max
{

max
x∈X

{CV (X,x, k, r)}, max
x′

0∈Rd
{CV (X,x, k − 1, r)}

}
+ 1.

Naive evaluation of the local sensitivity is intractable. An algorithm to evaluate
this upper bound is presented in Section 4.3.

Smooth Sensitivity. Given database X, let Xt be a database s.t. H(X,Xt) =
t. By definition, the smooth sensitivity of qcount is given as

S∗
qcount

(X) = max
t=0,1,...,N

e−tβLS(t)
qcount

(X),

where

LS(t)
qcount

(X) = max
Xt:H(X,Xt)=t

LS(0)
qcount

(Xt).

The function LS
(t)
q (X) returns the largest local sensitivity among the datasets

of which t records differ from X. Similarly to LS
(0)
qcount(X), exact evaluation of

LS
(t)
qcount(X) is intractable because the variation of Xt can increase exponentially

with respect to t. Instead, we derive the upper bound on LS
(t)
qcount(X) using

CV (X,x, k, r).

Theorem 3. Given X, for t ≥ 0, LS
(t)
qcount(X) is bounded above as

LS(t)
qcount

(X) ≤ max
x∈Rd

{
max{C(t)(X,x, k, r), C(t)(X,x, k − 1, r)} + t + 1

}
, (3)
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where

C(t)(X,x, k, r) =

∣∣∣∣∣
t⋃

i=−t

CV (X,x, k + i, r)

∣∣∣∣∣ .

For the proof of this theorem, we use the following helper lemma.

Lemma 1. Let t ≥ 0 be an integer, and let X and Xt be databases such that
H(X,Xt) = t. Then, for any x ∈ R

d, threshold k, and radius r,

|CV (Xt,x, k, r)| ≤
∣∣∣∣∣

t⋃
i=−t

CV (X,x, k + i, r)

∣∣∣∣∣ + t.

Proof. We first consider the case t = 1. Suppose x ∈ X is moved from x to
x1, and X1 is given as X1 = X \ {x} ∪ {x1}. The degree of records in X \ {x}
around x decreases by one by removing x, and the degree of records in X \ {x}
around x1 increases by one by adding x1. Since the degree of the records in
V (X, k + 1, r) and V (X, k − 1, r) may become k in X1, V (X1, k, r) is thus a
subset of V (X, k + 1, r) ∪ V (X, k, r) ∪ V (X, k − 1, r) ∪ {x1}. When t > 1, for the
same reason, V (Xt, k, r) is a subset of

⋃t
i=−t V (X, k+i, r)∪{x1,x2, ...,xt} where

x1, ...,xt are the records moved from X to Xt. Thus, the size of CV (Xt,x, r, k)
is bounded above as

|CV (Xt,x, r, k)| ≤
∣∣∣∣∣B(x, r) ∩

{ t⋃
i=−t

V (X, k + i, r) ∪ {x1,x2, ...,xt}
}∣∣∣∣∣

≤
∣∣∣∣∣

t⋃
i=−t

B(x, r) ∩ V (X, k + i, r)

∣∣∣∣∣ + |{x1,x2, ...,xt}|

≤
∣∣∣∣∣

t⋃
i=−t

CV (X,x, k + i, r)

∣∣∣∣∣ + t.

Sketch of Proof (of Theorem 3). From Theorem 2 and exchangeability of max,
letting

C
(t)
out(X, k, r) = max

Xt:H(X,Xt)=t
max
x∈Xt

|CV (Xt,x, r, k)| and

C
(t)
in (X, k − 1, r) = max

Xt:H(X,Xt)=t
max
x∈Rd

|CV (Xt,x, r, k − 1)|

yields

LS(t)
qcount

(X) ≤ max{C
(t)
out(X, k, r), C(t)

in (X, k − 1, r)} + 1.

We derive the bound on C
(t)
out(X, k, r) using C

(t)
in (X, k − 1, r), and the bound on

C
(t)
in (X, k − 1, r) using Lemma 1.
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4.3 Efficient Computation of Smooth Sensitivity Bound

For randomization by the mechanism of Theorem 3, it is necessary to evaluate
the smooth upper bound. Naive evaluation of the smooth upper bound of eq. (3)
is intractable because it requires an exhaustive search over continuous domain
to evaluate LS

(t)
qcount(X). To alleviate this, we first show an efficient algorithm

that evaluates the upper bound of LS
(t)
qcount(X) shown derived by Theorem 3.

Then using the algorithm, we derive the algorithm that calculates the smooth
sensitivity upper bound.

