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Abstract. The presence of specular highlights can hide underlying features of a scene within an image and 
can be problematic in many application scenarios. In particular, this poses a significant challenge for 
applications where image stitching is used to create a single static image of a scene from inspection footage 
of pipes, gas tubes, train tracks and concrete structures. Furthermore, they can hide small defects in the 
images causing them to be missed during inspection. We present a method which exploits additional 
information in neighbouring frames from video footage to reduce specularity from each frame. The 
technique first automatically determines frames which contain overlapping regions before the relationship 
that exists between them is exploited in order to suppress the effects of specular reflections. This results in 
an image that is free from specular highlights provided there is at least one frame present in the sequence 
where a given pixel is present in a diffuse form. The method is shown to work well on greyscale as well as 
colour images and effectively reduces specularity and significantly improves the quality of the stitched 
image, even in the presence of noise. While applied to the challenge of reducing specularity in inspection 
videos, the method improves upon the state-of-the-art in specularity removal, and, its applications are wide-
ranging as a general purpose pre-processing tool. 
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1. Introduction 

Automated Non-Destructive Evaluation (NDE) 
using visual inspection was studied by [1] and finds 
applications in pipe inspection [2], train track 
inspection [3] and inspection of concrete structures 
[4]. The process usually employs a camera mounted 
on a mobile robot, automated vehicle or other 
apparatus which is moved over an area to be 
inspected while images are captured in quick 
succession. These images can then be analysed 
locally or offline so as to assess the condition of the 
structure being inspected. During offline 
processing, the images captured can be stitched 
together to provide a seamless view of the inspected 
surface [5-9]. However, due to the use of light 

sources for illuminating the scene to be captured and 
sources present in the environment, specular 
reflections can appear in these images and this can 
reduce the accuracy of image alignment methods 
used prior to image stitching [1]. Furthermore, for 
the purposes of visual inspection, the presence of 
specularities could also lead to defects being missed 
during the inspection process or spurious false 
defects being detected. It is anticipated that if such 
images can be pre-processed to reduce specular 
highlights, they can be more easily and more 
accurately stitched together to provide a high 
quality specular free view of the inspected area in 
full, thereby making manual or automated 
monitoring more robust. It is therefore necessary 
that suitable techniques be developed for the 

Removal of Specular Reflections from Image Sequences using feature 
correspondences 



 

 

2

removal of specular highlights which motivates this 
work. 
The paper is organised as follows, Section 2 
provides a description of the current state-of-the art 
techniques for specularitiy removal and motivates 
the case for the proposed approach. In Section 3 we 
present the proposed technique for specularity 
removal and we provide a number of examples to 
aid the understanding of its description. The results 
of applying the proposed approach and alternative 
techniques to various datasets are discussed in 
Section 4 and, in Section 5, we give some 
concluding remarks.  
 
2. Related work 

 
The detection and removal of specular reflections 

from images has been an area of interest to the 
Computer Vision community for many years, and 
existing techniques for this task find applications in 
medical science [10-12], video surveillance [13], 
image refinement and image reconstruction [15-17]. 
Citing the importance of the availability of such 
methods, there have been various attempts to 
address this issue.  

 

2.1. Single Image methods 

A number of authors have provided methods 
using a variety of approaches to remove specular 
highlights using synthetically generated specular 
free images [18-23].  The authors use a number of 
sophisticated techniques to reduce specularities and 
they present very good results but each has some 
drawbacks. The authors in [23] propose a speeded 
up version of the method of [18] by replacing their 
proposed iterative method with a bilateral edge 
preserving filter to improve speed. The methods 
from [18-23] all use a synthetically constructed 
‘specular free’ image which requires that the surface 
colour is chromatic and that diffuse pixels are 
present for every colour region. An inpainting 
technique is proposed in [22] while using a specular 
free image, this however, does not recover any 

abnormalities hidden by specular highlights as the 
inpainting is carried out using non-specular 
neighbouring pixel values. The authors in [24] 
presented a method that uses averaging to remove 
specularity from data used for image based dietary 
assessment. The method works well for the author’s 
application. However, since the approach relies on 
averaging, features in the final result can appear 
blurred and distorted. Another approach in [25] 
rearranges the chromaticity distribution between 
specular and diffuse pixels to remove highlights 
while smoothing this distribution using achromatic 
components of the diffuse pixels. All these methods 
require the presence of colour content in the images. 

