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Abstract. In cloud computing, software which does not flexibly adapt
to deployment decisions either wastes operational resources or requires
reengineering, both of which may significantly increase costs. However,
this could be avoided by analyzing deployment decisions already during
the design phase of the software development. Real-Time ABS is a for-
mal language for executable modeling of deployed virtualized software.
Using Real-Time ABS, this paper develops a generic framework called
ABS-YARN for YARN, which is the next generation of the Hadoop cloud
computing platform with a state-of-the-art resource negotiator. We show
how ABS-YARN can be used for prototyping YARN and for modeling
job execution, allowing users to rapidly make deployment decisions at
the modeling level and reduce unnecessary costs. To validate the mod-
eling framework, we show strong correlations between our model-based
analyses and a real YARN cluster in different scenarios with benchmarks.

1 Introduction

Cloud computing changes the traditional business model of IT enterprises by
offering on-demand delivery of IT resources and applications over the Internet
with pay-as-you-go pricing [6]. The cloud infrastructure on which software is
deployed can be configured to the needs of that software. However, software
which does not flexibly adapt to deployment decisions either require wasteful
resource over-provisioning or time-consuming reengineering, which may sub-
stantially increase costs in both cases. Shifting deployment decisions from the
deployment phase to the design phase of a software development process can sig-
nificantly reduce such costs by performing model-based validation of the chosen
decisions during the software design [14]. However, virtualized computing poses
new and interesting challenges for formal methods because we need to express
deployment decisions in formal models of distributed software and analyze the
non-functional consequences of these deployment decisions at the modeling level.

A popular example of cloud infrastructure used in industry is Hadoop [5], an
open-source software framework available in cloud environments from vendors
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such as Amazon, HP, IBM, Microsoft, and Rackspace. YARN [27] is the next
generation of Hadoop with a state-of-the-art resource negotiator. This paper
presents ABS-YARN, a generic framework for modeling YARN infrastructure
and job execution. Using ABS-YARN, modelers can easily prototype a YARN
cluster and evaluate deployment decisions at the modeling level, including the
size of clusters and the resource requirements for containers depending on the
jobs to be executed and their arrival patterns. Using ABS-YARN, designers can
focus on developing better software to exploit YARN in a cost-efficient way.

ABS-YARN is defined using Real-Time ABS, a formal language for the exe-
cutable modeling of deployed virtualized software [10]. The basic approach to
modeling resource management for cloud computing in Real-Time ABS is a sep-
aration of concerns between the resource costs of the execution and the resource
provisioning at (virtual) locations [18]. Real-Time ABS has previously been used
to model and analyze the management of virtual resources in industry [3] and
compared to (informal) simulation tools [17]. Although Real-Time ABS provides
a range of formal analysis techniques (e.g., [2,30]), our focus here is on obtaining
results based on easy-to-use rapid prototyping, using the executable semantics
of Real-Time ABS, defined in Maude [12], as a simulation tool for ABS-YARN.

To evaluate the modeling framework, we comprehensively compare the results
of model-based analyses using ABS-YARN with the performance of a real YARN
cluster by using several Hadoop benchmarks to create a hybrid workload and
designing two scenarios in which the job inter-arrival time of the workload follows
a uniform distribution and an exponential distribution, respectively. The results
demonstrate that ABS-YARN models the real YARN cluster accurately in the
uniform scenario. In the exponential scenario, ABS-YARN performs less well but
it still provides a good approximation of the real YARN cluster.

The main contributions of this paper can be summarized as follows:

1. We introduce ABS-YARN, a generic framework for modeling software target-
ing YARN. Using Real-Time ABS, designers can develop software for YARN
on top of the ABS-YARN framework and evaluate the performance of the
software model before the software is realized and deployed on a real YARN
cluster.

2. ABS-YARN supports dynamic and realistic job modeling and simulation.
Users can define the number of jobs, the number of the tasks per job, task
cost, job inter-arrival patterns, cluster scale, cluster capacity, and the resource
requirement for containers to rapidly evaluate deployment decisions with the
minimum costs.

