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Abstract. We generalize the ring signature primitive into the more general notion
of mesh signature. Ring signatures are anonymous signatures made by someone who
wishes to hide in the anonymity of a larger crowd. All that the signer needs to assemble
such a virtual crowd is her own private key and the public keys of the other members.
The crowd composition is all that the verifier will be able to see. In a sense, a ring
signature expresses an anonymous endorsement of a message by a disjunction of sign-
ers. Mesh signatures generalize this notion by allowing the combination of “atomic”
(i.e., regular) signatures, by one or multiple signers from an arbitrary larger crowd,
into virtually any monotone “endorsement formula” with much more expressive power
than a simple disjunction. The verifier sees only that the endorsement is valid for the
stated formula, not how the formula is satisfied. As a special case, mesh signatures
extend the ring signature functionality to certificate chains. This is useful when the
anonymity-seeking signer wishes to hide in a crowd comprising uncooperative people
who do not even have a published signature verification key on record. We give an
efficient linear-size construction based on bilinear maps in the common random string
model. Our mesh signatures achieve everlasting perfect anonymity—an imperative for
the archetypical whistle-blowing use case of ring signatures—and, as a special case,
yield the first unconditionally anonymous ring signatures without random oracles or
trusted setup authorities. Non-repudiation is achieved from a mild extension of the SDH
assumption, named Poly-SDH, which we introduce and justify meticulously.

Keywords. Cryptography, Bilinear maps, Digital signatures, Anonymous signatures,
Everlasting privacy.

1. Introduction

Ring signatures, introduced in [37], are pseudonymous signatures that are issued in the
name of a “ring” of users, and created by one of them without the participation of the
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others, in a way that preserves the instigator’s anonymity. The canonical application is
for an individual “to leak a secret” non-repudiably on behalf of a crowd. Technically, ring
signatures can be viewed as a witness-indistinguishable disjunction of regular signatures,
but because of this, only people who have previously published a verification key are
eligible to be conscripted into such a crowd. Ring signatures can thus only ever implicate
individuals who, by the very act of publishing their key, are acquiescing to belonging in
aring scheme.

Mesh signatures generalize this notion from a mere disjunction to an arbitrarily com-
plex monotone access structure, i.e., a logic formula with nested gates such as “And”
(A), “Or” (Vv), and “Threshold” (>;), but without negation. The inputs to the formula are
atomic statements of the form “User X says Y to which we can assign the truth value
“True” (T) or “False” (L). We represent a monotone access structure formula as a tree,
denoted Y, where each leaf corresponds to one input atomic statement, each interior
node including the root corresponds to one gate, and each node’s output link indicates
the truth value of the subformula corresponding to the subtree that it defines (hence, the
root node’s output link corresponds to the value of T'). Such an access structure can be
satisfied using different combinations of input values, which is to say, different truth-
value assignments to the input statements. The mesh signature asserts that the entire tree
evaluates to T, without revealing anything else about the truth values of its inputs.

To create a mesh signature corresponding to a particular formula, one only needs a
“satisfying set” of atomic signatures: Namely, a set of signatures on atomic statements
that together suffice to satisfy the formula. Once created, a mesh signature does not reveal
the particular set of atomic signatures that was used to create it. Furthermore, atomic
signatures can be generated independently of each other and without regard to the for-
mula(s) in which they are (or are not) intended to appear. In particular, atomic signatures
need not be fresh: They can be reused indefinitely many times without the participation
of the original signer—e.g., in a PKI, that would be the difference between merely having
a signed certificate and having oracle access to a CA (certification authority).

The central result of this paper is thus a (constructive) proof of the following informal
theorem: Suppose that a monotone formula Y can be satisfied merely by setting to true
all the input wires corresponding to atomic statements known to be true (because for
each, we have an atomic signature saying so). Then, this set of atomic signatures can
be efficiently transformed into a “mesh signatures,” of size and complexity linear in the
length of Y, that signs Y without leaking any information about its genesis. (Technically,
we also require that all the clauses of the formula take distinct signers, meaning that no
two atomic statements referencing the same verification key can appear the inputs. We
can mitigate this technicality by defining for each user a virtual signature key pair,
consisting of a number of distinct but equivalent real key pairs. Signers would sign
using all their keys, and a signature is accepted if it verifies under any one of the keys.)