 

2.2. Multi-image methods 

The authors in [26] carry out tri-view Colour 
Histogram Differencing (CHD) on groups of three 
images in a multi-baseline stereo scene. They 
provide satisfactory results but this method is also 
only applicable to colour images and requires 
restricted control of the camera motion which 
requires special hardware to implement. The 
technique presented in [27] used multiple images of 
a scene captured using a camera setup at a fixed 
location along with multiple light sources for 
illumination with one source being used for each 
capture of the same scene. The median of the 
gradient variations is computed for the images prior 
to reconstruction and this motivates the use of pixel 
based arithmetic for specular highlight removal. 
Another method proposed in [28] for video imaging 
suggests the use of a strobe light attached to a 
moving camera. The camera capture rate and the 
strobe light blinking rate are such adjusted so as to 
produce images of minimum and maximum 
illumination. These two images are used to 
determine a specular free image.  Multiple image 
methods suggested in previous works [26-28] 
require special capturing apparatus and hardware. 
Thus, there is an opportunity to explore a software 
based approach which places no specific 
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requirements on the type of imaging equipment that 
is required. 

As discussed, there are a large number of 
techniques which can be used to suppress 
specularities in image data. However, many of the 
available techniques can only be applied to colour 
images which contain distinctive chromaticity [18-
23, 26]. This is not suitable for visual inspection 
applications where data can be greyscale or single-
colour. Furthermore, many techniques operate on a 
single image basis whereas, when processing video 
data it makes sense to utilise information from 
overlapping frames and exploit the motion of 
specularities in order to remove them from the video 
data. While three techniques which exploit this 
property are discussed in [26-28], all three methods 
require a very specific capturing environment or 
capture device to be used. They also assume that the 
alignment between overlapping images is known 
and constant and, in the case of [26], the approach 
can only be applied to colour images. Clearly a 
technique which can be applied to both grey and 
distinctive colour images captured using any single 
camera and light source would be highly beneficial 
for a wide range of applications.  

In this paper, we present a simple yet innovative 
software based technique to remove specular 
highlights from a sequence of images. The method 
requires a single (non-specific) camera and 
illumination source and, unlike the approaches in 
[20-23, 28], can be applied to both colour and 
greyscale data without modification which makes 
greatly improves its applicability in a number of 
application areas. We exploit the fact that the 
content of images in a sequence captured by a 
moving camera will overlap each other to some 
extent, and we use this to compute the relationship 
between such images directly from the data itself. 
This alleviates the need for multiple cameras to 
remain at a fixed position during image acquisition 
[26,27] which is impractical for many applications. 
While for most inspection videos the camera is 
moved around a scene to be imaged, the proposed 
method would work equally well if applied using a 

fixed camera and a moving scene e.g. for inspecting 
parts on a conveyor belt.    

Furthermore, the proposed approach is software 
based and performs equally well on both colour and 
greyscale images and, in Section 5, it is shown that 
it also produces significantly better results than that 
of [24] when applied to the same set of image data. 
We consider [24] for comparison since it proposes 
an application environment without constraints (no 
restrictions on capturing images) or content (colour 
or grey) of the images being captured. 

 
3. Specularity Removal Using Image 
 Correspondences  
 

The procedure used for the reduction of 
specularity from the images is illustrated in the 
flowchart shown in Fig. 1. The method requires 
multiple images of the same scene from different 
vantage points, ideally successive frames from a 
video work well as an input to the process. Specular 
highlights are removed from the frames using a 
seven step process taking a single image at a time 
for specular highlight removal. 

 
3.1. Determination of feature points 
 

In this first step, feature points are extracted from 
the current image and the next image in the 
sequence to be processed. An image feature can be 
defined as a distinctly identifiable part of an image 
that differs from its neighbourhood in terms of 
intensity and colour etc. [29]. Several algorithms 
exist which allow us to detect points of interest in 
images [30-34]. In the proposed method, we use 
Scale Invariant Feature Transform (SIFT) to extract 
feature points from the images to be processed as 
SIFT has been demonstrated to outperform the 
currently available feature detection algorithms in 
terms of the number of feature points detected in 
various applications [35-38]. SIFT provides 
invariance to scale, rotation, illumination and partial 
invariance to affine change which is an important 
requirement in many image alignment applications.  
The SIFT feature points in images are represented  
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by a descriptor which can be used to identify each 
point. As a demonstration, consider the images 
shown in Fig. 2(a). Fig. 2(b) shows the SIFT feature 
points extracted from these two images. Each of the 
yellow circles indicates a feature point, the radius of 
the circle indicates the scale at which the feature 
point exists and the line within the circle indicates 
its orientation.  

