Kernel-Based Non-linear Template Matching

Barend J. van Wyk, Michaél A. van Wyk, and Guillaume Noel

French South-African Technical Institute in Electronics,
Tshwane University of Technology
Staatsartillerie Road, Pretoria, South Africa
{ben.van.wyk,guillaume.noel,mavw}@fsatie.ac.za

Abstract. A new non-linear minimum norm template matching tech-
nique is introduced. Similar to the theory of Support Vector Machines the
proposed framework is also based on Reproducing Kernel Hilbert Space
principles. Promising results when applied to aerial image matching are
reported and future work is highlighted.

1 Introduction

In this paper the problem of finding the location of a known reference image,
or template, in a larger input image is addressed. Finding the location of the
reference image can be done by searching through the input image using the
normalized cross correlation as a similarity measure [1]. As the normalized cross
correlation technique won’t work when our reference image is rotated or scaled,
several modifications were proposed. The Fourier and Mellin transforms can be
combined [2], multiple templates can be used, or the reference and sub-images
can be described in terms of invariant moments and then the correlations involv-
ing these moments can be used as a similarity measure [3]. As shown by Ueno-
hara and Kanade [4] the multiple template approach can be made more efficient
by implementing a dual decomposition using the Fourier and Karhunen-Loéve
transforms. Ben-Arie and Rao [5] [6], on the other hand proposed non-orthogonal
image expansions where the search area is represented by basis functions that
are effectively the template translated to different positions.

The technique proposed in this paper is also based on the idea of having
multiple templates, but differs from other popular methods in the way the tem-
plates are selected. Another differentiating factor is that it is non-linear, with
the linear case as a special instance of the proposed framework.

2 Non-linear Template Matching Framework

Similar to the theory of Support Vector Machines (SVMs) our framework is also
based on Reproducing Kernel Hilbert Space (RKHS) principles, in particular
on the idea of an RKHS interpolator. For a more general discussion on RKHS
interpolators, the reader is referred to [7], [8], [9], [10] and [11]. The following
theorem, stated by Zyla and De Figueiredo [12] for Bochner spaces, but adapted
here for our purposes, is the core of our methodology:
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Theorem 1. [12] Given that an input-output map F to be identified belongs to
Hy, an RKHS, and assuming that we are provided with a set of test input-output
pairs

{(x; e RV, yi) 12, (1)

where X;, 1 = 1,...,m, are linearly independent elements of RN, the problem
has a unique minimum norm solution erpressed by

m

F(x) =Y CiK(xi,x) (2)

i=1

where K(x;,-) is a reproducing kernel of the space H,. The coefficients C; are
given by the expression
C=Gy 3)

where

C:= (Clv "'7C’m)T7
y = (ylv"'vym)T

and the Gram matriz, G, is given by
G = (Gy)

where
Gij = K(x;,x;), i,j=1,...,m.

Theorem 1 will now be used for the derivation of our template matching
scheme. To apply theorem 1 to template matching five factors need to be con-
sidered namely, defining the test input-output pairs, choosing a suitable kernel,
calculating the interpolator coefficients, deriving a minimum norm template and
implementing the matching process. From theorem 1 it is clear that once the
test input-output pairs are defined and an appropriate kernel chosen, the in-
terpolator constraints are obtained by simply inverting a Gram matrix. Refer
to Luenberger [13] for conditions under which the Gram matrix is invertible. If
the Gram matrix is found to be ill-conditioned or badly scaled one can resort
to the pseudo-inverse. In the approach followed by De Figueiredo and Zyla [7]
[12], every reproducing kernel K (x;, ) is associated with a specific norm on H,,.
It is important to note that because of this relationship only knowledge of the
reproducing kernel is required when applying theorem 1. Refer to [14] to see how
theorem 1 relates to the well-known representer’s theorem.

The definition of the test input-output pairs is discussed in section 2.1, ex-
amples of suitable kernels are given in section 2.2, the derivation of minimum
norm templates are discussed in section 2.3 and the matching process is detailed
in section 2.4.