1.1. Toy Examples

We give two simple examples showing that the added expressiveness of mesh signatures
is useful in the context of ring signatures proper—whose purpose, we recall, is to sign a
message under cover of anonymity of a larger crowd without seeking its consent [37].
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As a first illustration, we show a way to satisfy this lofty goal even if the members of
the crowd are deliberately avoiding “conscription” by not publishing their keys. With
traditional ring signatures, only users whose public keys are on the record can be made
part of a signing ring. With mesh signatures, we sidestep that restriction, with the simple
device of faking both the missing keys and their entire certificate chains, all the way up
to known certification authorities, as needed. The technique will be more apparent on a
concrete example.

Example 1. (Conscription of unwilling and unwitting ring members)
o = [VKaiice: Msg,] or ([ VKcertaumn: (“Bob,” VKpop) | and [VKpob: Msg,]).

Here, Alice is able to create o using only the private key corresponding to VKajice,
because the whole formula can be satisfied merely by satisfying the left-hand disjunct.
In creating the right-hand disjunct, she will want to reference an actual CA public key to
serve as a verifiable “anchor,” but for Bob, she can make up a fake public key if she does
not know his real one: The conjunction in ¢’s right-hand disjunct attributes a certified
public key to Bob and then uses it to authenticate Bob’s endorsement of Msg,. We see
that Alice has convincingly conscripted Bob in a ring-like signature, not only without
needing Bob’s signature but even without Bob having ever had a private signing key to
begin with.

Conversely, Bob could have created o himself, by satisfying the right-hand disjunct by
providing two atomic signatures, namely CertAuth’s signature on VKp,, and Bob’s
signature on Msg,. Either way, our construction of o ensures that it has the exact same
distribution in either case, making it impossible for a third party to determine which one
of Alice or Bob created it.

As a second illustration, we show how to facilitate the creation of anonymously signed
messages with increased authority, e.g., for whistle-blowing purposes, by allowing
endorsements that carry the weight of multiple signers.

Example 2. (Simple multiparty threshold ring signatures)

o = 2-out-of-3 in {[CEO: secret-memo], [CFO: secret-memo],
[COO: secret-memol} .

The unconditional anonymity of mesh signatures guarantees that, as long as the whole
signature o is valid, there is no way to tell which two of the possible three atomic
signatures were used to construct o, thereby protecting the identity of the leakers.
Naturally, threshold gates like this can be fed entire certificate chains as in the previous
example, allowing “keyless users” to be conscripted into this kind of multiparty ring
signatures.

In general, the added expressiveness of mesh signatures over ring signatures will have
useful benefits, even if we restrict ourselves to the typical applications of the latter. For
instance, the crucial ability, demonstrated in Example 1, of mesh-based ring signature to
conscript anyone, even users with keys of record, provides two desirable consequences:
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1. For the whistle-blower, archetypal user of ring signatures, mesh signatures remove
perhaps the biggest obstacle to their practical use, which is that in the real world,
people will generally have neither a key of record nor the desire to acquire one—
especially if doing so puts them at risk of being suspected of subversive activities.

2. For the average citizen, the mere theoretic practicality of mesh signatures paradox-
ically removes the reason stated above for refusing to embrace cryptography for
mundane purposes (such as routine message signing, which requires publishing a
key). Indeed, since with mesh signatures anyone is susceptible to be conscripted into
a ring signature without either knowledge or consent, it does no longer help to shun
cryptography as a personal choice to skirt such a possibility.

To make the use of certificate chains truly believable, it is important that mesh signa-
tures be “modular,” or constructible non-interactively from constituent atomic signatures
reusable indefinitely. Indeed, if one plans to use an actual key certificate as part of a big-
ger signature (as Bob did in Example 1 above), one should be able (though not required)
to reuse that same certificate more than once.

It is also important that the atomic signatures have nothing special about them specif-
ically for mesh purposes, and furthermore be of compelling use sui generis, regardless
of ring or mesh applications.

Anticipating on the subsequent sections, we note that our scheme satisfies both require-
ments. Specifically, atomic signatures are ordinary Boneh—Boyen ““short signatures” [5]
set in a common reference bilinear group (chosen at random, without secret or trap-
door, permanent or ephemeral). Naturally, each signer generates his or her own keys
independently within that common group.