 
3.2. Determination of matching points and image 
alignment  
 
Once the feature points have been determined, the 
next step is to search for possible matches.  The 
matching of SIFT key points is accomplished by 
computing the Euclidean distance among the 
descriptors between any two points in two different 
images. If, for any feature point in any image, two 
points are found in the other image whose ratio of 
the distance from the considered point is greater 
than or equal to 0.8 [39], both the points are dropped 
as potential matches. This was found the authors in 
[39] to reduce false match detection by 90%. A k-d 
tree [40] is used to find the neighbourhood in which 
matching is to be carried out to reduce matching 
time.  

Aligning matching images requires that both the 
images are projected onto the same plane. The 
motion between the images can take an arbitrary 
direction and rotation and nonlinear effects may 
also be present due to the change of plane and view 
of the capturing apparatus. This motion can be 
mathematically modelled as perspective motion 
between the two images. The relation between the 
pixels in two images can be mathematically 
described by means of a Homography matrix, H 
computed between the two images, it is given as 
shown in (1).  

 

ܪ = ൥
ℎଵଵ ℎଵଶ ℎଵଷ
ℎଶଵ ℎଶଶ ℎଶଷ
ℎଷଵ ℎଷଶ ℎଷଷ

൩                 (1)  

 

Input Image Sequence 

Output Image Sequence 

Fig. 1  Flowchart of the proposed method 
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where the elements ℎ௜௝  are arbitrary numbers that 

define the transformation. The homography is 
computed using RAndom SAmple Consensus 
(RANSAC) [41] together with the Direct Linear 
Transformation (DLT) [42]. The probability that a 
correct model has been identified using RANSAC 
is given by (2) 

 

௚௧݌ = 1 − (1 −  ௠)௞              (2)݌

 
Where pgt is the probability of the determined 

geometric model being correct, p is the probability 
that the considered point is a legitimate candidate 
for the geometric model to be determined (Inlier), m 
is the number of points used for determining the 
geometric model and k is the number of trials the 
algorithm iterates through. The number of trials 
used for RANSAC is k=100 (empirically 
determined to be sufficient to generate a dependable 
homography, increasing the number of trials didn’t 
have a significant impact in a correct homography 
being determined) and the number of points used in 
each trial is m=4 (in the DLT, 4 points are enough 
to compute 2D Homograpy [39]). It is importantto 
ensure that a photographically correct homography 
is determined between two images.That is, a 
homography is considered valid if and only if there 
is an actual overlap between the images and not 
valid if it is computed usingerroneously matched 
points. We achieve this by applying a threshold 
t=28 to the number of inliers found to decide 
whether the computed homography is the result of 
falsely matched points or otherwise. A similar 
approach has been used in [39]. The threshold value 
of 28 can be adjusted by the user as an additional 
input to the algorithm and has been determined 
empirically by visual inspection of homographic 
transformation matrices computed for 158 different 
images. The matching points between the images 
before and after RANSAC are shown in Fig. 2(c) 
and Fig. 2(d) respectively. By observing that the 
points in Fig. 2(d) appear to be separated by some 
fixed distance and orientation, it is clear that the 
removal of outliers has been successful. 

3.3. Remapping of the Images 
 
After the determination of an appropriate geometric 
transformation between the images, the next step is 
to realign them. Using only the homography 
between the images results in an alignment error due 
to measurement inaccuracies and inclusion of 
erroneous points that fall within the chosen 
RANSAC threshold. In order to overcome this, the 
images are aligned by warping both the images 
separately on to two identical environment maps 
formed using the calculated projective 
transformation matrix. The meshes are created in 
the Cartesian coordinate system to avoid any change 
of shape in the original images which may result 
from using either Cylindrical or Spherical 
coordinate systems. The compositing surface in 
Cartesian coordinates was created as in (3) 
 

ܿ௠௔௧ = ൥
1 ,݈݋ܿ ݅݉2 ,݈݋ܿ ݅݉2 1
1 1 ,ݓ݋ݎ ݅݉2 ,ݓ݋ݎ ݅݉2
1 1 1 1

൩           (3) 

 
Where col,im2,row,im2 represent the column and 
the row size of the matched image and Cmat is the 
compositing matrix. The new pixel locations for 
each original pixel in the environment map is then 
calculated as in (4) and (5).  
 