In short we will infer a Minimum Norm Template (MNT) based on Eq. 2 us-
ing k Desirable Image Templates (DITs) and m—k Undesirable Image Templates
(UITs) where m > k, as input-output pairs. For the application considered in
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this paper the DITs will be rotated and scaled versions of the region of interest
as shown in figures 1 to 4, i.e. instances of the entity we want to find in a complex
image. The UITs will be instances of objects or backgrounds we don’t want to
recognize as our region of interest such as undesirable complex backgrounds as
shown in figure 5. For simplicity it will be assumed that the DITs and UITs are

square, have equal dimension and are represented by X; € RN*N,

2.1 Test Input-Output Pairs {(x; € RY,y;)}™,

For the DITs (i.e. i < k) the y; values in Eq. 1 are normally chosen equal to
some positive value, say 7. The rest of the y; values for the UITs are normally
set to a, where « is zero or —v. Each x; is simply set equal to vec (X;) € RY

where vec (+) is the matrix vectorization operator and N = N .

2.2 Examples of Reproducing Kernels K (x, z)

Although the theory is general enough to allow other reproducing kernels we will
only focus on three types of kernels, namely the linear kernel

K(x,2) =x"z, (4)
the polynomial kernel,
K(x,z) = (l—I—XTz)d, d>1, (5)
and the polynomial kernel without cross terms

d
K(x,z) = 1+Z(x?zf+x§z§,,x?vz§,) , d>1. (6)
B=1

2.3 The Minimum Norm Template

Once the interpolator coefficients are obtained an MNT can be inferred. When
using the linear kernel it is easy to show that the MNT has the form

X = i CiXi (7)
i=1

and that K (X,-) will satisfy

~ o Jryfori=1,.k
K(xxi) = {afor 1>k

When the DITs and UlTs are linearly separable, the suitability of using
devec(x) € RM*Y as an object template is obvious. Here devec denotes the
inverse of vec.
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Fig. 3. Image template: Region searched for in input image.
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Fig. 5. Example of 9 Undesirable Image Templates (UITSs).

When our input training pairs are not linearly separable we will resort to
polynomial kernels. First consider the kernel given by Eq. 5. For simplicity we
will consider the case where d = 2. By using similar arguments as for the linear
kernel case it can be shown that

X = i Cix;, (8)
=1

where x; = [[1x]] ® [1 xﬂ]T and ® denotes the Kronecker Tensor Product.
Similar to the linear case,

~r. _ Joyfori=1,..k
xxl_{afori>k ’
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These results can be readily extended for cases where d > 2. When d = 3 for
example we have

2=3 cliid)e (] o )"

The polynomial kernel without cross terms given by Eq. 6 can be seen as a
compromise between the linear kernel and the polynomial kernel given by Eq.
5. The Minimum Norm Template (MNT) for this case can be expressed as a
concatenated vector given by

m m m

m T
ZCZ', ZC@-X}, Zczxf,,ZC’le (9)
i=1

=1 i=1 =1

X =

where xf denotes that every element of x7  is raised to the power d. Once again

~r. _ Joyfori=1,..k
Xxl_{afori>k ’
2. x4]

2. — 1x!
where X; := [1x; x7...x¢].

2.4 The Matching Process

In summary the kernel-based template matching process involves the following
steps:

1. Calculate x, the MNT, offline using the DITs and the UITs.

2. Once the MNT % has been obtained, X7X%;; which serves as our similar-
ity measure, is calculated for all (or selected) portions over an area of in-
terest in the input image. When for example the polynomial kernel with-
out cross terms is used, then from the previous section we have Xy, :=
[1vecX}, vecX?,..vecX?,]. Here Xy € RY*N an N x N region centered
at position (k,l) in the K x L input image and vecX? denotes that every
element of (vecX)? is raised to the power d. It is assumed that K, L > N.

3. Position (k,1) in the input image where the value for x7%;; is a maximum
is taken as the location of the object or region to be identified.

The template matching method presented here differs from conventional
SVM classification strategies mainly in two aspects: 1) Kernel evaluations are
only performed to calculate the MNT. Once the MNT is calculated no further
kernel evaluations are required during the execution of the matching process. 2)
The interpolator coefficients used to construct the MNT are obtained by simply
inverting a Gram matrix. Complex optimization methods are not required.
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2.5 Efficient Implementation

If the linear kernel is used the matching process is equivalent to 2D filtering,
where the 2D filter coefficients are given by X = devec (X). By using the fact
that discrete convolution in the spatial domain is equivalent to point-wise multi-
plication of discrete Fourier spectra in the frequency domain, the cost of search-
ing for a match in an area of interest can be reduced by calculating two Fast
Fourier Transforms (FFTs), performing a point-wise multiplication, and calcu-
lating the Inverse FFT (IFFT) of the result. It is assumed that sufficient zero
padding is added to implement linear and not circular convolution. When using
the polynomial kernel given by Eq. 5, a single-pass FFT technique is not feasible
in general as 2D non-linear filtering is performed. However even when using the

polynomial kernel,
<Z Ci(1+ X?Xk,l)d> :

i=1

sequential or parallel FFT processing can still be used to process the inner terms
xFx; ;. When m, that is dependent on the number of DITs and UITs, is large,
say > 10 which will usually be the case, all x; associated with a near zero C;
can be ignored to save complexity. Alternatively a more optimal SVM approach
can be followed to only obtain those x; labelled as support vectors.