3. We comprehensively evaluate and validate ABS-YARN under several perfor-
mance metrics. The results demonstrate that ABS-YARN provides a satisfi-
able modeling to reflect the behaviors of real YARN clusters.

Paper Organization. Section 2 provides a background introduction to Real-
Time ABS and YARN. Section 3 presents the details of the ABS-YARN frame-
work. In Sect. 4, we validate ABS-YARN and compare it with a real YARN
cluster. Section 5 surveys related work and Sect. 6 concludes the paper.
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Fig. 1. Syntax for the imperative layer of Real-Time ABS. Terms e and x denote
possibly empty lists over the corresponding syntactic categories, and square brackets
[ ] denote optional elements.

2 Background

2.1 Modeling Deployed Systems Using Real-Time ABS

Real-Time ABS [10] is a formal, executable, object-oriented language for mod-
eling distributed systems by means of concurrent object groups [16], akin to
concurrent objects [11], Actors [1], and Erlang processes [7]. Concurrent objects
groups execute in parallel and communicate by asynchronous method calls and
futures. In a group, at most one process is active at any time, and a queue of
suspended processes wait to execute on an object of the group. Processes, which
stem from methods calls, are cooperatively scheduled, so active and reactive
behaviors can be easily combined in the concurrent object groups. Real-Time
ABS combines functional and imperative programming styles with a Java-like
syntax and a formal semantics. Internal computations in an object are captured
in a simple functional language based on user-defined algebraic data types and
functions. A modeler may abstract from many details of the low-level impera-
tive implementations of data structures, but maintain an overall object-oriented
design. The semantics of Real-Time ABS is specified in rewriting logic [12], and
a model written in Real-Time ABS can be automatically translated into Maude
code and executed by the Maude tool.

The imperative layer of Real-Time ABS addresses concurrency, communica-
tion, and synchronization based on objects. The syntax is shown in Fig. 1. A pro-
gram P consists of interfaces IF , classes CL with method definitions M , and a
main block {[T x; ] s }. Our discussion focuses on interesting imperative language
features, so we omit the explanations of standard syntax and the functional layer
(see [16]).

In Real-Time ABS, communication and synchronization are decoupled. Com-
munication is based on asynchronous method calls f = o!m(e) where f is a
future variable, o an object expression, m a method name, and e the parameter
values for the method invocation. After calling f = o!m(e), the caller may pro-
ceed with its execution without blocking on the method reply. Synchronization is
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controlled by operations on futures. The statement await f? releases the proces-
sor while waiting for a reply, allowing other processes to execute. When the reply
arrives, the suspended process becomes enabled and the execution may resume.
The return value is retrieved by the expression f.get, which blocks all execu-
tion in the object until the return value is available. The syntactic sugar x =
await o!m(e) encodes the standard pattern f = o!m(e);await f?;x = f.get.

In Real-Time ABS, the timed behavior of concurrent objects is captured by
a maximal progress semantics. The execution time can be specified directly with
duration statements, or be implicit in terms of observations on the executing
model. Method calls have associated deadlines, specified by deadline annota-
tions. The statement duration(e1, e2) will cause time to advance between a
best case e1 and a worst case e2 execution time. Whereas duration-statements
advance time at any location, Real-Time ABS also allows a separation of con-
cerns between the resource cost of executing a task and the resource capacity of
the location where the task executes. Cost annotations [Cost: e] are used to
associate resource consumption with statements in Real-Time ABS models.

Real-Time ABS uses deployment components to capture the execution capac-
ity of a location in the deployment architecture, on which a number of concurrent
objects can be deployed [18]. Each deployment component has its own execu-
tion capacity, which will determine the performance of objects executing on
the deployment component. Deployment components are dynamically created
by x = new DeploymentComponent (descriptor, capacity), where x is typed
by the DC interface, descriptor is a descriptor for the purpose of monitoring,
and capacity specifies the initial CPU capacity of the deployment component.
Objects are deployed on a deployment component using the DC annotation on
the object creation statement.

