SYSTEM-LEVEL DESIGN TECHNIQUES FOR ENERGY-EFFICIENT EMBEDDED SYSTEMS

System-Level Design Techniques for Energy-Efficient Embedded Systems

by

MARCUS T. SCHMITZ University of Southampton, United Kingdom

BASHIR M. AL-HASHIMI University of Southampton, United Kingdom

and

PETRU ELES Linköping University, Sweden eBook ISBN: 0-306-48736-5 Print ISBN: 1-4020-7750-5

©2005 Springer Science + Business Media, Inc.

Print ©2004 Kluwer Academic Publishers Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: and the Springer Global Website Online at: http://ebooks.kluweronline.com http://www.springeronline.com

To our beloved families

Contents

Lis	t of H	Figures	ix
Lis	st of T	Tables	xiii
Pre	eface		XV
Ac	Acknowledgments		xvii
1.	INT	RODUCTION	1
	1.1	Embedded System Design Flow	2
	1.2	System Specification	5
	1.3	Co-Synthesis	6
	1.4	Hardware and Software Synthesis	14
	1.5	Book Overview	17
2.	BAC	CKGROUND	19
	2.1	Energy Dissipation of Processing Elements	19
	2.2	Energy Minimisation Techniques	24
	2.3	Energy Dissipation of Communication Links	29
	2.4	Further Readings	30
	2.5	Concluding Remarks	33
3.	POV	VER VARIATION-DRIVEN DYNAMIC VOLTAGE SCALING	35
	3.1	Motivation	36
	3.2	Algorithms for Dynamic Voltage Scaling	44
	3.3	Experimental Results: Energy-Gradient based Dynamic Voltage Scaling	50
	3.4	Concluding Remarks	58
4.	OPT DYN	IMISATION OF MAPPING AND SCHEDULING FOR JAMIC VOLTAGE SCALING	61

	4.1	Schedule Optimisation	62
	4.2	Optimisation of Task and Communication Mapping	81
	4.3	Optimisation of Allocation	94
	4.4	Concluding Remarks	97
5.	ENE	RGY-EFFICIENT MULTI-MODE EMBEDDED SYSTEMS	99
	5.1	Preliminaries	100
	5.2	Motivational Examples	104
	5.3	Previous Work	107
	5.4	Problem Formulation	109
	5.5	Co-Synthesis of Energy-Efficient Multi-Mode Systems	111
	5.6	Experimental Results: Multi-Mode	122
	5.7	Concluding Remarks	130
6.	DYN INTI	NAMIC VOLTAGE SCALING FOR CONTROL FLOW- ENSIVE APPLICATIONS	133
	by Dong Wu, Bashir M. Al-Hashimi, and Petru Eles		
	6.1	The Conditional Task Graph Model	133
	6.2	Schedule Table for CTGs	135
	6.3	Dynamic Voltage Scaling for CTGs	136
	6.4	Voltage Scaling Technique for CTGs	139
	6.5	Conclusions	148
7.	LOPOCOS: A LOW POWER CO-SYNTHESIS TOOL 15		
	7.1	Smart Phone Description	151
	7.2	LOPOCOS	157
	7.3	Concluding Remarks	172
8.	CONCLUSION		173
	8.1	Summary	174
	8.2	Future Directions	177

181

List of Figures

1.1	Example of a typical embedded system (smart-phone)	2
1.2	Typical design flow of a new embedded computing system	4
1.3	MP3 decoder given as (a) task graph specification (17 tasks and 18 communications) and (b) high-level language description in C	7
1.4	System-level co-synthesis flow	8
1.5	Architectural selection problem	9
1.6	Application mapping onto hardware and software components	10
1.7	Two different scheduling variants based on the same allocated architecture and identical application mapping	12
1.8	System schedule with idle and slack times	13
1.9	The concept of dynamic voltage scaling	14
1.10	Hardware synthesis flow	15
1.11	Software synthesis flow	16
2.1	Dynamic power dissipation of an inverter circuit [37]	20
2.2	Supply voltage dependent circuit delay	22
2.3	Energy versus delay function using fixed and dynamic supply voltages (considering $V_{max} = 3.3V$ and $V_t = 0.8V$)	24
2.4	Block diagram of DVS-enabled processor [36]	25
2.5	Shutdown during idle times (DPM)	27
2.6	Voltage scaling to exploit the slack time (DVS)	28
2.7	Combination of dynamic voltage scaling and dynamic power management	28
3.1	Architecture and specification for the motivational example	37