௠ଶݔ =
(ℎଵଵݔு

∗ + ℎଵଶݕு
∗ + ℎଵଷ)

ℎଷଵݔு
∗ + ℎଷଶݕு

∗ + ℎଷଷ
      (4)  

 

௠ଶݕ =
(ℎଶଵݔு

∗ + ℎଶଶݕு
∗ + ℎଶଷ)

ℎଷଵݔு
∗ + ℎଷଶݕு

∗ + ℎଷଷ
        (5)  

 
Where ݔ௠ଶ, ௠ଶݕ  are the coordinates of the pixel 
locations of the environment map after perspective 
projection. This warping of the two images results 
in two environment maps on which the images have 
been remapped in such a manner that the 
overlapping regions are aligned correctly. The 
warped images are shown in Fig. 2(e) and it is clear 
that the images are aligned. Moreover for these 
images, it can be seen that specular pixels in the 
image on the right appear as diffuse pixels in the 
image on the left. 
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3.4. Determination of overlap between the  
 Images  
 
Since the images have been aligned properly due to 
the warping of both the images, the original image 
is searched for in its environment map and the same 
pixel locations are extracted from the environment 
map of the second image.  The second extracted 
image will have a portion which overlaps the first 
image and a portion which does not contain useful 
data. This is due to the partial overlap between the 
two images because of the motion within any input 
video or series of images. The overlapping area in 
the two images in Fig. 2(e) is marked by a red 
boundary. 
 
3.5. Replacement of pixels for specularity 
reduction 
 
Since specular points are characterized by high 
pixel values and diffuse pixels are characterized by 
low values, the pixels in the overlapping region are 
replaced by the minimum of the values in the two 
images as given in (6). 
 

ை௩௟௔௣(ௌ௣௘௖ ௥௘ௗ)ܫ = min൫ܫଵ_௢௩௟௔௣,  ଶ_௢௩௟௔௣൯      (6)ܫ

 
where ܫை௩௟௔௣(ௌ௣௘௖ ௥௘ௗ) is the overlapping region of 

the two images in which pixels have been replaced 
by their diffuse counterparts, ܫଵ_௢௩௟௔௣  and 

 ଶ_௢௩௟௔௣ are the overlapping parts between the firstܫ

and the matched image. This results in the 
replacement of all pixel values in the original image 
by the minimum value of the two. The original 
image after specular reduction has been applied is 
shown in Fig. 2(f). It can be observed that 
replacement by the minimum value of the 
overlapping pixels has reduced specular highlights 
significantly since diffuse values for corresponding 
pixels were present in the other images. 

3.6. Smoothing of intensity discontinuities in the 
Image 

Due to vignetting (the decline of intensity towards 
the edges) and non-uniform illumination, an 
intensity discontinuity may appear at the boundaries 
of overlapping regions between the images when 
pixels are replaced by the minimum value. In order 
to overcome this artefact, smoothing can be 
employed to taper off the intensity discontinuities at 
the boundaries of overlapping images. A four step 
procedure is used to smooth out these 
discontinuities.  

 
(i) The location of the edges of the overlapping

 regions between the images is first 
 determined.  

(ii) The presence of an intensity discontinuity is   
then detected by applying a threshold to the    
difference of the original and the processed    
image. The threshold is determined using the   
method presented in [43]. This results in a 
binary image which consists of bright values at 
all points where there is a difference of   
intensity between the original and the   
processed images.  

(iii) Using the information from the computed 
homography between the images, the 
appropriate edge locations determined in step 
(i) are then used to search for a discontinuity (a 
bright value). If a bright value is detected, the   
intensity values in the processed image are 
smoothed off linearly in the direction of higher 
intensity. This smoothing of intensity is carried 
out over 10 pixels starting at the location of the 
discontinuity. A Gaussian function was also 
tested for this purpose but the results from the 
test were less convincing.  

 
  Once this operation is finished, the processed 
image resulting from the current iteration is used as 
the candidate specular image to remove specular 
highlights with the remaining images.  It is 
necessary to use the processed image each time as 
the replacement of pixel values produces a variation 
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in the geometric transformation between the images 
and an incorrect feature alignment may result 
otherwise. 