2.2 YARN: Yet Another Resource Negotiator

YARN [27] is an open-source software framework supported by Apache for dis-
tributed processing and storage of high data volumes. It inherits the advantages
of its well-known predecessor Hadoop [5], including resource allocation, code
distribution, distributed data processing, data replication, and fault tolerance.
YARN further improves Hadoop’s limitations in terms of scalability, serviceabil-
ity, multi-tenancy support, cluster utilization, and reliability.

YARN supports the execution of different types of jobs, including MapRe-
duce, graph, and streaming. Each job is divided into tasks which are executed in
parallel on a cluster of machines. The key components of YARN are as follows:

– ResourceManager (RM): RM allocates resources to various competing jobs
and applications in a cluster, replacing Hadoop’s JobTracker. Unlike Job-
Tracker, the scheduling provided by RM is job level, rather than task level.
Thus, RM does not monitor each task’s progress or restart any failed task.
Currently, the default job scheduling policy of RM is CapacityScheduler [23],
which allows cluster administrators to create hierarchical queues for multiple
tenants to share a large cluster while giving each tenant a capacity guarantee.
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Fig. 2. The architecture of a YARN cluster.

The jobs in each queue are scheduled based on a First-in-First-out policy
(FIFO), i.e., the first job to arrive is first allocated resources.

– ApplicationMaster (AM): This is an instance of a framework-specific library
class for a particular job. It acts as the head of the job to manage the job’s
lifecycle, including requesting resources from RM, scheduling the execution of
all tasks of the job, monitoring task execution, and re-executing failed tasks.

– Containers: Each container is a logical resource collection of a particular node
(e.g., 1 CPU and 2GB of RAM). Clients can specify container resource require-
ments when they submit jobs to RM and run any kind of applications.

Figure 2 shows the architecture of a YARN cluster, which consists of RM and
a set of slave nodes providing both computation resources and storage capacity
to execute applications and store data, respectively. A slave node has an agent
called NodeManager to periodically monitor its local resource usage and report
its status to RM. The execution flow of a job on a YARN cluster is as follows:

1. Whenever receiving a job request from a client, RM follows a pre-defined job
scheduling algorithm to find a container from an available slave and initiate
the AM of the job on the container.

2. Once the AM is initiated, it starts requesting a set of containers from RM
based on the client’s container resource requirement and the number of tasks
of the job. Basically, each task will be run on one container.

3. When RM receives a container request from the AM, it inserts the request
into its queue and follows its job scheduling algorithm to allocate a desired
container from an available slave node to the AM.

4. Upon receiving the container, the AM executes one task of the job on the
container and monitors this task execution. If a task fails due to some errors
such as an underlying container/slave node failure, the AM will re-request a
container from RM to restart the task.

5. When all tasks of a job finish successfully, implying that the job is complete,
the AM notifies the client about the completion.
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Fig. 3. The structure of the ABS-YARN framework.

3 Formal Model of the ABS-YARN Framework

Figure 3 shows the structure of ABS-YARN with classes RM, AM, and Container
reflecting the main components of a YARN cluster. In our framework, RM is
deployed as an independent deployment component with its own CPU capacity.
To model the most general case, we assume that RM has a single queue for all
job requests, implying that all jobs are served in a FIFO order. When a client
submits a job, an AM object is created for this job, and its req method starts
requesting containers from RM by invoking the getContainer method. If a
slave has sufficient resources, a container will be created and returned to the
AM. Then the AM submits one task of the job to the allocated container by
invoking the exe method. When the task terminates, the result is returned to
the associated AM, the free method is invoked to release the container, and the
logger method is used to record execution statistics.

