Abstract
In cloud computing, delegated computing raises the security issue of guaranteeing data authenticity during a remote computation. Existing solutions do not simultaneously provide fast correctness verification, strong security properties, and information-theoretic confidentiality. We introduce a novel approach, in the form of function-dependent commitments, that combines these strengths. We also provide an instantiation of function-dependent commitments for linear functions that is unconditionally, i.e. information-theoretically, hiding and relies on standard hardness assumptions. This powerful construction can for instance be used to build verifiable computing schemes providing information-theoretic confidentiality. As an example, we introduce a verifiable multi-party computation scheme for shared data providing public verifiability and unconditional privacy towards the servers and parties verifying the correctness of the result. Our scheme can be used to perform verifiable computations on secret shares while requiring only a single party to compute the audit data for verification. Furthermore, our verification procedure is asymptotically even more efficient than performing operations locally on the shared data. Thus, our solution improves the state of the art for authenticated computing, verifiable computing and multi-party computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_18
Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_2
Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and privacy-preserving proofs on authenticated data. In: SP 2015, pp. 271–286. IEEE Computer Society (2015)
Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: CCS 2013, pp. 863–874. ACM (2013)
Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications to secure outsourcing of computation. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_19
Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_11
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_6
Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)
Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29
Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 538–555. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_31
Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: constructions and applications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_13
Catalano, D., Fiore, D., Nizzardo, L.: Programmable Hash Functions go Private: Constructions and Applications to (Homomorphic) Signatures with Shorter Public Keys. IACR Cryptology ePrint Archive 2015, 826 (2015)
Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_40
Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_21
Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: SP 2015, pp. 253–270. IEEE Computer Society (2015)
Culnane, C., Schneider, S.A.: A peered bulletin board for robust use in verifiable voting systems. In: CSF, pp. 169–183. IEEE Computer Society (2014)
Demirel, D., Schabhüser, L., Buchmann, J.A.: Privately and Publicly Verifiable Computing Techniques: A Survey. Springer Briefs in Computer Science. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-53798-6
Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_41
Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_25
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: STOC, pp. 99–108. ACM (2011)
Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: ICALP 2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (2016)
Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_22
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: SP 2013, pp. 238–252. IEEE Computer Society (2013)
Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_24
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Schabhüser, L., Buchmann, J., Struck, P.: A linearly homomorphic signature scheme from weaker assumptions. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 261–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_14
Schabhüser, L., Demirel, D., Buchmann, J.A.: An unconditionally hiding auditing procedure for computations over distributed data. In: CNS 2016, pp. 552–560. IEEE (2016)
Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty computation from threshold homomorphic cryptosystems. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_1
Schoenmakers, B., Veeningen, M., de Vreede, N.: Trinocchio: privacy-preserving outsourcing by distributed verifiable computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 346–366. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_19
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Zhang, L.F., Safavi-Naini, R.: Generalized homomorphic MACs with efficient verification. In: ASIAPKC 2014, pp. 3–12. ACM (2014)
Acknowledgments
This work has been co-funded by the DFG as part of project “Long-Term Secure Archiving” within CRC 1119 CROSSING. It has also received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement 644962.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Schabhüser, L., Butin, D., Demirel, D., Buchmann, J. (2018). Function-Dependent Commitments for Verifiable Multi-party Computation. In: Chen, L., Manulis, M., Schneider, S. (eds) Information Security. ISC 2018. Lecture Notes in Computer Science(), vol 11060. Springer, Cham. https://doi.org/10.1007/978-3-319-99136-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-99136-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99135-1
Online ISBN: 978-3-319-99136-8
eBook Packages: Computer ScienceComputer Science (R0)