 
3.7. Resize processed image 
 
In this step the processed image is resized to the 
original image size. Depending on the effect of 
warping on the final processed image, this may 
require a combination of decimation and 
interpolation.  

For Fig. 2(f), since no discontinuity appears in the 
processed Portrait Image, no smoothing has been 
performed in the output image but it has been 
resized to the original image size. Fig. 2(g) shows 
the difference between the original image and the 
specular reduced image produced by the proposed 
method. It can be observed that specular highlights 
have been successfully removed.  

 
4. Experimental results 
 

In this section we present the results of applying 
the proposed technique to three different datasets. In 
order to demonstrate the efficacy of the proposed 
approach compared to the method of [24] as other 
methods require use of specialist hardware. 
Furthermore, the said approach is touted to not 
require any special capturing apparatus or content 
of the image captured which is similar to the aim of 
the work. In the first experiment, we use a dataset 
which consists of two images of a plate captured in 
a scenario similar to that described in [24]. The 
second dataset consists of inspection images of a 
metal sheet taken at a rate of 30Hz with two halogen 
lights as the light sources. These images are the 
same as those used in [1]. This set of images is grey 
with almost no chrominance measure and contains 
dispersive specular highlights. The third image set 
consist of images of a plate to demonstrate the 
algorithms operation for two types of surfaces, those 
having depth discontinuity and second, the presence 
of colour content. It is notable to point out that no 
special capturing equipment was used in the image 

acquisition process as the image was captured using 
a Samsung Galaxy S6 back camera. 

 
4.1. Comparison using plate images similar to 
images used in [24]  
 

In order to demonstrate the effectiveness of the 
proposed method, we have applied and compared 
the method of [24] with the technique described in 
this paper using the images shown in Fig. 3. Fig. 3 
also shows the processed images resulting from 
both algorithms. As can be observed from the 
figure, the specular highlights have significantly 
been reduced by the proposed algorithm as 
compared to the technique in [24]. It can be 
observed that the minimum function has resulted in 
most of the specular pixels being replaced by 
corresponding darker counterparts in the second 
image. As observed, this outperforms the averaging 
process being used for specularity reduction in the 
method of [24] as most of the speckle in both the 
images tested has been removed when applying our 
approach (Fig. 3 (b) compared to Fig. 3(a)).  
 
4.2.    Specular reduction in Colour images and 

perception of depth 
 
The plate dataset shown in Fig. 4 is used for 
demonstration of applying our techniques to images 
which contain non-planar surfaces. This is a 
challenging dataset since the motion of any 
specularities is not linear and this provides testing 
on the limitations of the proposed technique. Fig. 
4(a) shows two images of a ceramic plate that has a 
sloped rim (slope of 53º) which has colour content 
present in it. The rim extends outward to a height of 
1.2 inches at the end over a distance of 1.4 inches 
horizontally. The pictures were taken at a height of 
6 inches from the plate base. Moreover, the plate has 
an irregular design as seen around the rim. It can be 
noticed that even with such small surface distance 
from the camera, these discontinuities appear to be 
relatively planar. These two images were provided 
as an input to the algorithm and the output was 
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observed which has been shown in Fig. 4(b). It can 
be seen that the output is free from specular 
reflections. Furthermore, the irregular patterns 
around the plates rim have also been preserved.  
 
4.3. Specular reduction in Greyscale images  
 

A two image subset of the last dataset for testing is 
shown in Fig. 5(a) and is used to demonstrate the 
proposed algorithm on greyscale images of 
aluminium sheets used in [1]. Due to lighting 
conditions and surface reflectivity, the authors of  
[1] were not able to use these images for image 
mosaicing purposes due to specular highlgihts. We 
have used a larger number of octaves (12) for each 
image which results in feature points being detected. 
This is an advantage of the SIFT algorithm in that 
one can tune the number of octaves to form the scale 
space in which features are searched for. Each 
image covers an area of 40 x 30 mm. Fig. 5 shows 
the original, specular reduced and the difference 
between the two images for the monitoring dataset 
to illustrate the amount of specular highlgihts that 
has been removed from the images .  As can be seen 
from Fig. 5, the specular highlights have been 
completely removed in Fig. 5(b) (right) with partial 
removal being observed for Fig. 5(b) (left). This is 
due to the partial overlap occurring between it and 
the rest of the images in the set.  One aspect of 
concern however is the presence of a discontinuity 
in the specular reduced image of Fig. 5(b) (left) and 
Fig. 5(b) (centre). This effect is mitigated by using 
linear tapering around the discontinuity edges, the 
result of which can be observed in Fig. 5(c) (left) 
and Fig. 5(c) (centre). The difference between the 
original and the specular reduced image is shown in 
Fig. 5(d). Fig. 5(d), points out the specular 
highlights which have been removed with this 
method.  