ABS-YARN allows modelers to freely determine the scale and resource capac-
ity of a YARN cluster, including (1) the number of slave nodes in the cluster,
(2) the CPU cores of each slave node, and (3) the memory capacity of each slave
node. To support dynamic and realistic modeling of job execution, ABS-YARN
also allows modelers to define the following parameters:

– Number of clients submitting jobs
– Number of jobs submitted by each client
– Number of tasks per job
– Cost annotation for each task
– CPU and memory requirements for each container
– Job inter-arrival pattern. Modelers can determine any kind of job inter-arrival

distributions in ABS-YARN.

MapReduce jobs are the most common jobs in YARN, so we focus on modeling
their execution in this paper. Each MapReduce job has a map phase followed by
a reduce phase. In the map phase, all map tasks are executed in parallel. When
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all the map tasks have completed, the reduce tasks are executed (normally, each
jobs has only one reduce task). The job is completed when all the map and
reduce tasks have finished.

The execution time of a task in a real YARN cluster might be influenced
by many factors, e.g., the size of the processed data and the computational
complexity of the task. To reduce the complexity of modeling the task execution
time, ABS-YARN adopts the cost annotation functionality of Real-Time ABS
to associate cost to the execution of a task. Hence, the task execution time will
be the cost divided by the CPU capacity of the container that executes the task.

In the following, we limit our code presentation to the main building blocks
and functionalities to simplify the description.

3.1 Modeling ResourceManager (RM)

The ResourceManager implements the RM interface:

1 interface RM {
2 Bool initialization(Int s, Int sc, Int sm);
3 Pair<Int, Container> getContainer(Int c, Int m);
4 Unit free(Int slaveID, Int c, Int m);
5 Unit logger(...);}

Method initialization initializes the entire cluster environment, including
RM and s slaves. Each slave is modeled as a record in a database SlaveDB,
with a unique SlaveID, sc CPU cores, and amount sm of memory capacity.
After the initialization, the cluster can start serving client requests. Method
getContainer allows an AM to obtain containers from RM. The size of the
required container core and container memory are given by c and m, respectively.
Method free is used to release container resources whenever a container finishes
executing a task, and method logger is used to record job execution statistics,
including job ID and job execution time.

The getContainer method, invoked by an AM, tries to allocate a container
with c CPU cores and m amount of memory capacity from an available slave to
the AM. Each container request is allowed at most thd attempts. Hence, as long
as Find==False and attempt<=thd (line 3), the getContainer method
will keep trying to obtain the database token to ensure a safe database access.
The built-in function lookupDefault checks each slave in slaveDB to find a
slave with sufficient resources. If such a slave exists (line 11), the corresponding
container will be created as a deployment component with c cores, and the
slave’s resources will be reduced and updated accordingly (lines 12–14). The
successfully generated container is returned to the AM.

However, if no slaves have enough resources, the process will suspend (line
21), allowing RM to process other method activations. The suspended process
will periodically check whether any slaves can satisfy the request. If the desired
container cannot be allocated within thd attempts, the method terminates and
RM is unable to provide the desired container to the AM.
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1 Pair <Int, Container> getContainer (Int c, Int m) {
2 Bool find=False; Int slaveID=1; Int attempt=1;
3 while (find==False && attempt<=thd){
4 await dbToken==True;
5 dbToken==False;
6 Int i=1;
7 while (find==False && i<=size(keys(slaveDB))){
8 Pair<Int,Int> slave= lookupDefault(slaveDB, i, Pair(1,1));
9 Int free_core= fst(slave);

10 Int free_mem= snd(slave);
11 if (free_core>=c && free_mem >= m){
12 slaveDB=put(slaveDB, i, Pair(free_core-c, free_mem-m));
13 DC s=new DeploymentComponent("slave", map[Pair(CPU,c)]);
14 [DC: s] Container container = new Container(this);
15 find=True;
16 slaveID=i;
17 }
18 i++;
19 }
20 ... // Release dbToken
21 await duration(1,1);
22 attempt++;
23 }
24 if (find==False){ container=null;}
25 return Pair(slaveID, container);
26 }

3.2 Modeling ApplicationMaster (AM)

An AM implements the AM interface with a req method to acquire a container
from RM and then execute a task on the container. For an AM, the total number
of times that req is called corresponds to the number of map tasks of a job (e.g.,
if a job is divided into 10 map tasks, this method will be called 10 times).