3.2	Power profile of a possible mapping and schedule at nominal supply voltage (no DVS is applied)	39
3.3	Two different voltage scaled schedules	41
3.4	Pseudo code of the proposed heuristic (PV-DVS) algorithm	45
3.5	Capturing the mapping and schedule information into the task graph by using pseudo edges and communica- tion task	46
3.6	Pseudo code of task graph to mapped-and-scheduled task graph transformation	47
3.7	Three identical execution orders of the tgff17_m bench- mark: (a) unscaled execution at nominal supply voltage (NO-DVS), (b) using the EVEN-DVS, and (c) the PV- DVS approach	54
3.8	Energy reduction quality dependent on minimal extension time Δt_{min}	56
3.9	Execution time dependent on minimal extension time Δt_{min}	56
3.10	Energy reduction quality dependent on execution time	57
4.1	Co-synthesis flow for the optimisation of scheduling and mapping towards the utilisation of PV-DVS	62
4.2	Specification and DVS-enabled architecture	63
4.3	A possible schedule <i>not</i> optimised for DVS	64
4.4	Schedule optimised for DVS considering the power vari- ation model	65
4.5	List scheduling	70
4.6	Task priority encoding into a priority string	70
4.7	Principle behind the genetic list scheduling algorithm	71
4.8	Proposed EE-GLSA approach for energy-efficient schedules	73
4.9	Hole filling problem	74
4.10	Task mapping string describing the mapping of five tasks to an architecture	82
4.11	Proposed EE-GTMA approach for energy-efficient task mappings	83
4.12	Combined optimisation of task and communication mapping	85
4.13	A combined priority and communication mapping string	86
4.14	Proposed EE-GLSCMA approach for combined opti- misation of energy-efficient schedules and communica-	
	tion mappings	88
4.15	Three scheduling and mapping concepts	90

		97
5.1 Example operational mode state machin	e of a smart phone 10	01
5.2 Relation between OMSM and individual	task graph spec-	
ifications	10	02
5.3 Distributed Architectural Model	10	03
5.4 Mode execution probabilities	10	05
5.5 Multiple task type implementations	10	07
5.6 Typical Activation Profile of a Mobile P	hone 11	12
5.7 Task mapping string for multi-mode sys	tems 11	13
5.8 Pseudo Code: Multi-Mode Co-Synthesi	s 11	14
5.9 Pseudo Code: Mapping Modification to	owards compo-	17
nent shutdown	11	1/
5.10 DVS Transformation for HW Cores		19
5.11 DVS Transformation for HW Cores con PE communication	isidering inter-	20
5.12 Pseudo code: Task graph transformation hardware cores	for DVS-enabled	21
5.13 Pareto optimal solution space achieved th	rough a single	<u>~1</u>
optimisation run of mul15 (without DVS), revealing the	75
5.14 A system specification consisting of th	pation and area usage 12	23
modes optimized for three different ex bilities (solid line_0 1:0.9 dashed_0.9:0	ecution proba-	27
5.15 Energy dissipation of the Smart phone u	using different	_,
optimisation strategies	13	30
6.1 Conditional Task Graph and its Tracks	13	34
6.2 Schedules of the CTG of Figure 6.1 (a) (a) corresponds to tasks τ_i)	in this figure t_i 13	37
6.3 Schedules scaled for energy minimisation	on 13	38
6.4 Improper scaling with violated timing co	onstraint 13	38
6.5 CTG with one disjunction node	14	40
6.6 Schedules	14	41
6.7 Pseudo-code: Voltage scaling approach	for CTGs 14	42
6.8 Actual, scaled schedules	14	45
7.1 Block diagram of the GSM RPE-LTP tr	anscoder [73] 15	52
7.2 Task graph of the GSM voice encoder	15	54
7.3 Task graph of the GSM voice decoder	15	55

7.4	Block diagram of the MPEG-1 layer 3 audio decoder	156
7.5	Block diagram of the JPEG encoder and decoder [149]	156
7.6	Task graphs of the JPEG encoder and decoder	157
7.7	Design flow used within LOPOCOS	159
7.8	File description of the top-level finite state of the smart phone	160
7.9	File description of a single mode task graph	162
7.10	Technology library file	163
7.11	Co-synthesis results of Architecture 1	168
7.12	Co-synthesis results of Architectures 2 and 3	169
7.13	Co-synthesis results for Architectures 2 and 3, exploit-	
	ing DVS	170
7.14	Co-synthesis results for Architecture 4	171
8.1	Network-on-Chip	179

List of Tables

1.1	Trade-offs between serveral heterogeneous components (+ + \equiv highly advantageous, + \equiv advantageous, o \equiv moderate, - \equiv disadvantageous, \equiv highly disadvantageous)	9
1.2	Task execution properties (time and power) on different processing elements	10
3.1	Nominal task execution times and power dissipations	38
3.2	Communication times and power dissipations of com- munication activities mapped to the bus	38
3.3	Evolution of the energy-gradients during voltage scaling	42
3.4	Comparison of the presented PV-DVS optimisation with the fixed power model using EVEN-DVS approach	52
3.5	PV-DVS results using the benchmarks of Bambha et al. [20]	53
4.1	Nominal execution times and power dissipations for the mapped tasks	63
4.2	Experimental results obtained using the <i>fixed power</i> <i>model</i> and the <i>power variation model</i> during voltage selection; both integrated into a genetic list scheduling algorithm	77
4.3	Experimental results obtained using the generalised, DVS optimised scheduling approach for benchmark ex- ample TG1	79
4.4	Experimental results obtained using the generalised, DVS optimised scheduling approach for benchmark ex- ample TG2	80
4.5	Mapping optimisation with and without DVS optimised scheduling using tgff and hou benchmarks	90