 
4.4. Noise tests 
 
In order to check the performance of the algorithm 
in presence of noise, three noise models were used 

to corrupt the images with increasing levels of 
variance. The noise models used were  
 

(i) Gaussian white noise 
(ii) Speckle noise 

(iii) Salt and Pepper noise 
 

Tests for noise were performed on three images 
taken from the Portrait dataset (used to explain the 
proposed method in Section 3) and have been shown 
in Fig. 6(a). The Peak Signal to Noise Ratio (PSNR) 
was used to indicate to the quality of the image. 
Table 1 shows the variances applied for each noise 
type before the algorithm was found to stop giving 
satisfactory results.  

 
Table. 1 Summary noise types and variances for noise tests  

Noise Type Variance Range 
Gaussian White Noise 
(Zero Mean) 

0.01 to 0.36 

Uniform Random Noise 
(zero mean) 

0.01 to 0.32 

Salt and Pepper Noise 0.01 to 0.05 
 
Fig. 6(b) shows a plot of the PSNR of the original 

corrupted image and the processed image after the 
application of the algorithm for Gaussian White 
Noise. It can be observed from Fig. 6(b) that the 
improvement in PSNR roughly follows a decaying 
exponential as the variance of the noise is increased. 
Fig. 6(c) shows a plot of the PSNR of the original 
corrupted image and the processed image after the 
application of the algorithm for Uniform Random 
Noise (Speckle). It can be observed that for the 
processed image, the PSNR is better in most cases. 
However, for image 3, it can be observed that the 
PSNR in the processed image is equal to or less than 
the PSNR of the original corrupted image. Fig. 6(d) 
shows a plot of the PSNR of the original corrupted 
image and the processed image after the application 
of the algorithm for Salt and Pepper Noise. It can be 
observed that the PSNR of the processed image is 
lower than the original image for a variance of 0.01 
but as the noise is increased, the PSNR of the 
processed image becomes better. Moreover, the 
presence of Salt and Pepper Noise exposes the 
inherent disadvantage of the minimum function as it 
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considers ‘pepper’ pixels to be diffuse. Of course, 
in practice a simple median filter could be used to 
pre-process the image prior to application of the 
proposed techniques to circumvent this issue. 

In all three experiments with noise, there is an 
overall improvement in the PSNR of the processed 
images. In some cases, however, as present for the 
Uniform Random Noise and Salt and Pepper noise 
the PSNR does not improve or is less than the PSNR 
of the corrupted images.  

Lastly, we applied median and average filters of 
window sizes of 3x3 up till 10x10 pixels to the 
images before the application of the algorithm. As 
expected, it was observed that averaging distorted 
the features in the images as well as spread the 
specular highlights. The averaging was carried out 
to check the effect of blur on the proposed scheme. 
The median filter was observed to remove noise 
well for low variance values but, as expected, its 
performance deteriorated with increasing amounts 
of noise.  Additionally, corners and details such as 
edges were distorted. The algorithm did not give 
satisfactory results for filters of larger window sizes 
as it rendered distorted feature points unmatchable. 
 
4.5. Translation and Rotation Tests 

 
In order to test the algorithm for the limitation in 
terms of movement, the images were shifted using a 
translation function and the output was visually 
inspected. It was found that for the given image set 
the algorithm worked smoothly for a maximum 
translation of 200 pixels in both X and Y directions. 
This is due to the use of the Cartesian mesh on to 
which the images are warped which limits the 
amount of allowed motion between the frames. This 
is also important as it allows for a sparse image 
acquisition and processing. 

To test the performance of the algorithm in the 
presence of rotations between images, tests were 
conducted by rotating the images by 15˚ each time 
and it was observed that the algorithm worked 
satisfactorily for all rotations.  