1 interface AM {
2 Unit req(Int mNum, Int c, Int m, Rat mCost, Rat rCost);}

The reqmethod first invokes the getContainermethod and sends a container-
resource request (i.e., the parameters c and m) to acquire a container from RM.
Since the call is asynchronous, the AM is able to request containers for other tasks
of jobID while waiting for the response.

1 Unit req(Int mNum, Int c, Int m, Rat mCost, Rat rCost) {
2 ...
3 Pair<Int, Container> p= await rm!getContainer(c, m);
4 Int slaveId=fst(p);
5 Container container=snd(p);
6 if (container!=null){
7 Fut<Bool> f = container!exe(slaveID, c, m, mCost);
8 await f?;
9 Bool map_result = f.get;

10 if (map_result==True){
11 returned_map++;
12 if (returned_map==mNum){
13 Bool red_result;
14 ...//Try to request a container and run the reduce task
15 if (red_result==True){
16 logging the job completion;
17 }
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18 else{ logging the reducde-task failure;}
19 }
20 }
21 else{ logging the map-task failure;}
22 }
23 else{ logging unsuccessful container request;}
24 }

When a container is successfully obtained, a map task with cost mCost can
be executed on the container (line 7). The process suspends while waiting for
the result of the task execution. Each time when map result==True, the req
method increases the variable returned map by one. When all map tasks of
the job have successfully completed (line 12), the AM proceeds with a container
request to run the reduce task of the job with cost rCost. Only when all map
and reduce tasks are completed (line 15), the job is considered completed.

3.3 Modeling Containers

A container implements the Container interface:

1 interface Container{
2 Bool exe(Int slaveID, Int c, Int m, Rat tcost);}

Method exe is used to execute a task on a container. The formal parameters of
exe consist of slaveID, CPU capacity c, memory capacity m, and the task cost
tcost. Hence, the task execution time is tcost/c. When a task terminates,
the free method of RM is invoked to release the container, implying that the
corresponding CPU and memory resources will be returned back to the slave.

1 Bool exe(Int slaveID, Int c, Int m, Rat tcost){
2 [Cost: tcost] ... //executing a task;
3 rm!free(slaveID, c, m);
4 return true;}

4 Performance Evaluation and Validation

To compare the simulation results of ABS-YARN against YARN, we established
a real YARN cluster using Hadoop 2.2.0 [5] with one virtual machine acting as
RM and 30 virtual machines as slaves. Each virtual machine runs Ubuntu 12.04
with 2 virtual cores of Intel Xeon E5-2620 2 GHz CPU and 2 GB of memory.
To achieve a fair validation, we also created an ABS-YARN cluster with 30
slaves; each with 2 CPU cores and 2 GB of memory. To realistically compare
job execution performance between ABS-YARN and YARN clusters, we used
the following five benchmarks from YARN [23]: WordCount, which counts the
occurrence of each word in data files; WordMean, which calculates the average
length of the words in data files; WordStandardDeviation (WordSD), which
counts the standard deviation of the length of the words in data files; GrepSort,
which sorts data files; and GrepSearch, which searches for a pattern in data
files.



58 J.-C. Lin et al.

We created a hybrid workload consisting of 22 WordCount jobs, 22 Word-
Mean jobs, 20 WordSD jobs, 16 GrepSort jobs, and 20 GrepSearch jobs. The
submission orders of all jobs were randomly determined. Each job processes 1 GB
of enwiki data [13] with 128 MB block size (the default block size of YARN [23]).
Hence, each job was divided into 8 (=1 GB/128 MB) map tasks and one reduce
task, implying that 9 containers are required to execute each job. We assume
that the resource requirement for each container is 1 CPU core and 1 GB RAM
for both the ABS-YARN and YARN clusters.

