Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-branch Residual Fusion Network for Imbalanced Visual Regression

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Imbalance visual regression is an important and challenging task, and research on it is still in its early stages. Among the existing solutions, either additional calibration layers need to be added to calibrate the label distribution or feature distribution of the imbalanced data, or a multi-stage training method with a loss function is used to mitigate the imbalance of the data, all of which cause significant time loss. In this paper, we propose an end-to-end multi-branch dynamic residual fusion network (MBDRFN) for imbalance visual regression. MBDRFN consists of a multi-branch residual fusion module (MBRF) and a dynamic balance factor (DBF) that works in concert to overcome the challenge of imbalanced visual regression. The MBRF module has three specialized branches corresponding to three magnitudes of sample labels, and can optimize each branch in a targeted manner to ensure overall fitting performance. The DBF builds on the MBRF and guides the model to gradually focus on learning and optimizing rare sample labels during the training process. Then, we use residual fusion to aggregate the loss functions of dedicated and master branches. The proposed MBDRFN method not only ensures that the model performs well on frequent and regular sample labels, but also improves its performance on rare sample labels with no significant time loss. Finally, we conduct extensive experiments on two real-world datasets to demonstrate the effectiveness and superiority of the proposed MBDRFN method.

Z. Huang and D. Cheng—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Lecun, Y., Hinton, G.: Deep learning for AI. Commun. ACM 64(7), 58–65 (2021)

    Article  Google Scholar 

  2. Branco, P., Torgo, L., Ribeiro, R.P.: SMOGN: a pre-processing approach for imbalanced regression. In: First International Workshop on Learning with Imbalanced Domains: Theory and Applications, pp. 36–50. PMLR (2017)

    Google Scholar 

  3. Cao, D., Zhu, X., et al.: Domain balancing: face recognition on long-tailed domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5671–5679 (2020)

    Google Scholar 

  4. Cao, K., Wei, C., et al.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  5. Cui, J., Liu, S., et al.: Reslt: residual learning for long-tailed recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  6. He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Hu, R., Cheng, D., et al.: Low-rank feature selection for multi-view regression. Multimedia Tools Appl. 76, 17479–17495 (2017)

    Article  Google Scholar 

  8. Kang, B., Li, Y., et al.: Exploring balanced feature spaces for representation learning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  9. Kang, B., Xie, S., et al.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  10. Liang, R., Zhang, G., et al.: Bilateral-branch network for imbalanced visual regression. In: 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 140–147. IEEE (2022)

    Google Scholar 

  11. Lin, T.Y., Goyal, P., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  12. Liu, Z., Miao, Z., et al.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)

    Google Scholar 

  13. Ma, Y., Tian, Y., et al.: Class-imbalanced learning on graphs: a survey. arXiv preprint arXiv:2304.04300 (2023)

  14. Menon, A.K., Jayasumana, S., et al.: Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314 (2020)

  15. Moschoglou, S., Papaioannou, A., et al.: AgeDB: the first manually collected, in-the-wild age database. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp. 51–59 (2017)

    Google Scholar 

  16. Punyani, P., Gupta, R., Kumar, A.: Neural networks for facial age estimation: a survey on recent advances. Artif. Intell. Rev. 53, 3299–3347 (2020)

    Article  Google Scholar 

  17. Ren, J., Zhang, M., et al.: Balanced MSE for imbalanced visual regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7926–7935 (2022)

    Google Scholar 

  18. Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vision 126(2–4), 144–157 (2018)

    Article  MathSciNet  Google Scholar 

  19. Steininger, M., Kobs, K., et al.: Density-based weighting for imbalanced regression. Mach. Learn. 110, 2187–2211 (2021)

    Article  MathSciNet  Google Scholar 

  20. Stocksieker, S., Pommeret, D., Charpentier, A.: Data augmentation for imbalanced regression. arXiv preprint arXiv:2302.09288 (2023)

  21. Tan, J., Wang, C., et al.: Equalization loss for long-tailed object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11662–11671 (2020)

    Google Scholar 

  22. Tian, H., Tian, C., et al.: Unbalanced regression sample generation algorithm based on confrontation. Inf. Sci. 119157 (2023)

    Google Scholar 

  23. Torgo, L., Ribeiro, R.P., Pfahringer, B., Branco, P.: SMOTE for regression. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS (LNAI), vol. 8154, pp. 378–389. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40669-0_33

    Chapter  Google Scholar 

  24. Wang, X., Lian, L., et al.: Long-tailed recognition by routing diverse distribution-aware experts. arXiv preprint arXiv:2010.01809 (2020)

  25. Wu, O.: Rethinking class imbalance in machine learning. arXiv preprint arXiv:2305.03900 (2023)

  26. Yang, Y., Xu, Z.: Rethinking the value of labels for improving class-imbalanced learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 19290–19301 (2020)

    Google Scholar 

  27. Yang, Y., Zha, K., et al.: Delving into deep imbalanced regression. In: International Conference on Machine Learning, pp. 11842–11851. PMLR (2021)

    Google Scholar 

  28. Zha, K.: Deep Imbalanced Regression: Challenges, Methods, and Applications. Ph.D. thesis, Massachusetts Institute of Technology (2022)

    Google Scholar 

  29. Zhang, K., Lu, G., et al.: Personalized headline generation with enhanced user interest perception. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds.) ICANN 2022. LNCS, vol. 13530, pp. 797–809. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15931-2_65

    Chapter  Google Scholar 

  30. Zhang, S., Cheng, D., et al.: Supervised feature selection algorithm via discriminative ridge regression. World Wide Web 21, 1545–1562 (2018)

    Article  Google Scholar 

  31. Zhang, S., Yang, L., et al.: Leverage triple relational structures via low-rank feature reduction for multi-output regression. Multimedia Tools Appl. 76, 17461–17477 (2017)

    Article  Google Scholar 

  32. Zhang, Y., Kang, B., et al.: Deep long-tailed learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2023)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Project of Guangxi Science and Technology (GuiKeAB23026040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Zhang, S., Cheng, D., Liang, R., Jiang, M. (2024). Multi-branch Residual Fusion Network for Imbalanced Visual Regression. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14331. Springer, Singapore. https://doi.org/10.1007/978-981-97-2303-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2303-4_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2302-7

  • Online ISBN: 978-981-97-2303-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics