Abstract
In this paper we propose a new method for finding a low dimensional subspace of high dimensional microarray data. We developed a new criterion for constructing the weight matrix by using local neighborhood information to discover the intrinsic discriminant structure in the data. Also this approach applies regularized least square technique to extract relevant features. We assess the performance of the proposed methodology by applying it to four publicly available tumor datasets. In a low dimensional subspace, the proposed method classified these tumors accurately and reliably. Also, through a comparison study, the reliability of the dimensionality reduction and discrimination results is verified.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wang, H.Q., Huang, D.S.: A Gene Selection Algorithm based on the Gene Regulation Probability using Maximal Likelihood Estimation. Bitotechnol. Lett. 27, 597–603 (2005)
Payton, P., Kottapalli, K.R., Kebede, H., Mahan, J.R., Wright, R.J., Allen, R.D.: Examining the Drought Stress Transcriptome in Cotton Leaf And Root Tissue. Bitotechnol. Lett. 33, 821–828 (2011)
Joliffe, I.: Principal Component Analysis. Springer (1986)
Fukunnaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press (1991)
Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)
He, X., Niyogi, P.: Locality Preserving Projections. In: Adv. Neural Inf. Process Syst. MIT Press (2004)
Ye, J.: Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems. J. Mach. Learn. Res. 6, 483–502 (2005)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)
Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene Expression Correlates of Clinical Prostate Cancer Behavior. Cancer Cell 1, 203–209 (2002)
Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and Diagnostic Prediction of Cancers using Gene Expression Profiling and Artificial Neural Networks. Nat. Med. 7, 673–679 (2001)
Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C., Beheshti, J., Bueno, R., Gillette, M.: Classification of Human Lung Carcinomas by mRNA Expression Profiling Reveals Distinct Adenocarcinoma Subclasses. Proc. Natl. Acad. Sci. USA 98, 13790–13795 (2001)
Zelnik-Manor, L., Perona, P.: Self-tuning Spectral Clustering. In: Adv. Neural. Inf. Process Syst., vol. 17, pp. 1601–1608. MIT Press, Cambridge (2005)
Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. Johns Hopkins University Press (1996)
Cai D., He X., Han J.: Spectral Regression for Dimensionality Reduction. UIUCDCS-R-2007-2856 (2007)
Paige, C.C., Saunders, M.A.: LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw. 8, 43–71 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cui, Y., Zheng, CH., Yang, J. (2013). Dimensionality Reduction for Microarray Data Using Local Mean Based Discriminant Analysis. In: Huang, DS., Jo, KH., Zhou, YQ., Han, K. (eds) Intelligent Computing Theories and Technology. ICIC 2013. Lecture Notes in Computer Science(), vol 7996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39482-9_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-39482-9_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39481-2
Online ISBN: 978-3-642-39482-9
eBook Packages: Computer ScienceComputer Science (R0)