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A b s t r a c t .  This paper presents a novel statistical methodology for ex- 
erting control over adaptive surface meshes. The work builds on a re- 
cently reported adaptive mesh which uses split and merge operations 
to control the distribution of planar or quadric surface patches. Hith- 
erto, we have used the target variance of the patch fit residuals as a 
control criterion. The novelty of the work reported in this paper is to 
focus on the variance-bias tradeoff that  exists between the size of the 
fitted patches and their associated parameter variances. In particular, 
we provide an analysis which shows that there is an optimal patch area 
which minimises the variance in the fitted patch parameters. This area 
offers the best compromise between the noise-variance, which decreases 
with increasing area, and the model-bias, which increases in a polyno- 
mial manner with area. The computed optimal areas of the local surface 
patches are used to exert control over the facets of the adaptive mesh. 
We use a series of split and merge operations to distribute the faces of the 
mesh so that each resembles as closely as possible its optimal area. In this 
way the mesh automatically selects its own model-order by adjusting the 
number of control-points or nodes. We provide experiments on both real 
and synthetic data. This experimentation demonstrates that our mesh is 
capable of efficiently representing high curvature surface detail. 

1 I n t r o d u c t i o n  

Adapt ive  meshes [3, 18, 19] have proved popular  in bo th  the segmenta t ion  [25, 12, 
4, 13, 16, 8] and efficient representat ion [6] of  volumetr ic  surface d a t a .  The  liter- 
a ture  is rich with examples. For instance De Floriani  et al [6, 7] have developed 
a multi-scale mesh which has been exploited not  only for surface representat ion,  
but  also for stereoscopic reconstruct ion.  Several au thors  have reported variable 
topo logy  meshes. Bulpi t t  and Efford [1] have a mesh tha t  adapts  itself so as to  
minimise curvature  and goodness of  fit criteria. The  "slime" surface of S todda r t  
et al [20] uses region merge operat ions  of  refine a B-spline mesh surface. 

These surfaces are effectively driven by geometr ic  criteria [18, 19]. In a recent 
series of papers  we have developed a surface mesh which is stat ist ically mot iva ted  
[27, 26]. Each node in our mesh represents a local quadric patch  tha t  is fi t ted 



450 

to a support neighbourhood on the surface. Specifically, we have shown how 
a series of node split and merge operations can be used to both refine and 
decimate the mesh so as to deliver a surface of predefined target variance. These 
operations not only control the surface topology, they also iteratively modify the 
support neighbourhoods for the quadric patch representation. Analysis of the 
mesh reveals that  the equilibrium distribution of mesh nodes is such that  the 
density is proportional to the underlying curvature of the surface. The surface 
has been demonstrated to produce useful segmentations that  can be used for 
subsequent differential analysis [26]. 

The aim in this paper is to focus more closely on the statistical criterion that  
underpins the control of the mesh split and merge operations. In particular we 
consider the variance-bias tradeoff [10] which underpins the choice of the support 
neighbourhood for the estimation of surface parameters.  Simple split-and-merge 
operations based on a target 'goodness of fit' can result in biased or noisy patch 
estimates. This has undesirable effects on the recovered differential structure of 
the surface [17, 22, 23]. It is for this reason that  we present a detailed analysis 
of parameter variance. The main conclusion of this analysis is that  the variance 
has a two-component structure. The first component results from the effects of 
noise and decreases with increasing area of estimation. The second term results 
from the model-bias and increases with the area of estimation. As a result of 
the interplay between these two terms, there is an optimal choice of the area of 
estimation that  results in a joint minimisation of both the noise variance of the 
estimated parameters and the model bias. 

The optimal local area of estimation is used to exert control over the split 
[19] and merge [18] operations that  underpin our adaptive mesh. By driving the 
adaptation of the mesh from the optimal local patch area we provide a natural 
means of controlling the model-order for our surface representation. Using these 
split and merge operations, a mesh is generated which has faces of area equal 
to the optimal area of estimation. If surface patches are placed at each of these 
faces, the subsequent piecewise representation is optimal in the sense that  the 
error to the underlying surface parameters is minimal. The parameters of the 
patch are sufficient to represent the surface to within the accuracy limits imposed 
by the noise. 

2 A p p r o x i m a t i n g  t h e  s u r f a c e  f r o m  n o i s y  d a t a - p o i n t s  

Following Besl and Jain [2] our aim is to fit increasingly complex variable order 
surface models to potentially noisy data-points. Viewed from the perspective of 
local surface geometry this can be viewed as sequentially estimating derivatives 
of increasing order through the fitting of an appropriate surface patch. When 
couched in this intrinsically hierarchical way, each derivative relies on the esti- 
mation of the preceding and lower order derivatives. As a concrete example, in 
order to estimate curvature through a second-order quadric patch, we must first 
fit zero and first order models to determine the surface height and surface normal 
direction. Subject to the limitations imposed by the level of image noise, this 
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process can obviously be extended to any model-order to est imate the desired 
derivative. 