Most of the computational difficulties associated with the kernel given by Eq.
5 can be overcome by implementing the kernel given by Eq. 6. What is important
to note in this case is that fast frequency domain algorithms developed for the
linear template matching case can be adapted for use with the kernel given by
Eq.6 by calculating d sub-templates and executing the linear algorithm d times.
Since d is normally chosen as a small value, say 3 or 4, the computational load
will still be manageable for most cases. However, performance versus complexity
will in the end be dictated by the application.

3 Simulation Results

To test our kernel-based approach, figure 1 (400 x 400 pixels) was used as
a reference image. The objective was to locate the (121 x 121 pixel) region
depicted by figure 3, in figures such as figure 2. Here figure 2 is a rotated and
scaled version of figure 3.

Thirty-three DITs were constructed by first rotating the reference template,
i.e. figure 3, through -20 -16 -8 -4, 4, 8, 12, 16 and 20 degrees to obtain 9
additional templates. Each rotated template as well as the original template was
then scaled by factors 26 and 52 to produce another additional 20 templates.
A scale factor of 26 implies that a 26 pixel wide border was removed from the
original template after which the cropped template was again made the same
size as the original template using bilinear interpolation. Sixteen of the 30 DIT's
are shown in figure 4.

Sixteen UITs were obtained by extracting 121 x 121 pixel regions around
the neighborhood of the zero rotated and scaled DIT and elsewhere from the
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reference image. Nine of the UITs are depicted in figure 5. The DITs and UITs
were then used as described in section 2.4.

To test the performance of the different kernels, a series of input images was
generated by first rotating the reference image by -21, -15, -9, -3, 3, 9, 15 and 21
degrees, and then scaling by factors 0, 8, 16, 24, 32, 40 and 48. For each input
image the Euclidean distance (measured in pixels) from the midpoint of region
with highest match, to the midpoint of the true location of the region searched
for, was calculated. Note that the rotation and scale factors used to produce the
input images do not correspond the rotation and scale factors used to generate
the DITs. The results of the experiment for the linear kernel is reported in
table 1. Note that ordinary normalized cross correlation is only of value when no
rotation or scaling is involved. Both the polynomial kernel given by Eq. 5 with
d =2 and Eq. 6 with d = 3 yielded improved results. If a distance of more than
10 pixels is taken as a mismatch, then the results obtained using the polynomial
kernel without cross terms reported in table 2 show that there is much to gain
by using non-linear kernels.

Table 1. Euclidean distance measured in pixels from midpoint of region with highest
match to midpoint of true region using the linear kernel.

Rotation and Scale|—21°|—15°]—9°{—3°|3°{99|15%|21°
0 1171 0 0| 0 |0]|11]115{124
8 114 | 1 1|1 |0[10] 9 (126
16 119 | 2 1[5 (0[9]10]56
24 8 2 1[0 [031]80]57
32 1 1 1|1 |0(1]1]1
40 1 1 1|2 (|1{1]0|1
48 2 1 1 2 11(1]111]1

Table 2. Euclidean distance measured in pixels from midpoint of region with highest
match to midpoint of true region using the polynomial kernel without cross terms.

Rotation and Scale]—21°|—15°]—9°|—39(3°|9°(15°|21°
0 2 0 o]oflolololo
8 2 1 1|1 f1]1l1]1
16 1 2 [1]2109]9l9]7
24 2 2 1] 21]9]9]9]1
32 1 1 128111
40 1 T 121111
48 01 221111

4 Conclusion

A novel (non-linear) template matching technique was presented. The proposed
framework, based on the derivation of an MNT using interpolator coefficients,
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DITs and UITs, shows promising results. An efficient implementation strategy
using the FFT and IFFT was highlighted. Future work will focus on the im-
provement of robustness and real-time implementation issues.
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