We considered two job inter-arrival patterns in our experiments: Uniform and
exponential distribution [20]. In the former, the inter-arrival time between two
consecutive jobs submitted by clients are equal. In the latter, job inter-arrival
time follows a Poisson process [20], i.e., job submissions occur continuously and
independently at a constant average rate. Reiss et al. [25] show that job arrival
patterns in a Google trace approximates an exponential distribution. This dis-
tribution has also been widely used as job arrival pattern in the literature (e.g.,
[22,24]). Based on these distributions, two scenarios were designed:

– Uniform scenario: The job inter-arrival time of the workload is 150 sec in the
real YARN cluster. In ABS-YARN, this is normalized into 2 time units.

– Exponential scenario: The job inter-arrival time of the workload follows an
exponential distribution with the average inter-arrival time of 158 sec and a
standard deviation of 153 sec in the real YARN cluster. This is normalized into
the average inter-arrival time of 158/75 time units and a standard deviation
of 153/75 time units in the ABS-YARN cluster.

The following metrics were used to evaluate how well ABS-YARN can simulate
job scheduling, job execution behavior, and job throughput of YARN:

– Starting time of all jobs of the workload
– Finish time of all jobs of the workload
– The number of cumulative completed jobs
– Total number of completed jobs

4.1 Validation Results in the Uniform Scenario

In order to achieve a fair comparison, we conducted the uniform scenario
on the YARN cluster to obtain the average map-task execution time (AMT)
and average reduce-task execution time (ART) for each job type. The results
are listed in Table 1. After that, we respectively normalized each AMT and ART
into a map-task cost and a reduce-task cost for ABS-YARN by dividing the AMT
value by 75 and dividing the ART value by 75 (Note that 75 is half of the job
inter-arrival time for the uniform scenario). With the corresponding map-task
cost annotation (MCA) and reduce-task cost annotation (RCA), we simulated
the uniform scenario on ABS-YARN.

Figure 4(a) shows the normalized starting time of all jobs in both clusters. We
can see that the two curves are almost overlapping. The average time difference
between ABS-YARN and YARN is 0.02 time units with a standard deviation of
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Table 1. The average map-task execution time (AMT), average reduce-task execution
time (ART), normalized map-task cost annotation (MCA), and normalized reduce-task
cost annotation (RCA) in the uniform scenario.

Benchmark AMT (sec) ART (sec) MCA RCA

WordCount 162.64 251.01 2.17 (=162.64/75) 3.35 (251.01/75)

WordMean 107.10 139.94 1.43 (=107.10/75) 1.87 (=139.94/75)

WordSD 108.23 162.27 1.44 (=108.23/75) 2.16 (=162.27/75)

GrepSort 20.39 38.44 0.27 (=20.39/75) 0.51 (=38.44/75)

GrepSearch 31.22 55.97 0.42 (=31.22/75) 0.75 (=55.97/75)

Fig. 4. The normalized time points of all jobs in the uniform scenario.

1.73 time units, showing that ABS-YARN is able to precisely capture the job
scheduling of YARN in the uniform scenario. Figure 4(b) depicts all job finish
time in both clusters. The average difference between ABS-YARN and YARN is
2.67 time units with a standard deviation of 1.81 time units, indicating that the
framework can accurately model how containers execute jobs in a real YARN
cluster. Based on the results shown in Fig. 4, we can derive that the cumulative
numbers of completed jobs between the two clusters are close (see Fig. 5(a)). The
average error is approximately 2.52 %, implying that ABS-YARN can precisely
reflect the operation of YARN in the uniform scenario. Figure 5(b) shows that
100 jobs of the workload successfully finished in the ABS-YARN cluster, but 99
jobs of the workload completed in the YARN cluster since the remaining one job
could not obtain sufficient containers to execute its tasks. The job completion
error of ABS-YARN is only 1.01 %. Based on the above-mentioned results, it is
evident that the ABS-YARN framework offers a superior modeling of YARN in
the uniform scenario.