In practice however, there is a problem of variance-bias tradeoff  tha t  hinders 
the parameter  estimation process. By increasing the size of the sample or sur- 
face area used to est imate the model parameters ,  the effects of noise variance 
may be minimised. In other words, the temptat ion is to increase the size of the 
local surface patches so as to increase the accuracy of the est imated derivatives. 
Unfortunately, as the surface facet is increased in area problems of model bias 
emerge. In a nutshell, the problem is that  the model order is insufficient to rep- 
resent genuine structure in the data. The basic issue addressed in this paper  is 
how to resolve this di lemma for the important  and generic problem of adaptive 
mesh control. It must  be stressed that  variance-bias issues are ones of pivotal 
philosophical and practical importance in data  fitting [10]. 

We commence our discussion with a set of 3-dimensional data-points  'P = 
{piIV/} derived from range data.  In realistic tasks, these points are invariable 
uncertain in the sense tha t  they deviate from the true surface due to some 
noise process. In the following, we denote the function of the underlying surface 
as f ( x , y )  and the equation of points on this underlying surface is therefore 
z = f ( x , y ) .  The data-point  Pi = ( x i , y i , z i )  is related to the true surface by 
zi = f ( x i , y i )  + n~, where ni is the additive noise process. Now consider the 
Taylor expansion of the true surface function. 

of 

+{0 s 02s 02s  
(1) 

If  we wish to estimate,  for example, first order derivatives (corresponding to 
the surface normal), we must first est imate the height zo -= f ( x o ,  Yo) and remove 
it 's contribution to the Taylor expansion by moving the origin of the coordinate 

of system to (xo,Yo,  f [xo,Yo]) .  The derivatives ~ and ~ can the be est imated 
by fitting the tangent plane z = ax  + by. Similarly, the surface curvature can 
be determined by transforming co-ordinates to remove zero and first order con- 
tributions. The necessary second-order derivatives are est imated by fitting the 
quadric patch f ( x ,  y)  = a x  2 -'F ~ x y  + ,,/y2 to the t ransformed height data.  

In the remainder of this section, we provide an analysis of the errors in 
the fitted local surface models for each derivative in turn, commencing with the 
estimation of surface location. In each case we provide an analysis of variance for 
the fitted surface parameters .  This commences from the known variances of the 
surface fit-residuals. These residuals are propagated through into the estimation 
of surface parameter  variances. This analysis reveals the area dependence of the 
parameter  variances. It  is this analysis which allows us to est imate the optimal  
patch-area which results in the best variance-bias tradeoff. 
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2.1 E s t i m a t i n g  t h e  a v e r a g e  s u r f a c e  h e i g h t  

We first consider the estimation of the height of the local origin of co-ordinates on 
the surface. We denote this point by the vector of co-ordinates o : (Xo, yo, Zo) T. 
This location of the origin can be est imated by the mean height of the data- 
points. If S denotes the index-set of the sample of available points and ni rep- 
resents the additive noise present in the height measurement  zi, then 

1 1 

Y' = N Y' 
o 

zi f ( x ,  y,) + n, 
(2) 

If  the sampled points are uniformly distributed over x -  y footprint of the surface 
patch, then the x and y co-ordinates of the origin are located at the centre-of- 
mass of the support  neighbourhood. The height distribution, on the other hand, 
is governed both by the sampling noise and the bias introduced by the un- 
derlying surface shape in the sampling window. The two processes have very 
different origins. The noise process is stochastic and requires an explicit statis- 
tical model. The bias is a measure of the inappropriateness of the surface shape 
model adopted in the local sampling window. 

The contributions from the various sources can be evaluated by again using 
the Taylor expansion. Our est imate of the local location of the surface is given 
by the average height of the sample data-points  thus; 

1 x--, . . . .  Of  . A  O f  . ~  2 0 2 f . ~  ~ 0 2 f  , ~ 2 0 2 f  
= 2_ . , [n i~ -Zo~-~x i - z -~ -~y~-z -~-ax i -~ -~2~x i~y i -g -w-~-~y i  ~ (3) Zest -~[ i~s ux  •y ox  uxuy  ay 

where A x i  = x i - - X o  and Ayi = Y i - Y o .  Because we have chosen a sym- 
metrical sampling window, the odd spatial moments  ~-~i~s Axi ,  ~-~i~8 Ayi and 
~-~ics A x i A y i  are zero. As a result, the est imated height-intercept is given by 

1 
Zest ----- Zo + -F~l E n i  -[- - - - -  

i c S  

1 02 f  1 0 2 f E A y  ~ 
Isl Ox2 ~ a ~  + - - - -  + . . .  (4) ies  IS] Oy 2 ies  