4.6 Ma	pping optimisation of the benchmark set TG1 using NO-DVS (Nominal), EVEN-DVS, and PV-DVS	92
4.7	Comparison between DLS algorithm and the proposed	
	scheduling and mapping approach using Bambha's bench-	
	marks [20]	93
4.8	Increasing architectural parallelism to allow voltage scal-	
	ing of the OFD algorithm	96
4.9	Relaxing the performance constraints of the OFD algorithm	96
5.1	Task execution and implementation properties	105
5.2	Considering mode execution probabilities (excluding DVS)	123
5.3	Considering mode execution probabilities (including DVS)	125
5.4	Smart phone experiments without DVS	128
5.5	Smart phone experiments with DVS	129
6.1	Example Schedule Table for the CTG of Figure 6.1(a)	135
6.2	Schedule Table for the CTG of Figure 6.5	140
6.3	Scaled Schedule Table for the CTG of Figure 6.5	141
6.4	Pre-processed schedule table	142
6.5	Result after processing column <i>true</i> (values are rounded)	144
6.6	Results after processing column A	144
6.7	Final schedule table (scaled)	144
6.8	Results of the real-life example	146
6.9	Results of the generated examples	147
6.10	Results of the mapping optimisation	148
7.1	Task independent components parameters	164
7.2	Task dependent parameters	165
7.3	Components in a typical technology library	166

Preface

It is likely that the demand for embedded computing systems with low energy dissipation will continue to increase. This book is concerned with the development and validation of techniques that allow an effective automated design of energy-efficient embedded systems. Special emphasis is placed upon systemlevel co-synthesis techniques for systems that contain dynamic voltage scalable processors which can trade off between performance and power consumption during run-time.

The first part of the book addresses energy minimisation of distributed embedded systems through dynamic voltage scaling (DVS). A new voltage selection technique for single-mode systems based on a novel energy-gradient scaling strategy is presented. This technique exploits system idle and slack time to reduce the power consumption, taking into account the individual task power dissipation. Numerous benchmark experiments validate the quality of the proposed technique in terms of energy reduction and computational complexity.

The second part of the book focuses on the development of genetic algorithmbased co-synthesis techniques (mapping and scheduling) for single-mode systems that have been specifically developed for an effective utilisation of the voltage scaling approach introduced in the first part. The schedule optimisation improves the execution order of system activities not only towards performance, but also towards a high exploitation of voltage scaling to achieve energy savings. The mapping optimisation targets the distribution of System activities across the system components to further improve the utilisation of DVS, while satisfying hardware area constraints. Extensive experiments including a reallife optical flow detection algorithm are conducted, and it is shown that the proposed co-synthesis techniques can lead to high energy savings with moderate computational overhead.

The third part of this book concentrates on energy minimisation of emerging distributed embedded systems that accommodate several different applications within a single device, i.e., multi-mode embedded systems. A new co-synthesis technique for multi-mode embedded systems based on a novel operational-mode-state-machine specification is presented. The technique increases significantly the energy savings by considering the mode execution probabilities that yields better resource sharing opportunities.

The fourth part of the book addresses dynamic voltage scaling in the context of applications that expose extensive control flow. These applications are modelled through conditional task graphs that capture control flow as well as data flow. A quasi static scheduling technique is introduced, which guarantees the fulfilment of imposed deadlines, while at the same time, reduces the energy dissipation of the system through dynamic voltage scaling.

The new co-synthesis and voltage scaling techniques have been incorporated into the prototype co-synthesis tool LOPOCOS (Low Power Co-Synthesis). The capability of LOPOCOS in efficiently exploring the architectural design space is demonstrated through a system-level design of a realistic smart phone example that integrates a GSM cellular phone transcoder, an MP3 decoder, as well as a JPEG image encoder and decoder.

Acknowledgments

Financial support of the work was provided by the Department of Electronics and Computer Science at the University of Southampton, the Embedded Systems Laboratory (ESLAB) at Linköping University, as well as the Engineering and Physical Sciences Research Council (EPSRC), UK.

Special thanks go to the members of the Electronic Systems Design Group (ESD) at the University of Southampton, for many fruitful discussions.

We would like to thank Christian Schmitz, who has contributed in deriving the smart phone benchmark during a visit at the University of Southampton.

We would also like to acknowledge Neal K. Bambha (University of Maryland, USA) and Flavius Gruian (Lund University, Sweden) for kindly providing their benchmark sets, which have been used to conduct some of the presented experimental results.