4.2 Validation Results in the Exponential Scenario

In this section, we compare ABS-YARN and YARN under the exponential sce-
nario. Similar to the uniform scenario, we performed a normalization by exe-
cuting the exponential scenario on the YARN cluster to derive a map-task cost
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Fig. 5. The cumulative completed jobs and the total number of completed jobs in the
uniform scenario.

annotation and a reduce-task cost annotation for each job type. The results are
listed in Table 2. Note that regardless of which job type was tested, the cor-
responding average map-task and reduce-task execution time were apparently
higher than those in the uniform scenario. The main reason is that the job inter-
arrival time in the exponential scenario had a much higher standard deviation,
implying that many jobs might compete for containers at the same time. How-
ever, due to the limited container resources, these jobs had to wait for available
containers and hence prolonged their execution time.

Table 2. The AMT, ART, MCA, and RCA in the exponential scenario.

Benchmark AMT (sec) ART (sec) MCA RCA

WordCount 295.47 430.24 3.94 (=295.27/75) 5.74 (430.24/75)

WordMean 139.98 201.11 1.87 (=139.98/75) 2.68 (=201.11/75)

WordSD 238.46 312.38 3.18 (=238.46/75) 4.17 (=312.38/75)

GrepSort 37.38 62.06 0.50 (=37.38/75) 0.83 (=62.06/75)

GrepSearch 173.92 205.94 2.32 (=173.92/75) 2.75 (205.94/75)

The normalized job starting time illustrated in Fig. 6(a) show that the ABS-
YARN cluster follows the same trend as the YARN cluster. However, as more
jobs were submitted, their starting time in ABS-YARN were later than those in
the YARN cluster. The average time difference is around 19.48 with standard
deviation of 12.92. The key reasons are two. First, the normalized map-task
(reduce-task) cost annotations used by ABS-YARN were based on average map-
task (reduce-task) execution time of the entire workload, which were longer
than the actual map-task (reduce-task) execution time spent by the real YARN
cluster in the early phase of the workload execution. Second, the number of
available containers gradually decreased when more jobs were submitted to the
ABS-YARN cluster. For these two reasons, the starting time of the subsequent
jobs were delayed.
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Fig. 6. The time points of all jobs in the exponential scenario.

Figure 6(b) depicts the normalized job finish time of the two clusters under
the exponential scenario. We can see that during the workload execution, many
jobs in the ABS-YARN cluster finished later than the corresponding jobs in
the YARN cluster. The reasons are the same, i.e., the map-task (reduce-task)
cost annotation values were derived from the corresponding average map-task
(reduce-task) execution time, which were usually higher than the actual execu-
tion time in the YARN cluster during the early stage of the workload. Never-
theless, the results show that even under a heavy and dynamic workload, the
ABS-YARN framework can still adequately model YARN.

The cumulative number of completed jobs illustrated in Fig. 7(a) shows that
during most of the workload execution, the ABS-YARN cluster finished fewer
jobs than the YARN cluster for the above mentioned reasons. However, in the
late stage, the ABS-YARN cluster had more completed jobs than the YARN
cluster. This phenomenon can also be deduced from Fig. 6 since seven jobs could
not complete by the YARN cluster. The average difference of the cumulative
workload completion between ABS-YARN and YARN is 14.49 %. Due to failing
to get containers, 97 jobs and 93 jobs (as shown in Fig. 7(b)) were finished by
the ABS-YARN cluster and the YARN cluster, respectively. Although the job

Fig. 7. The cumulative completed jobs and the total number of completed jobs in the
exponential scenario.
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completion error of ABS-YARN is increased to 4.3 % from the uniform scenario
to the exponential scenario, the above results still demonstrate that the ABS-
YARN framework provides a satisfiable modeling for YARN.

5 Related Work

General-purpose modeling languages provide abstractions where the main focus
has been on describing functional behavior and logical composition. However,
this is inadequate for virtualized systems such as clouds when the software’s
deployment influences its behavior and when virtual processors are dynamically
created. A large body of work on performance analysis using formal models
can be found based on, e.g., process algebra [9], Petri Nets [26], and timed
and probabilistic automata [4,8]. However, these works mainly focus on non-
functional aspects of embedded systems without associating capacities with
locations. A more closely related technique for modeling deployment can be
found in an extension of VDM++ for embedded real-time systems [28], in which
static architectures are explicitly modeled using buses and CPUs with fixed
resources.