Algorithm for Local Sensitivity Bound. To evaluate the upper bound of
LS

(t)
qcount(X), we need to calculate

max
x∈Rd

C(t)(X,x, k, r) = max
x∈Rd

∣∣∣∣∣
t⋃

i=−t

V (X, k + i, r) ∩ B(x, r)

∣∣∣∣∣ , and (4)

max
x∈Rd

C(t)(X,x, k − 1, r) = max
x∈Rd

∣∣∣∣∣
t⋃

i=−t

V (X, k + i − 1, r) ∩ B(x, r)

∣∣∣∣∣ . (5)

Letting P =
⋃t

i=−t V (X, k+ i, r) (resp. P =
⋃t

i=−t V (X, k+ i−1, r)), we can
obtain the value of eq. (4) (resp. eq. (5)) by finding the largest subset C ⊆ P
that is enclosed by a ball with radius r. To check whether or not a given subset
C ⊆ P is enclosed by the ball, we use the algorithm that solves the smallest
enclosing ball (seb) problem [6]. The goal of the problem is to find the smallest
ball that encloses the given points. The given subset C ⊆ P is enclosed by a ball
with radius r if seb(C) ≤ r where seb(C) denotes the radius of the resultant ball
of the smallest enclosing ball problem of C.

Algorithm 1 shows the recursive algorithm that calculates eq. (4) or eq. (5) for
given P =

⋃t
i=−t V (X, k + i, r) or P =

⋃t
i=−t V (X, k + i− 1, r). P [i] denotes the

i-th element of the set P . Algorithm 1 searches for the largest subsets C ⊆ P
that is enclosed by a ball with radius r with the breadth-first search. In the
algorithm, the calls of seb can be skipped for efficiency by using the fact that
the radius of the enclosing ball of C2 is larger than one of C1 if C1 ⊆ C2 ⊆ P .
The computational cost of Algorithm 1 is O(2|P |) of the calls of seb.

Algorithm for Smooth Sensiticity Bound. Algorithm 1 costs exponen-
tial time with respect to |P | and the size of P increases monotonically as t
increases. However, because of exponential decrease of e−tβ , maximization of
e−tβLS

(t)
qcount(X) is attained by small t in most cases. Taking account of this

property, we provide Algorithm 2 that calculates the smooth sensitivity bound
with avoiding evaluation of LS

(t)
qcount(X) of large t.

Proposition 1. For any t and t′ < t, LS
(t)
qcount is bounded above as

LS(t)
qcount

(X) ≤ min{N,max{U
(t)
t′ (X, k, r), U (t)

t′ (X, k − 1, r)} + t + 1},
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Algorithm 1. Calculation of maxx∈Rd C(t)(X,x,k,r)(eq. ( 4) and eq. (5))
Input: Records P and radius r.
Output: The value of eq. (4) or eq. (5).
Initialization: C = ∅ and i = 1

1 Function E(r, P, C, i)
2 br ← 0
3 if C �= ∅ then
4 br ← seb(C)
5 end
6 if br ≤ r then
7 m ← |C|
8 if i ≤ |P | then
9 b1 ← E(r, P, C ∪ {P [i]}, i + 1)

10 b2 ← E(r, P, C, i + 1)
11 m ← max{m, b1, b2}
12 end
13 return m

14 end
15 else
16 return 0
17 end

18 end

where

U
(t)
t′ (X, k, r) = max

x∈Rd
C(t′)(X,x, k, r) +

∣∣∣∣∣∣
⋃

i∈{−t,...,−t′−1}∪{t′+1,...,t}
V (X, k + i, r)

∣∣∣∣∣∣
.

Sketch of Proof. For any database X, because the number of outliers does not
exceed the number of the records in X, the local sensitivity is less than N . In
addition, using the fact that CV (X,x, k, r) ⊆ V (X, k, r) for any x ∈ R

d, we can
derive maxx∈Rd C(t)(X,x, k, r) ≤ U

(t)
t′ (X, k, r) for any t and t′ < t.

Using the bound in Proposition 1, we have the upper bound of e−tβLS
(t)
qcount(X)

as

e−tβLS(t)
qcount

(X) ≤e−tβ min{N,max{U
(t)
t′ (X, k, r), U (t)

t′ (X, k − 1, r)} + t + 1}

=:St′,t
UB(X).

Letting St
UB(X) = maxi=1,...,N−t St,t+i

UB (X), we can obtain the following propo-
sition.

Proposition 2. If there exists UT such that maxt=0,...,T e−tβLS
(t)
qcount(X) ≤ UT

and ST
UB(X) ≤ UT , then S∗

qcount
(X) ≤ UT .
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Algorithm 2. Calculation of the smooth sensitivity of qcount

Input: Database X, threshold k, radius r and smooth parameter ε.
Output: The smooth sensitivity upper bound of query qcount for database X.
Initialization: Smax = 0 and

maxx∈Rd C(−1)(X,x, k, r) = maxx∈Rd C(−1)(X,x, k − 1, r) = 0.
1 for t = 0 to N do
2 Calculate St−1

UB by Proposition 2

3 if St−1
UB ≤ Smax then

4 return Smax

5 end

6 Smax ← max{Smax, e
−tβLS

(t)
qcount(X)}

7 Store maxx∈Rd C(t)(X,x, k, r) and maxx∈Rd C(t)(X,x, k − 1, r) for
calculating St

UB in next loop
8 end
9 return Smax

Proof. If ST
UB(X) = maxi=1,...,N−T ST,T+i

UB (X) ≤ UT , since e−tβLS
(t)
qcount(X) ≤

ST,t
UB(X) for any t > T , we have e−tβLS

(t)
qcount(X) ≤ UT ,∀t > T . Thus, we have

maxt=0,...,T e−tβLS
(t)
qcount(X) ≤ UT and maxt>T e−tβLS

(t)
qcount(X) ≤ UT .

