Abstract
In various wireless networking settings, node locations determine a network’s topology, allowing the network to be modelled by a geometric graph drawn in the plane. Without any additional information, local geometric routing algorithms can guarantee delivery to the target node only in restricted classes of geometric graphs, such as triangulations. In order to guarantee delivery on more general classes of geometric graphs (e.g., convex subdivisions or planar subdivisions), previous local geometric routing algorithms required Θ(logn) state bits to be stored and passed with the message. We present the first local geometric routing algorithm using only one state bit to guarantee delivery on convex subdivisions and the first local geometric memoryless routing algorithm that guarantees delivery on edge-augmented monotone subdivisions (including all convex subdivisions) when the algorithm has knowledge of the incoming port (the preceding node on the route).
This research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). A preliminary version of the algorithm presented in Section 2 appeared in Mohammad Abdul Wahid’s M.Sc. thesis [19].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Berg, M., van Kreveld, M., van Oostrum, R., Overmars, M.: Simple traversal of a subdivision without extra storage. Int. J. Geog. Inf. Sci. 11(4), 359–373 (1997)
Bose, P., Brodnik, A., Carlsson, S., Demaine, E.D., Fleischer, R., López-Ortiz, A., Morin, P., Munro, I.: Online routing in convex subdivisions. Int. J. Comp. Geom. & Appl. 12(4), 283–295 (2002)
Bose, P., Carmi, P., Durocher, S.: Bounding the locality of distributed routing algorithms. Dist. Comp. 26(1), 39–58 (2013)
Bose, P., Morin, P.: An improved algorithm for subdivision traversal without extra storage. Int. J. Comp. Geom. & Appl. 12(4), 297–308 (2002)
Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Comp. Sci. 324, 273–288 (2004)
Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comp. 33(4), 937–951 (2004)
Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Net. 7(6), 609–616 (2001)
Braverman, M.: On ad hoc routing with guaranteed delivery. In: Proc. ACM PODC, vol. 27, p. 418 (2008)
Chavez, E., Dobrev, S., Kranakis, E., Opatrny, J., Stacho, L., Urrutia, J.: Traversal of a quasi-planar subdivision without using mark bits. J. Interconn. Net. 5(4), 395–408 (2004)
Chen, D., Devroye, L., Dujmović, V., Morin, P.: Memoryless routing in convex subdivisions: Random walks are optimal. Comp. Geom.: Theory & Appl. 45(4), 178–185 (2012)
Durocher, S., Kirkpatrick, D., Narayanan, L.: On routing with guaranteed delivery in three-dimensional ad hoc wireless networks. Wireless Net. 16, 227–235 (2010)
Finn, G.G.: Routing and addressing problems in large metropolitan-scale internetworks. Technical Report ISI/RR-87-180, Information Sciences Institute (1987)
Frey, H., Ruehrup, S., Stojmenovic, I.: Routing in wireless sensor networks. In: Misra, S., Woungag, I., Misra, S. (eds.) Guide to Wireless Ad Hoc Networks, ch.4, pp. 81–111. Springer (2009)
Guan, X.: Face routing in wireless ad-hoc networks. PhD thesis, Univ. Toronto (2009)
Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. CCCG, vol. 11, pp. 51–54 (1999)
Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. In: Proc. ACM DIALM-POMC, pp. 69–78 (2003)
Morin, P.: Online routing in geometric graphs. PhD thesis, Carleton Univ. (2001)
Urrutia, J.: Handbook wireless net. & mob. comp. In: Stojmenovic, I. (ed.) Routing with Guaranteed Delivery in Geometric and Wireless Networks, pp. 393–406. John Wiley & Sons, Inc. (2002)
Wahid, M.A.: Local geometric routing algorithms for edge-augmented planar graphs. Master’s thesis, Univ. Manitoba (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bose, P., Durocher, S., Mondal, D., Peabody, M., Skala, M., Wahid, M.A. (2015). Local Routing in Convex Subdivisions. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, JJ., Wattenhofer, R. (eds) SOFSEM 2015: Theory and Practice of Computer Science. SOFSEM 2015. Lecture Notes in Computer Science, vol 8939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46078-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-662-46078-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-46077-1
Online ISBN: 978-3-662-46078-8
eBook Packages: Computer ScienceComputer Science (R0)