Compared to these languages, Real-time ABS [10,18] provides a formal basis
for modeling not only timed behavior but also dynamically created resource-
constrained deployment architectures, which enables users to model feature-rich
object-oriented distributed systems with explicit resource management at an
abstract yet precise level. Case studies validating the formalization proposed in
Real-Time ABS include Montage [17] and the Fredhopper Replication Server [3].
Both case studies address resource management in clouds by combining simula-
tion techniques and cost analysis. Different from these case studies, this paper
uses Real-Time ABS to create a formal framework for YARN and comprehen-
sively compare this framework with a real YARN cluster.

In recent years, many simulation tools have been introduced for Hadoop,
including MRPerf, MRSim, and HSim. MRPerf [29] is a MapReduce simulator
designed to understand the performance of MapReduce jobs on a specific Hadoop
parameter setting, especially the impact of the underlying network topology, data
locality, and various failures. MRSim [15] is a discrete event based MapReduce
simulator for users to define the topology of a cluster, configure the specification
of a MapReduce job, and simulate the execution of the job running on the clus-
ter. HSim [21] models a large number of parameters of Hadoop, including nodes,
cluster, and simulator parameters. HSim also allows users to describe their own
job specification. All the above-mentioned simulators target Hadoop rather than
YARN. Due to the fundamental difference between Hadoop and YARN, these
simulators are unable to simulate YARN. Besides, these simulators concentrate
on simulating the execution of a single MapReduce job and compare the cor-
responding simulation results with the actual results on real Hadoop systems.
However, this is insufficient to confirm that they can faithfully simulate Hadoop
when multiple jobs are running on Hadoop. Similar work can also be found in
[19]. Different from all these simulators, the proposed ABS-YARN framework is
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designed to model a set of jobs running on YARN, rather than just one job. With
ABS-YARN, users can comprehend the performance of YARN under a dynamic
workload.

To our knowledge, the Yarn Scheduler Load Simulator (SLS) [31] is the only
simulator currently designed for YARN, but it concentrates on simulating job
scheduling in a YARN cluster. Besides, SLS does not provide any performance
evaluation to validate its simulation accuracy. Compared with SLS, ABS-YARN
provides a formal executable YARN environment. In this paper, we also present
a comprehensive validation to demonstrate its applicability.

6 Conclusion and Future Work

This paper has presented the ABS-YARN framework based on the formal mod-
eling language Real-Time ABS. ABS-YARN provides a generic model of YARN
by capturing the key components of a YARN cluster in an abstract but pre-
cise way. With ABS-YARN, modelers can flexibly configure a YARN cluster,
including cluster size and resource capacity, and determine job workload and
job inter-arrival patterns to evaluate their deployment decisions.

To increase the applicability of formal methods in the design of virtualized
systems, we believe that showing a strong correlation between model behaviors
and real system results is of high importance. We validated ABS-YARN through
a comprehensive comparison of the model-based analyses with the actual per-
formance of a real YARN cluster. The results demonstrate that ABS-YARN is
accurate enough to offer users a dependable framework for making deployment
decisions about YARN at design time. In addition, the provided abstractions
enable designers to naturally model and design virtual systems at this complex-
ity, such as enhancing YARN with new algorithms.

In future work, we plan to further enhance ABS-YARN by incorporating
multi-queue scheduler modeling, slave and container failure modeling, and dis-
tributed file-system modeling. Modeling different job types will also be con-
sidered. Whereas this paper has focussed on the accuracy of the ABS-YARN
framework, our ongoing work on a more powerful simulation and visualization
tool for Real-Time ABS will improve the applicability of ABS-YARN.

Acknowledgement. The authors thank NCLab at National Chiao Tung Univer-
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experiments.
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