1.2. Related Work

The original ring signature primitive was defined in [37], to enable secret leaking that
is at once authenticated (by a crowd) and anonymous (within the crowd). While that
construction [37] was set in the ideal cipher model, a number of alternatives have subse-
quently been proposed, based on bilinear pairings [8], discrete logarithms [31], factoring
(Strong RSA specifically) [24], or hybrids [1]; all these constructions are set in the ran-
dom oracle model. Most have linear size in the ring membership count, except [24]
which squeezes it all in constant size using accumulators in the random oracle model,
and [15] which first managed to drop below the linear size in the standard model.

A number of existing protocols bear similarities with our new primitive. Perhaps the
first such scheme is an anonymous authentication protocol of [23] that supports access
structures and can be turned into a signature using the Fiat—Shamir heuristic. Another
is an interactive anonymous authentication protocol, called deniable ring authentication
[36], that combines the anonymity of ring signatures with the non-transferability of deni-
able authentication [26] and supports threshold and access structures. Among specific
constructions in the random oracle model, we note the distributed ring signatures of [32]
which let coalitions of users cooperate in an interactive signing protocol, and the hierar-
chical identity-based ring signatures of [42], which add signer ambiguity to the notion
of hierarchical identity-based signature. Limited forms of identity-based ring signatures
have also been studied in [3] and analyzed in [27].
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In the category of ring signatures with expanded capabilities, we mention the threshold
ring signatures of [12] the threshold identity-based signatures of [19] and the 1-out-of-n
identity-based ring signature of [22]; the latter could be said to provide a mesh-like
expressivity comparable to that of an n-ary disjunction of binary conjunctions. In general,
identity-based ring signatures, by not requiring users to set up their key pairs in advance,
do provide a flavor of forcible enrollment much closer to that of mesh signatures than
that of (non-identity-based) ring signatures, as discussed in [20]. The main difference
is that, in an identity-based ring scheme, all keys and certificates must emanate from
the same central authority, which may stretch the limits of plausibility depending on the
application. Additionally, we mention that mesh signatures could in principle be realized
using signatures of knowledge [16], which allow the knowledge of a witness to an NP
statement to serve as a signing key, in the common random string model.

Another related notion that has received much attention is that of group signatures,
originally introduced in [17], which also provides for the anonymous creation of sig-
natures on behalf of a crowd. The main difference is that group signatures require the
anonymity to be revocable by a group manager, who also controls enrollment into the
group. Group membership is often immutable although this restriction has been relaxed
in [13]. There exist efficient constant-size group signature schemes, with random oracles
[7], from interactive assumptions [2], and in the standard model [11]. See also [29] for
a construction of theoretic interest with a strong proof of security.

Efficient ring signature constructions without random oracles have also been proposed
recently, such as [4,21], and [38]. The construction of [21] uses bilinear groups and is
efficient, but relies on a curious hardness assumption for which no justification is offered.
The results of [4] include a scheme of theoretic interest from non-interactive Zaps [25],
but also two efficient constructions (based on [14] or [41] signatures) for rings of size two,
and a discussion of security models for ring signatures. Last but not least, [15] manages
to combine square root size and full anonymity in a basic ring signature construction.

Probably, the most closely related to the present work is the ring signature scheme of
[38] which can efficiently create linear-size ring signatures in the “trusted parameters”
model; unforgeability is based on computational Diffie-Hellman and anonymity on the
decisional subgroup [9] assumption. Because of the latter, the scheme requires a bilinear
map in a group of composite order with a hidden factorization; such a group is set up
explicitly by a central authority, which afterward must erase the factorization to ensure
anonymity. Itis possible to tweak their scheme, using ideas from [30], to base anonymity
on the decisional linear [ 7] assumption, which would no longer require secret-coin trusted
parameters (TP) but only a public-coin common random string (CRS), as in our scheme;
however, anonymity would still remain computational. The main advantage of [38] over
our ring scheme is that unforgeability rests on a weaker assumption.

2. Definitions and Security Models

Intuitively, a mesh signature is a non-interactive witness-indistinguishable proof that
some monotone boolean expression Y is true, where each input of Y is notionally
labeled with a key and message pair and is true only if the mesh signer is in possession
of a valid atomic signature on the stated message under the stated key.
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A mesh signature scheme should satisfy two security properties. First, it should be
anonymous (ideally, unconditionally so), i.e., it should not reveal what assignment to the
inputs of Y caused it to be satisfied. Second, it should be unforgeable, i.e., the creation
of a valid mesh signature must be predicated on the possession of a set of valid atomic
signatures sufficient to satisfy Y.

2.1. Recursive Mesh Signature Specification

We use £ to denote the number of atomic clauses allowed in any given formula (in a
ring signature, this would be equal to the maximum number of users in any given ring).
Let YT be the expression generated by the following grammar, with propositional-logic
semantics, under the restriction that, for each i = 1, ..., £, the production EXPR:: = L;
corresponding to the symbol L; be used at most once (in other words, no L; may appear
more than once in the written expression of Y):

EXPR ;=L |---| L¢ input symbols (these productions are single-use each)
| >/{EXPR{, ..., EXPR,,} t-out-of-m threshold, with1 <t < m
| A{EXPRy,...,EXPR,} m-wise conjunction, with 1 < m
| V{EXPR{, ..., EXPR,} m-wise disjunction, with 1 < m

Equivalently, we call T an “arborescent monotone threshold circuit” with ¢ Boolean
inputs Ly, ..., Ly and one Boolean output denoted Y (L1, ..., L¢). It is apparent by
induction that Y is always a non-trivial monotone function of its inputs and, in particular,
TL,...,)=Lland Y(T,..., T)=T.

We use expressions of this form to state the meaning of mesh signatures. The signer
specifies the circuit Y and assigns to each symbol L ; an atomic proposition [VK : Msg]
to convey the meaning: “This is Msg signed under VK.” The mesh signature then simply
expresses that Y (L1, ..., Ly) = T holds for the stated interpretation of the L; (without
revealing their individual truth values). For the example in the introduction, Y = L; Vv
(L2 A L3) where Ly denotes [ VKajice: Msg, |, etc.

Multiplicity of Keys. As mentioned, we require that no public key appears more than
once in the clauses of Y, i.e., for any two distinct L; = [VKi : Msgi] and L; =
[VK; : Msg;| appearing in Y, we have VK; # VK.

To mitigate this technicality, we expressly allow users to own multiple keys, which
means that expressions Y with a multiple clauses involving the same signer can be
constructed. This is perhaps primarily intended for certificate authorities, which could
be asked to sign the same certificate under several published keys, any of which deemed
sufficient for verification.

2.2. Anonymity Model

Since the motivating application of ring and mesh schemes is to leak secrets, it is crucial
that anonymity be unconditional and everlasting, subsequently to the exposure of all
secrets, for the long-term peace of mind of the signer. We thus insist on perfect (i.e.,
information-theoretic) anonymity, even upon prior disclosure of the signer’s and every
user’s secret keys. Moreover, since a ring or mesh signature will normally refer to third-
party keys (e.g., published keys from users conscripted into the ring), it is important that
information-theoretic anonymity shall apply, even against an adversary who chooses
third-party keys and knows the corresponding secret keys.
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The strongest notion of anonymity defined in [4], “anonymity against full key expo-
sure,” in the context of ring signatures, requires that the signer remain anonymous fol-
lowing full exposure of all the private keys, after their use. It is, however, insufficient
for our requirements because it does not allow the keys to be chosen by the adversary
and provides anonymity when the private keys are only revealed a posteriori.

We remedy this situation by proposing the following, very simple but very strong
definitions of anonymity. The first definition captures all that a user could normally
wish for. The second definition is even stronger and captures what we can actually
achieve.

Definition 3. (Unconditional signer anonymity) Formally, we say that a ring (resp.,
mesh) signature scheme is unconditionally anonymous if the identity of the signer (resp.,
the signing coalition) is, conditionally on the signature formula and all the public keys
and messages referenced in its clauses, statistically independent of the corresponding
private keys and the common reference string.

Definition 4. (Ultimate signer anonymity) As an extreme strengthening of the
anonymity definition, we say that a ring (resp., mesh) signature scheme is ultimately
anonymous if, conditionally on the signature formula and the information (i.e., public
keys and messages) contained therein, the identity of the signer (resp., signing coalition)
is statistically independent of all information instantiated in the scheme (i.e., public or
secret, permanent or ephemeral).

The latter version is very strong. It also paradoxically entails that the signers’ identities
be (conditionally) independent of the very random coins used to make the signature—
but could that be, as the coins do not merely leak but even “prove” who the signers are?
The resolution is the information-theoretic nature of the definition. For each possible
way to arrive at the observed signature, there exists a corresponding set of random
coins “proving” it, either in reality or in counterfactually, that one could in principle
divine—even though of course it may be computationally intractable to do so.

Another paradox, more germane to practical concerns, is that the strong information-
theoretic definitions above only provide unassailable anonymity in the asymptotically
long term and within the confines of the model. For example, leaked coins will always
be deemed prima facie evidence of the true signers if it is indeed intractable to find coins
providing a counterfactual explanation. More generally, side-channel evidence should
be expected to remain convincing until such time as it is no longer unreasonable to
consider that it might have been faked. These concerns, though important in practice,
are out of scope of our discussion.

Anonymity, Unlinkability, and Randomization. A mesh signature ¢ is most generally
constructed from a set of atomic signatures o; for the selected clauses [ VK;: Msg; |
assigned the truth value T. As we will see, mesh signatures are not unique, in part because
of the “extrinsic” randomization due to the mesh signing process, but also because the
atomic signatures themselves bring to the table their own “intrinsic” randomization
(which will have to be faked for all clauses set to _L). Therefore, it is a legitimate concern
to wonder how the intrinsic randomization associated with the atomic signatures interacts
with the requirements of unconditional anonymity.
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To fix ideas, suppose that a mesh signature o contains a (valid or invalid) atomic
signature on a clause [VK1: Msgl] with intrinsic randomization ¢;. Later, someone
exposes an atomic signature o on the same clause and with the same randomization #;.
Is this evidence that o1 was used to construct o, thereby putting the anonymity of the
mesh signer in jeopardy? The answer is ‘no,” as long as the owner of VK could have
created o after seeing #1. Conversely, if o had been revealed subsequently to op, one
could not infer that o7 was used in the creation of o, as long as o could plausibly have
been created ex post facto to match the exposed randomization.

In general, if the intrinsic randomization of the atomic signature can be chosen freely
and is conveyed in the clear, then matching randomization merely implies awareness
and not linkability, i.e., it shows that the second signature was created with knowledge
of the (randomization of the) first, but not that the two were actually created from each
other, or by the same signer.

2.3. Unforgeability Model

The strongest notion of unforgeability defined in [4], “unforgeability with respect to
insider corruption,” for ring signatures, gives the adversary the ability to corrupt users
dynamically and include its own public keys when making ring signature queries. Since
the point of mesh signatures is to implicate uncooperative users, it is judicious to allow
them to choose their keys maliciously.

However, as a compromise for unconditional anonymity, we relax the fully dynamic
corruption model into an enhanced static one, in which the honest users are static and
created ahead of time by a challenger, and the corrupted users are under the full control
of an adversary who can bring them to life dynamically. We also need to specify what
constitutes a valid forgery. For ring signatures, a forgery is any signature by a ring
without adversarially controlled users. For mesh signatures, however, this would be
overly restrictive, since it would exclude such forgeries as,

T = (Ur:miIA[Us:m3]) Vv ([Uz: ma] A [Us: myal),

where Uy and U, are honest users and U3 and Uy are corrupted. Since Y nominally
entails Y = [U;: m1] Vv [Uz: my], a forger who signs Y lacking the imprimatur of
both U; and U, should be deemed successful. The same reasoning would continue to
apply if the forger legitimately obtained an atomic signature on [Us: m3] even though
Us were honest. We capture these circumstances by deeming admissible any forgery
on a statement Y if there exists a well-formed (and thus non-trivial) formula Y’ that
contains no clause under the forger’s control and such that Y = Y’.

To see where this comes from, for all corrupted users and all issued atomic signatures,
let us set the corresponding literal L; <— T, which is the most that the adversary
can do in legitimacy. If YT then evaluates to T, the forgery is inadmissible; otherwise,
Y will reduce to some well-formed formula Y’ that contains non-adversarial clauses
exclusively. Hence, the existence of Y’ simply demands that Y be unsatisfiable by the
volition of the adversarial users alone. We distill all of this into the following existential
unforgeability game and define the adversary’s advantage as the probability of outputting
an admissible valid forgery.
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Definition 5. (Existential unforgeability) We define the existential mesh signature
unforgeability game as the following interaction between a challenger and an adversary.