In other words, the est imated height-intercept is deviates from the average 
z-value by an amount  that  is determined by the second-order derivatives of the 
surface. The variance of the fit-residuals, i.e. 2 1 aest = VS-[ ~--~i~s( zi - z~ 2 therefore 
has a two-component structure. The first of these results from averaging the raw 
image noise over the ISI samples in the local surface patch. When the noise ni 
is assumed to follow a Gaussian distribution with variance 0 -2 and zero mean, 
then the average noise variance is equal t o  ]-~[o "2 . The second contribution to the 

variance of the fitted height originates from the derivative bias terms, of which 
the most  significant terms are the second order derivatives of the surface. As a 
result, the total  variance is given by 

-- ~x~ + a ~  'Test -~1 + Ox~ Jo ( Oy 2 
\ i E S  ~ o 
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+ 
o ~ , ' o  i E S  i E S  

(5) 

If the data-points are uniformly distributed over the x-y footprint of the sur- 
face patch, then the expectation values of the second-order moments ~ics Ax~ 
and ~ c s  AY 2 can be calculated from the geometric moments of the support 
neighbourhood. Of course, the exact values of these moments depend on both 
the size and shape of the support neighbourhood. For simplicity, we will evalu- 
ate the moments for a circular region around the origin. In order to make the 
role of the area A of the support neighbourhood explicit, we replace the number 
of points in the sample-set by the expression ISI = pA where p is the surface- 

A 2  density of data-points. As a result, the expectation value for ~-'~ics x i is given, 
in the circular case, by 

E(Eics Axe) = p ~A x2 dA = pA28~. (6) 

Substituting for the expectation values of the second-order surface-moments, the 
final expression for the total variance is given by 

a(A)2~st = P-A + [1 0x2 Jo + 10x2 Jol  0y2 Jo + L 0y 2 Jo] 
~T 2 

pA + k~ 

The two component area dependence of the total  variance is now made explicit. 
The first term represents the propagation of raw noise variance. As the area of 
the support neighbourhood used in the estimation of the origin increases, then 
so the effect of noise-variance on the fitted parameters decreases. The second 
term, on the other hand, represents the model bias in the extracted parameters. 
In the case of estimating the origin, the bias depends on the second derivatives, 
or curvature, of the local surface. The bias term increases with increasing surface 
area. It is clear tha t  there is critical value of the area which results in minimum 
total variance. We locate the minimum area by fitting an empirical model to the 
measured height variance observed for various support neighbourhood areas. 
This fitting process returns estimates of the two model parameters 0 -2 and k0. 
When these have been extracted from the the variance-area data, the optimal 
area is given by 

1 

drain = (7) 

In the Sections 2.2 and 2.3, we extend our analysis to the estimation of local 
surface orientation and curvature. In both cases, there is a similar variance-bias 
structure to the total variance. 
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2.2 E s t i m a t i o n  o f  t h e  s u r f a c e  n o r m a l  

By translating to the local system of co-ordinates centred on the origin o, we 
we can again perform the Taylor expansion for the local surface patch. In the 
translated co-ordinate system, 

=l~xJo + l ~ J o  + bTx2 o +~O-~y]oX~+lOy2j ~ (s) 

where x '  = x - xo and y'  = y - yo are the translated co-ordinates. In the 
transformed co-ordinate system the height intercept of the local surface patch is 
zero. Hence, the tangent-plane may be estimated directly from the data-points 
in this new coordinate system. 

Both the parameter estimation process and the propagation of variance is 
more complicated than in the case of the origin. Parameter estimation is realised 
by the least-squares fit of a tangent plane through the origin z '  = ax '  + by'. Again 
we choose a set of sample data-points S. We denote the parameters of the tangent 
plane by P = (a, b) T. The positions of the sample points are represented by the 
design matrix [ xl ) 

x ,  = xl. 

while the corresponding height data  is represented by the column-vector Zp = 
t , T (Zl, ze, ...) . The least-squares fit for the parameters is given by t) = L p Z p  where 

Lp T --1 T ---- (Xp Xp) Xp is the pseudo-inverse of the design matrix. 
When the parameter-vector P is estimated in this way, then its covariance 

structure can be found by propagating the variance in the transformed height 
data  Zp. If ~zp is the covariance matrix for the transformed height data, then 
the the covariance matrix for the plane parameters, i.e. E[(P - t ) ) (P - ~))T], is 
given by 

= Lp zpL  (9) 

As in the case of the origin, the total covariance matrix has a two-component 
structure which reflects the two sources of error in the estimation of the surface 
normals. The first component is due to the propagation of noise in the surface- 
data-point positions, while the second component is a bias term that  results from 
the higher order terms in the Taylor expansion. We make this two-component 
structure more explicit by writing 

Z p  = L p ~ N L  T 4- Lp]EBLp T (10) 

The noise component of the parameter covariance matrix is modelled under the 
assumption that  transformed height data is subject to independent identically 
distributed Gaussian noise of zero mean and variance a 2. Under this assumption 
the noise variance of the least-squares parameter estimates is given by 

( v ,  x, 2 , , ) - 1  
L p ~ N L  T = a2 z . . i e s  i ~-]~ies x iYi  (11) 

"-" x '  ' ~ y,2 L i E S  iYi L..~icS i 
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In other words, the noise-component to the total  covariance matr ix  depends on 
the second-order moments  of the points in the surface patch. As before we assume 
a circular support  neighbourhood. In this case, the expectation values of the odd 
co-ordinate moments  are zero. The expectation values of the even moments  can 
be computed along the same lines as outlined in the previous subsection�9 As a 
result the noise contribution has a diagonal covariance matr ix  Specifically, 

12a 2 
Lp NL  = p-Z1 (12) 

where I is the 2x2 identity matrix�9 
The  bias contribution is more complex and depends, as before, on the second- 

order, and higher, derivatives of the local surface�9 We model the bias te rm to 
second-order by computing the covariance matr ix  for the local deviations from 
the planar approximation.  Accordingly, we write bias-component of the covari- 
ance matr ix  as 

s s163 *�9149 s ) 
EB = e2el ". (13) 

0 2 5 ( X  X "~2 ..L O.f O f  [ x X "~(~ 0 2 f  ['~ " . wheree i  = ~-7-~2~ i -  oj " ~ o u ~  i -  oj~i-Yo)+ ou~s~-yo)2+., i s t h e  
non-planar deviation of the point indexed i. 

Details of the bias model are outside the scope of this paper. Suffice to 
say that ,  we can compute the expectat ion values for the elements of the non- 
planar bias covariance matr ix  in much the same way as for the case of est imating 
the patch height, neglecting higher order terms of the expansion�9 Under this 
condition, the bias can be represented as a second-order polynomial in the patch 
area A. If  K0, K1 and K2 represent co-efficient matrices whose elements depend 
on the second order and higher derivatives of the surface function, then 

Lp~JB LT = K0 + K I A  + K2A 2 + . . .  (14) 

Collecting together terms, we find that  the total  parameter  covariance matr ix  
can be expressed as 

12a 2 
Ep(A) = - -~ - - I  + Ko + K1A + K2A e + . . .  (15) 

Again, the noise propagat ion term is inversely proport ional  to the area of the 
est imating patch. The bias terms, on the other hand, are polynomial in area. As 
a result the parameter  covariance matr ix  can be minimised with respect to the 
patch area. 

The problem of determining the opt imal  area of estimation for surface nor- 
mals is more complicated than in the case of the average height. The main dif- 
ficulty stems from the fact that  we are dealing with a covariance matr ix  rather  
than a single scalar quantity. However, since the noise component  of E p  is diag- 
onal, we confine our at tention to minimising the trace of the covariance matrix.  
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To first order in area, the trace is given by 

[( 12a2 + ko + k,A)] (16) Tr[~Jp]  = aa  2 _~_ o-~ ---- 2 i pA 

2 and a~ are the measured variances for the plane parameters a and b. where a a 
Again, we can fit the predicted area dependance to the observed sum of variances 

2 + a~ to estimate the semi-empirical parameters a, ko and kl The minimum O" a 
error surface patch area is given by 

] 1 

Amin-- [12a2j (17) 

2.3 E s t i m a t i o n  o f  t h e  s u r f a c e  c u r v a t u r e  

The estimation of surface curvature proceeds in much the same way as for the 
surface normals. We begin by transforming the coordinate system in such a way 
as to remove both zero order and first order terms of the Taylor expansion. From 
a geometric perspective this is equivalent to translating the origin and rotating 
into the local tangent plane. If the local co-ordinate system is located at the 
point o, then the z-axis of co-ordinates is directed along the surface normal. The 
x and y axes are orthogonal to one-another and are oriented arbitrarily in the 
local tangent plane of the surface. In the local coordinate system, the Taylor 
expansion is now given by 

f (x ' , y" )= [ 02f ]~O-~o x u2 { 02f  Ox,cOY, x"y" { 02f ) + + O--~.oY'2+O(x ''3) (18) 

It is now clear that  the natural approximate representation of this surface in 
the local coordinate system is a quadric patch 

f(x", y") = ax ''2 +/3x"y" + 7y ''2 (19) 

In other words, the vector of parameters Q = (a,/3,'y)T represents the esti- 
mate of the second order derivatives of the surface around the origin 0 of the 
local coordinate system. We obtain estimates of the parameters Q = (&, fl, ~/)T 
using least-squares fitting over the raw data-points that  associate with a sup- 
port  neighbourhood of area A on the surface. The solution vector is given by 

= LqZq where the design matrix of transformed sample-points is given by 

lY 1 yUg 
Xq ~ X1122 XII2yII2 

and the transformed height data  is now represented by the column-vector Zq = 
(z~', z~', ...)T. Again the pseudo-inverse of the design matr ix Lq is given by Lq = 

T --1 T ( X q  X q )  X q .  
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The parameter  covariance matr ix  again has a variance-bias structure.  We 
make this explicit by writing 

EQ = L q E N L  T + L q E B L  T (20) 

The covariance component  originating from additive noise is related to the 
fourth-order moments  of the x and y co-ordinates in the support  neighbour- 
hood. Specifically, we find 

[ ~ X n 4 
t .t...~icS i 

L q ~ N  L T  = 6  2 l V" , 3 , I A . . . , i csx i  Yi  
I x-", t t  2 It 2 
\ L i e s  xi Y~ 

It 3 n tl 2 tl 2 ~ - - 1  

) ~'~ Xtt 2 tt 2 ~ XlI tl 3 
z-.-.,iCS i Yi  2.-,icS i Yi  

E i c S  tl tt 3 tl 4 Xi Yi  ~-~iES Yi 

(21) 

The expectation values of the matr ix  elements can be estimated as before, and 
are given by 

,, 4 P J A/ x "  PA387r2 < ~ xi >-= 4dA = (22) 
iES 

and 

x~/ 2 ,, 2 f A x "  2y,, P A3 < Z_., , Yi >= p 2 d A -  (23) 
247r 2 

iES 

The expectation-values for the remaining fourth-order moments  which involve 
odd-powers of x or y are zero. Hence we may write the noise component  of the 
covariance matr ix  explicitly in terms of the area of the support  neighbourhood 
in the following manner  Lq NL _3 2 2(3 001)3 2 2 

01 8 - -  K N  
- 0 3 

(24) 

Details of the analysis of the bias in the deviations from the local quadratic 
is more complicated and beyond the scope of this paper. Suffice to say tha t  the 
bias component  can be expanded in terms of a polynomial in A in the following 
manner  

Lamb LT = K0 + AK1 + A2K2 + . . .  (25) 

where Ko and K1 are matrices whose elements depend on the third order deriva- 
tives of the surface. 

We can now write the covariance matr ix  of the quadric patch parameters  in 
terms of the area of est imation (to first order terms) thus: 

37r2a  2 
]EQ -- - -  K N  + K0 + AK1 (26) pA 3 

Since the noise covariance matrix,  i.e. L q E N L  T is no longer diagonal, we can 
no-longer strictly recover the optimal  patch area by minimising the trace of 
EQ. However, from equation (24) it is clear that  the off-diagonal elements are 
insignificant compared to the trace. Therefore, in the case of the quadric patch 
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parameters we approximate the optimal surface area by fitting a semi-empirical 
model to the measured trace of the quadric patch covariance matrix EQ. 

2 2 [ 421r2~ ] 
(27) 

where as,2 a~ and a~2 are the measured variances for each of the quadric patch 
parameters in turn. As before, we calculate the values of the semi-empirical pa- 
rameters a 2, k0 and kl by fitting the predicted area dependance to the measured 
variances. In this case the optimal surface area which minimises Tr[Eq] is given 
by 

= [  ~k~ ] ~ 
Amin [14n2a2j (28) 

3 C o n t r o l l i n g  t h e  M e s h  

In the previous section, we provided an analysis of variance for the sequential 
extraction of a local surface origin, the local tangent plane, and, finally, the 
local patch curvature parameters. In each case we demonstrated that  the fit 
covariance parameters could be minimised with respect to the area of the sample 
neighbourhood. In other words, there is an optimal choice of estimation area. 
This area can be viewed as providing the best tradeoff between model bias and 
underlying data  variance. Our overall aim in this paper is to exploit this property 
to control the area of surface patches in an adaptive surface mesh. Since the area 
of the patches determines the number of nodes needed to represent the surface, 
the use of the optimal local patch area effectively corresponds to controlling 
the model-order of the surface representation. The interpretation of the mesh 
depends on the quantity which is being estimated over the surface. For example, 
in the case of surface normals, the centre of each face represents a point at 
which the surface normal is sampled. The surface is represented by the piecewise 
combination of the tangent planes associated with these sample normals. The 
mesh adapts itself to the data  using a series of split and merge operations which 
are aimed at delivering a mesh which optimally represents the surface. 

3.1 Optimal area estimation 

Here we aim to use the minimum parameter-covariance area to control the split 
and merge operations. We directly estimate the optimal local patch-size and ad- 
just the mesh topology accordingly. In an ideal world, the optimal area could be 
determined by varying the area of estimation and noting the value that  minimises 
the parameter  covariances. However there is an obstacle to the direct implemen- 
tation of this process. In practice, the random nature of the noise component of 
the data-points results in multiple local minima. 

The bias-variance relationships developed in the previous section allow us to 
overcome this difficulty. In particular, they suggest the overall model-dependance 
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between the variance in model parameters and the area of estimation. By fitting 
this semi-empirical model to the computed parameter  variances we can smoothly 
estimate the position of the global minimum corresponding to the optimal area. 
The strategy that  we adopt in determining the optimal local patch area is as 
follows. For each point on the surface we gradually increase the local patch area 
and compute the associated parameter  variances. This gives a set of data  points 
to which we can fit an appropriate empirical form of the bias-variance curve. 
The fitted parameters can be used to extract  the value of the minimum local 
patch-area in a stable manner. 

3.2 Mesh Adaptat ion 

The optimal areas of estimation vary over the surface, and suggest that  the level 
of representation, i.e. the model-order, required by the surface should also vary in 
line with the variance-bias criteria outlined in Section 2. To achieve this goal, we 
will adopt an adaptive mesh representation of the surface. In this representation, 
nodes of the mesh represent salient points on the surface; the distance between 
these points is such that  there is the best trade-off between noise and bias in the 
positions of the points. The mesh points then represent the minimal accurate 
representation of the surface. 

Our mesh is based on the Delaunay triangulation of a set of control points 
or nodes [24, 18, 19, 8, 9, 6]. In contrast to the bulk of the work reported in the 
literature which focus on the optimal positioning of the nodes [8, 24], in this paper 
it is the triangular faces of the mesh to which we turn our attention. The basic 
update process underpinning our surface involves adjusting the mesh-topology 
by splitting and merging surface-triangles. This process is realised by either 
inserting or deleting nodes from the mesh. The net effect of the two operations 
is to modify the node, edge and face sets of the mesh. The node insertion and 
deletion operations take place with the objective of delivering a set of faces 
whose areas are consistent with the optimal values dictated by the bias-variance 
criteria outlined in section 2. In this way the density of nodes is such as to strike 
a compromise between over-fitting the data and over-smoothing genuine surface 
detail. In other words, we seek the minimum model-order (i.e. the total  number 
of nodes) such that  each of the triangular faces is as close as possible to its 
optimal area. 

Triangle merging is realised by deleting a node from the mesh as illustrated 
in the left-hand panel of Figure 1. The basic aim is to merge triangles if the 
aggregate area is more consistent with the optimal area than the original area. 
Suppose that  the set of triangles Mj is to be merged to form a new triangle with 
area Aj. The average area of the configuration of triangles is 

m e r g e  _ 1 
Aj i~ j l  " ~  A~ (29) 

The triangles are merged if the fractional difference between the average area 
and the optimal area is greater than 10%. In other words, we instantiate the 
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merge if 
Aoptimal merge 

- A3 
> 0.1 (30) optimal Aj 

This tolerancing can be viewed as providing the adaptation of the mesh with a 
degree of hysteresis. 

The geometry of the split operation is illustrated in the right-hand panel 
Figure 1. A new node is introduced at the centroid of the original triangle. 
The new node-set is re-triangulated to update  the edge and face sets of the 
triangulation. The condition for initiating a split operation is that  the current 
fractional difference between the triangle area and it optimal value is greater 
than 10%. The split condition can therefore be stated as 

optimal Ay - Aj 
> 0.1 (31) optimal Ay 

Fig. 1. Merging and splitting triangles 

4 E x p e r i m e n t s  

In this Section we provide some experimental evaluation of our new bias-variance 
controlled surface. There are several aspects to this study. We commence by 
considering synthetic data. The aim here is to illustrate that  the two-component 
variance model described in Section 3 does provide a good description for the 
distribution of the parameter  variances as a function of patch-area. The second 
aspect of our experimentation focuses on real world data-sets. Here we consider 
range-data from the Michigan State University data-base. 

4.1 Synthetic  Data  

The main aim under this heading is to illustrate that  the variance-bias descrip- 
tion presented in Section 3 provides an accurate model of the distribution of the 
fitted parameter  variances under controlled conditions. Moreover, we also aim 
to show that  the simple parametric models developed in Section 4.1 are capable 
of fitting the observed distribution of variance as a function of the area used in 
the estimation process. 
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Figure 2a shows a series of plots of the paramete r  variance as a function of the 
area of estimation. Here we investigate the effect of quadric patch fitting on two 
different synthetic surfaces. The points marked with a cross show the computed 
variances when the surface is itself quadric. Here the parameter  variances follow 
a distribution which monotonically decays with area. In other words, because the 
model is well matched to the data,  the bias component  of the parameter  variance 
is zero and there is no local minimum area. The diamonds, on the other hand, 
show the variance for a surface of the form f ( z )  = cos(x) cos(y). This surface is 
not well matched to the quadric patch approximation,  and we may anticipate 
the model-bias term to emerge. This is evident from the fact that  the variance 
shows a local minimum when the est imating area is approximately 500 points. 
In order to investigate the effectiveness of our analysis of variance in describing 
the observed distribution, the boxes show the result of plotting the prediction 
of the model outlined in Section 2.3. Although the agreement between the two 
curves is by no means perfect, the main features are captured by the model. 
Most important ly  for the successful implementat ion of our adaptive mesh, there 
is good agreement in the location of the minimum variance area. 

To illustrate the behavior of the parameter  variance on realistic data,  Fig- 
ure 2b shows an example distribution for a range-image. Here there is genuine 
data-point  noise and there is considerably more structure than  in the case of the 
synthetic surface. However, the distribution maintains the same gross structure. 
There is a clear decaying component  due to the surface noise together with an 
increasing component  due to the bias term. The interplay between these two 
components results in a well defined global minimum. In other words, fitting 
an appropriately parameterised distribution should meet with success when at- 
tempt ing to est imate the minimum variance area. 

o ~  

o ~ 7  

o ~  

o ~  

(a) Synthetic surface. 

0 0 ,  

o H  

a ~ 8  

a |  

o ~  

(b) Real-world data. 

Fig. 2. Trace of the curvature covariance matrix for simulated surface. 
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4.2 R e a l  W o r l d  D a t a  

In this Section we provide experiments on real world data-sets from the Michigan 
State University range-image archive. We commence by showing a sequence of 
results for a range image of a Renault part. Figure 3a shows the surface normals 
estimated using the local fitting process outlined in Section 3.1. The associated 
patches are shown in Figure 3b. In Figure 3c we shown the rendered surface 
patches. The main points to note from this sequence of images are as follows. 
Firstly, the extracted surface normals provide a faithful representation of the 
high curvature surfaces details. This is particularly evident around the sharp 
machined edges of the part. The second point to note is the distribution of 
surface triangles. In the flat portions of the image these are sparse. By contrast, 
in the highly curved regions of the surface, the density increases to account for 
the local curvature of the surface. 

Figures 4a-4c show an analogous sequence of images for a range-image of a 
bust of the composer Mozart. This range-image contains considerably more fine 
detail than the Renault-part .  The main point to note is the effectiveness of the 
mesh at representing areas of different curvature with mesh points of varying 
density. 

The planar patch information is refined in Figure 4d where we show the mean 
curvature extracted from the subsequent quadric patch fit. The mean curvature 
is given K = a + ~, where a and 0/ are the coefficients of the quadric patch 
as defined in equation 19. The estimated curvatures are signed. The maximum 
negative and positive values appear as extreme light and dark regions in the 
figure. The important  feature to note from the figure is the fine detail in both 
the cravat and collar of the bust. There is also well defined detail around the 
concave features of the face ( i.e. the eye sockets, the lips and the ridge of the 
nose). 

5 C o n c l u s i o n s  

The main contribution in this paper have been twofold. In the first instance, we 
have provided an analysis of variance for the various stages in establishing the 
derivatives of surface fits to range data. This analysis reveals that  there is a two 
component structure to the variance of the fitted parameters.  The first compo- 
nent of results from the propagation of noise variance and decreases with the 
increasing area of the patch. The second variance contribution originates from 
the model bias. This term is polynomial in the patch area. The main conclusion 
is that  there is a local patch area which offers optimal tradeoff between noise- 
variance propagation and model bias in the minimisation of the fit residuals. 

Our second contribution is to exploit this property to control the area of 
the facets of a triangulated surface mesh. By locally varying the patch area we 
minimise the parameter  variance. This minimisation is realised by splitting and 
merging the triangular faces of the mesh until they each have a near optimal 
area. 
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Fig. 3. Analysis of the Renault part. 

References  

1. A.J. Bulpitt and N.D. Efford, "An efficient 3d deformable model with a self- 
optimising mesh", Image and Vision Computing, 14, pp. 573-580, 1996. 

2. P. J. Besl and R. C. Jain, "Segmentation through variable order surface fitting", 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10:2 pp167-192 
1988 

3. X. Chen and F. Schmill. Surface modeling of range data by constrained triangula- 
tion", Computer-Aided Design, 26, pp. 632--645 1994. 

4. I. Cohen, L.D. Cohen and N. Ayache, "Using deformable surfaces to segment 3D 
images and infer differential structure", CVGIP, 56, pp. 243-263, 1993. 

5. I. Cohen and L.D. Cohen, "A hybrid hyper-quadric model for 2-d and 3-d data 
fitting", Computer Vision and Image Understanding, 63, pp. 527-541, 1996. 

6. L. De Floriani, " A pyramidal data structure for triangle-based surface descrip- 
tion", IEEE Computer Graphics and Applications, 9, pp. 67-78, 1987. 

7. L. De Floriani, P. Marzano and E..Puppo, "Multiresolution models for topographic 
surface description.", Visual Computer, 12:7, pp. 317-345, 1996. 

8. H. Delingette, "Adaptive and deformable models based on simplex meshes", IEEE 
Computer Society Workshop on Motion of Non-rigid and Articulated Objects, pp. 
152-157, 1994. 



464 

9. H. Delingette, M. Hebert and K. Ikeuchi, "Shape representation and image segmen- 
tation using deformable surfaces", IEEE Computer Society Conference on Com- 
puter Vision and Pattern Recognition, pp. 46~472, 1991. 

10. D. Geman, E. Bienenstock and R. Doursat, "Neural networks and the bias variance 
dilemma", Neural Computation,, 4, pp.l-58, 1992. 

11. J. O. Lachaud and A. Montanvert, "Volumic segmentation using hierarchical rep- 
resentation and triangulates surface", Computer Vision, ECCV'96, Edited by B. 
Buxton and R. Cipolla, Lecture Notes in Computer Science, Volume 1064, pp. 
137-146, 1996. 

12. R. Lengagne, P. Fua and O. Monga, "Using crest-lines to guide surface recon- 
struction from stereo", Proceedings of th 13th International Conference on Pattern 
Recognition, Volume A, pp. 9-13, 1996. 

13. D. McInerney and D. Terzopoulos, "A finite element model for 3D shape re- 
construction and non-rigid motion tracking", Fourth International Conference on 
Computer Vision, pp. 518 532, 1993. 

14. D. McInerney and D. Terzopoulos, "A dynamic finite-element surface model for 
segmentation and tracking in multidimensional medical images with application to 
cardiac 4D image-analysis", Computerised Medical Imaging and Graphics, 19, pp. 
69-83, 1995. 

15. M. Moshfeghi, S. Ranganath and K. Nawyn, "Three dimensional elastic matching 
of volumes", IEEE Transactions on Image Processing, 3, pp. 128-138, 

16. W. Neuenschwander, P. Fua, G. Szekely and O. Kubler, "Deformable Velcro Sur- 
faces", Fifth International Conference on Computer Vision, pp. 828-833, 1995. 

17. P.T. Sander and S.W. Zucker, "Inferring surface structure and differential structure 
from 3D images", IEEE PAMI, 12, pp 833-854, 1990. 

18. F .J .M.  Schmitt, B. A. Barsky and Wen-Hui Du, "An adaptive subdivision method 
for surface fitting from sampled data", SIGGRAPH '86, 20, pp. 176-188, 1986 

19. W.J.Schroeder, J.A. Zarge and W.E. Lorenson, "Decimation of triangle meshes", 
Computer Graphics, 2{} pp. 163-169, 1992. 

20. A.J. Stoddart, A. Hilton and J. Illingworth, "SLIME: A new deformable surface", 
Proceedings British Machine Vision Conference, pp. 285-294, 1994. 

21. A. J. Stoddart, J. Illingworth and T. Windeatt, "Optimal Parameter Selection 
for Derivative Estimation from Range Images" Image and Vision Computing, 13, 
pp629-635, 1995.. 

22. M. Turner and E.R. Hancock, "Bayesian extraction of differential surface struc- 
ture", in Computer Analysis of Images and Patterns, Lecture Notes in Computer 
Science, Volume 970, Edited by V. Havlac and R. Sara, pp. 784-789, 1995. 

23. M. Turner and E.R. Hancock, "A Bayesian approach to 3D surface fitting and 
refinement", Proceedings of the British Machine Vision Conference, pp. 67-76, 
1995. 

24. G. Turk, "Re-tiling polygonal surfaces", Computer Graphics, 26, pp. 55-64, 1992. 
25. M. Vasilescu and D. Terzopoulos, "Adaptive meshes and shells", IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition , pp. 829-832, 
1992. 

26. R. C. Wilson and E. R. Hancock, "Refining Surface Curvature with Relaxation 
Labeling", Proceedings of ICIAP97, Ed, A. Del Bimbo, Lecture Notes in Computer 
Science 1310, Springer pp. 150-157 1997. 

27. R. C. Wilson and E. R. Hancock, "A Minimum-Variance Adaptive Surface Mesh", 
CVPR'97, pp. 634-639 1997. 



465 

(c) Normals. (d) Curvature. 

Fig. 4. Analysis of the range-data for the Mozart bust. 