 

5. Conclusion 
 

In this paper, we present a method for the removal 
of specular highlights from a sequence of 
continuous images. It has been shown that detecting 
correspondences between successive images and 
calculating the geometric transformation between 
them, one can use information from neighbouring 
images to reduce/remove specular highlights from 
image sequences and video frames.  The proposed 
method has been shown to work on greyscale as 
well as colour images which is a major advantage 
over previous work in this area. Being a software 
based approach, this method allows for a non-
specific, cheap and easy hardware assembly to be 
used in the application thus making its applicability 
more general. Since the algorithm makes use of 
projective transformations to geometrically model 
the movement, it can cater for linear as well as non-
linear motion between images. This flexibility is 
useful in applications such as monitoring where 
images may not be related by simple translations. 
Furthermore, the algorithm is able to detect 
overlapping images from an arbitrary set and does 
not require any user input regarding the images to 
be used. The algorithm has been shown to work in 
the presence of various types of noise with different 
noise variances. In this regard, it has also been 
shown to not only remove specular highlights but 
also remove the noise in the original images. The 
method has been compared to other leading 
techniques designed for removing specularities for 
which potential applications are wide-ranging. 
Furthermore, the method has been demonstrated to 
improve the quality of feature-poor images from 
inspection videos [1] in order to reveal information 
previously obscured by specular reflections. 
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Fig. 2 Example of the proposed approach. (a) Original Portrait Image 1 (left) and Original Portrait Image 2 (right). (b) SIFT points extracted from 
both images in (a). (c) Matching SIFT points determined using the method described in Section III (d) Matching SIFT points after outlier rejection 
has been applied using RANSAC. (e) Warped images with highlighted overlap area Original Portrait Image 1 (left) and Original Portrait Image 2 
(right). (f) Specular reduced image for Portrait image 1 produced using the proposed approach (g) Difference between original Portrait Image 1 and 
the specular reduced image produced using the proposed approach 

 

 

 



 

 

12 

   

   
(a) (b) (c) 

Fig. 3 (a) Original images Plate Image 1(left) and Plate Image 2(right). (b) Specular reduced images by the proposed method for Plate Image 
1(left) and Plate Image 2(right). (c) Specular reduced images by method by [24] for Plate Image 1(left) and Plate Image 2(right) 
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Fig. 4 (a) Original images Plate 2 (a rim having a slope of 53º) (b) Processed images for Plate 2 
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 (d)  
Fig. 5 (a) Original Images for Metal Sheet 1(left), Metal Sheet 2(right). (b) Specular reduced images without smoothing for Metal  Sheet 

1(left), Metal Sheet 2(right). (c) Specular reduced images with smoothing for Metal  Sheet 1(left), Metal Sheet 2(right). (d) Difference image 
between original and smoothed specular reduced image for Metal Sheet 1(left), Metal Sheet 2(right) [Images have adjusted contrast for 

clarity] 

 

 

Discontinuity after 
smoothing (only a 
small region is shown 
to ensure clarity) 

Specular highlights 

Discontinuity due to 
incomplete overlap (only 
a small region is shown 
to ensure clarity) 
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(a) 

 
 

 (b)  

 (c)  

 (d)  
Fig. 6 (a) Original Images for Portrait 1(left), Portrait 2(centre) and Metal Sheet 3(right). (b) PSNR of corrupted and processed Image 1 in 

presence of Gaussian Noise (Var 0.01 to 0.36) (left), PSNR of corrupted and processed Image 2 in presence of Gaussian Noise (Var 0.01 to 
0.36) (centre) and PSNR of corrupted and processed Image 3 in presence of Gaussian Noise (Var 0.01 to 0.36) (right). (c) PSNR of corrupted 

and processed Image 1 in presence of Uniform Random Noise (Var 0.01 to 0.32) (left), PSNR of corrupted and processed Image 2 in 
presence of Uniform Random Noise (Var 0.01 to 0.32)  (centre) and PSNR of corrupted and processed Image 3 in presence of Uniform 

Random Noise (Var 0.01 to 0.32) (right). (d) PSNR of corrupted and processed Image 1 in presence of Salt and Pepper Noise (Var 0.01 to 
0.05) (left), PSNR of corrupted and processed Image 2 in presence of Salt and Pepper Noise (Var 0.01 to 0.05) (centre) and PSNR of 

corrupted and processed Image 3 in presence of Salt and Pepper Noise (Var 0.01 to 0.05)  (right) 
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