Abstract
Rich or even redundant features without losing diversity of feature maps can undoubtedly help to improve network performance. In this work, we propose a compact CNN module by exploring the trade-off between feature diversity and redundancy, namely TDRConv, to retain and generate features with moderate redundancy and rich diversity but require less computation. Specifically, the input features are split into the main part and the expansion part by certain proportion, where the main part can extract intrinsic and diverse features in different ways, while the expansion part can enhance the extraction ability of diverse information. Finally, a series of experiments are conducted to verify the effectiveness of the proposed TDRConv on CIFAR10 and ImageNet. The results show the network models equipped with TDRConv can all outperform the state-of-the-art methods in terms of accuracy, but with significantly lower FLOPs and parameters. More importantly, the proposed TDRConv can readily replace the existing convolution modules as a plug-and-play component, and it is promising to further extend CNNs to wider scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Tang, C., Xue, D., Chen, D.: Feature diversity learning with sample dropout forunsupervised domain adaptive person re-identification. CoRR abs/2201.10212 (2022)
Ayinde, B.O., Inanc, T., Zurada, J.M.: Regularizing deep neural networks by enhancing diversity in feature extraction. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2650–2661 (2019)
Ayinde, B.O., Zurada, J.M.: Nonredundant sparse feature extraction using autoencoders with receptive fields clustering. Neural Netw. 93, 99–109 (2017)
Ogundijo, O.E., Elmas, A., Wang, X.: Reverse engineering gene regulatory networks from measurement with missing values. EURASIP J. Bioinf. Syst. Biol. 2017(1), 1–11 (2017)
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)
Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting cyclic symmetry in convolutional neural networks. In: ICML2016 - Volume 48, pp. 1889–1898 (2016)
Zhai, S., Cheng, Y., Lu, W., Zhang, Z.M.: Doubly convolutional neural networks. In: NIPS2016, pp. 1090–1098 (2016)
Ayinde, B.O., Zurada, J.M.: Deep learning of constrained autoencoders for enhanced understanding of data. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 3969–3979 (2018)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014)
Wan, L., Zeiler, M.D., Zhang, S., LeCun, Y., Fergus, R.: Regularization of neural networks using dropconnect. In: ICML (3). JMLR Workshop and Conference Proceedings, vol. 28, pp. 1058–1066. JMLR.org (2013)
Mellor, J., Turner, J., Storkey, A., Crowley, E.J.: Neural architecture search without training. In: International Conference on Machine Learning, pp. 7588–7598 (2021)
Sifre, L, Mallat, S.: Rigid-motion scattering for texture classification. arXiv preprint arXiv:1403.1687 (2014)
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more featuresfrom cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)
Zhang, Q., et al.: Split to be slim: an overlooked redundancy in vanilla convolution. arXiv preprint arXiv:2006.12085 (2020)
Wang, X., Stella, X.Y.: Tied block convolution: leaner and better cnns with sharedthinner filters. In: AAAI2021, vol. 35, pp. 10227–10235 (2021)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)
Szegedy, C., et al.: Going deeper with convolutions. In: CVPR2015. pp. 1–9 (2015)
Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Xie, S., Girshick, R., Dolla´r, P., Tu, Z., He, K.: Aggregated residual transformationsfor deep neural networks. In: CVPR2017, pp. 1492–1500 (2017)
Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: CVPR2018, pp. 6848–6856 (2018)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR2018, pp. 7132–7141 (2018)
Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advancedresearch) (2010). http://www.cs.toronto.edu/kriz/cifar.html
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: a largescale hierarchical image database. In: CVPR, pp. 248–255. IEEE Computer Society (2009)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR2016, pp. 770–778 (2016)
Luo, J.H., Wu, J., Lin, W.: Thinet: a filter level pruning method for deep neuralnetwork compression. In: ICCV2017, pp. 5058–5066 (2017)
Singh, P., Verma, V.K., Rai, P., Namboodiri, V.P.: Hetconv: heterogeneous Kernel-based convolutions for deep CNNs. In: CVPR2019, pp. 4835–4844 (2019)
Yang, D., Yu, X., Sun, Y., Zhuang, F., He, Q., Ye, S.: BFConv: Improving Convolutional Neural Networks with Butterfly Convolution. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13111, pp. 40–50. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92273-3_4
Yang, D., Chen, Z., Sun, Y., He, Q., Ye, S., Chen, D.: Ekconv: compressing convolutional neural networks with evolutionary kernel convolution. In: Journal of Physics: Conference Series, vol. 2425, p. 012011. IOP Publishing (2023)
Acknowledgements
This work was supported in part by Zhejiang Provincial Natural Science Foundation of China(Grant No. LGF22F030016 and LGF20H180002), and in part by National Natural Science Foundation of China (Grant No. 62271448 and 61972354).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Hu, H., Zhou, D., Xu, H., Chen, Q., Guan, Q., Zhou, Q. (2023). TDRConv: Exploring the Trade-off Between Feature Diversity and Redundancy for a Compact CNN Module. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science(), vol 14089. Springer, Singapore. https://doi.org/10.1007/978-981-99-4752-2_28
Download citation
DOI: https://doi.org/10.1007/978-981-99-4752-2_28
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-4751-5
Online ISBN: 978-981-99-4752-2
eBook Packages: Computer ScienceComputer Science (R0)