Proposition 2 shows that if the largest upper bound in Theorem 3 for t = 0, ..., T
can be bounded above by ST

UB(X), then the calculation of the upper bound in
Theorem 3 for t > T can be skipped. Algorithm 2 shows the calculation of the
smooth sensitivity of qcount with this skip by following Proposition 2.

5 Experiments

In this section, we show the empirical evaluation of the utility of the mechanism
for counting outliers query.

5.1 Settings

We used a synthetic dataset and a real dataset (adult). The synthetic dataset
consists with 50 samples of 2 dimensional real vectors. The dataset contains 45
inliers which are sampled from N (0, I) where I represents an identity matrix.
The 5 outliers are sampled from N (µ, Σ), where μ1 = μ2 = 20 and Σ is a
diagonal matrix such that Σ11 = Σ22 = 100.

A real dataset (adult) was chosen from UCI Machine Learning Reposi-
tory [13]. We removed two categorical attributes, “category” and “fnlwgt”. The
dataset was scaled so that the average and variance of each attribute is 0 and 1,
respectively. The dataset is originally prepared for classification tasks. For our
outlier analysis, following [19,22], 45 samples with the positive label are treated
as inliers and 5 samples with negative labels were treated as outliers (See Table
1 for the detail). We changed the privacy parameter from ε = 0.1 to 0.9; δ was
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Table 1. Sumarry of datasets

synthetic adult

The number of outliers 5 5
The number of inliers 45 45

The number of samples N 50 50
Dimension d 2 7
Treshold k 3 3
Radious r 1.1 0.35

fixed as δ = 0.01. See Table 1 for the parameters of the outliers. We partitioned
the instances into two classes: one is “true”, indicating the instance detected as
an outlier; the other is “false”. For each dataset, we tuned the radius r so that
the Accuracy given by eq. (6) is maximized:

Accuracy =
TP + TN

TP + FP + FN + TN
, (6)

where TP , TN , FP and FN respectively denote true positive, true negative,
false positive, and false negative. For implementation, we used [11] to solve the
smallest enclosing ball problem.

5.2 Count Outliers

Following the Scenario 1 described in Section 3.2, we evaluated the utility of
the mechanisms of qcount on the synthetic dataset. As the criterion of the utility
of the mechanisms, we show the standard deviation of the noise added to the
query. We compared the standard deviation of the noise of the mechanism based
on the smooth sensitivity upper bound in eq. (3) with the mechanism based on
the global sensitivity lower bound in eq. (2). Fig. 3 shows the output values and
the standard deviations for each mechanism in various ε. In Fig. 3, “Global” and
“Smooth” respectively present the global sensitivity-based mechanism and the
smooth sensitivity-based mechanism.

It is apparent that the standard deviation of the noise of the smooth
sensitivity-based mechanism is significantly lower than that of the global
sensitivity-based mechanism. Indeed, the standard deviation of the noise of
global sensitivity-based mechanism is approximately 10-30 times larger than that
of the smooth sensitivity-based mechanism even though the global sensitivity-
based mechanism uses the lower bound. In addition, the smooth sensitivity-based
mechanism achieves the noise of which standard deviation is lower than 7 for
ε ≥ 0.7 for each datasets. The reason why we got these results is our approach
depends only on the number of outliers, not on the number of dimensions. From
these results, we can conclude that our framework is sufficiently practical in this
setting.
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Fig. 3. Experimental results for the global sensitivity-based mechanism and the smooth
sensitivity-based mechanism on each dataset. The right panel is obtained by scaling the
left panel so that the error bars of the smooth sensitivity-based mechanism are visible.
The horizontal axis denotes the privacy parameter ε. The vertical axis denotes the
output value of the query without randomization. The error bars denote the standard
deviation of the noise added by the mechanisms.

6 Conclusion and Future Works

We present the differentially private distance-based outlier analysis for the query
that counts outliers in a given subspace. Taking advantage of the smooth sensi-
tivity [18], the resulting output of the mechanism can be less noisy than that of
the global sensitivity-based mechanism. Although the evaluation of the smooth
upper bound is often costly, we provide an efficient algorithm for the evaluation
of the smooth upper bound for the problem for outlier counting. This paper
describes an initial step towards differentially private outlier analysis, and the
experimental evaluation is performed with relatively small-size datasets. In our
algorithm, we invoke the smallest enclosing ball algorithm that takes as input
the power set of instances. Because of this construction, we need a more efficient
algorithm for application to larger size datasets.

Subspace discovery for outlier analysis has been investigated as a major topic
of outlier detection [7,8,10]. Differentially private subspace discovery can be
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achieved by issuing count queries sequentially to each subspace; however, the
number of subspaces increases exponentially with respect to the dimensional-
ity, which costs a large amount of privacy budget. An efficient mechanism for
subspace discovery is left as an area of the future work.
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