Challenger setup: The challenger designates a number ¢ of public keys, corre-
sponding to the honest target users under the challenger’s control.

Interaction: The following occurs interactively, in any order, driven by the adver-
sary.

Adversary setup: The adversary reveals polynomially many public keys, one
at a time, corresponding to the users under the adversary’s control.

Mesh signature queries: The adversary makes up to g mesh signature queries
on well-formed specifications Y; that involve zero or more adversarial users
and at least one honest user (the latter condition being imposed to avoid queries
that the adversary could trivially answer completely by itself).

Atomic signature queries: The adversary also makes up to g atomic signatures
queries on clauses [VKi : Msgj] for every honest user.

The challenger accepts or responds to each request before accepting the next one.
The g mesh queries and the g ¢ atomic queries may be interleaved arbitrarily.

Signature forgery: the adversary produces a forged signature whose specification
Y satisfies Vj, T # Y and implies a well-formed formula Y’ on the honest users,
ie, Y(Li,...,L¢,..)=7Y'(Ly,...,Ly), obtained by setting to “true” (T) every
literal L; whose clause [VKZ- : Msgl-] involves an adversarial key or matches an
atomic query.

The adversary’s advantage at mesh unforgeability is the probability that it wins the fore-
going game (for arandom choice of common reference string (during/prior the challenger
setup) if applicable).

In the adversary setup, one must recognize that the adversary might try to claim some
of the challenger’s keys as its own (perhaps re-randomized to make it less obvious).
Since the same is possible in the real world, and is readily detectable by the challenger,
we take no step to forbid it, other than to require that all specifications be well formed.

Mesh Unforgeability vs. Ring Unforgeability. The mesh security model allows the
forger to make arbitrary atomic signature queries on behalf of the honest users: This
is because mesh signatures must be constructible from any satisfying set of atomic
signatures (such as PKI certificates) without requiring the private keys.

For ring signatures, atomic signature queries are superfluous, and we can obtain a
tighter proof of security without them, mainly because we reduce the number of queries
from (¢ + 1) g to just g. Hence, we define existential unforgeability for ring signatures
as for mesh signatures, but without atomic signature queries (also, regular signatures
can always be emulated using rings of size one). We refer to [4] for ring signature
unforgeability definitions with various security requirements.

3. Framework and Computational Assumption

We write F), for the finite field of prime order p and F; = T, \ {0} for its multiplicative
group of order p—1. Werefer as a bilinear context to an algorithmically useful description
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of an efficiently computable and non-degenerate bilinear map e between a set of groups
G and G of some prime order p and given by the respective generators g and g, into
a third group G; of the same order. Let thus G = (p, G, G, Gy, g, g, €) be a common
bilinear context, where e : G x G — Gy is a pairing [35]. We use the “hat-notation” (as
in ) to indicate that an element belongs to G rather than G.

3.1. Review of the SDH Assumption

The complexity assumption we shall need is inspired by the Strong Diffie-Hellman
assumption proposed in [5], which we now review. The ¢-SDH problem in a (bilinear)
group G is stated:

(Original SDH) Given elements g, g“, g“z, e, go‘q € G, choose w € I, and
output (w, g!/@Fw),

The SDH assumption then posits that the g-SDH problem above is intractable for g =
O(poly(k)). What makes this assumption special is that the problem admits not one but
exponentially many “independent” solutions, which are all equally hard to find hence
the modified g-SDH problem:

(Modified SDH) Given g, g% € G and g — 1 pairs (w, g'/@*wj)y output another
(w, gl/(a+w))‘

It is known from [5] that if the original ¢g-SDH problem is hard, then it is the modified
problem.

Although the SDH problem statement does not require a bilinear group, it is because
the bilinear map provides an efficient Decision Diffie-Hellman procedure [33] that
the correctness of an SDH solution can be decided openly. Specifically, given g
and g%, deciding whether (w, u) = (¢, g"/@*t™) amounts to checking the equality
e(u, g* &%) = e(g, @) is basically a DDH test that anyone can perform from public
information. The short signature scheme of [5] relies on this.

3.2. Poly-SDH: for Better Use of the Pairing

The verifiability of SDH solutions with a simple DDH test suggests that more general
assumptions could be made, based on the observation that the pairing is a powerful
tool that can be used to decide more complex relations that are not efficiently reducible
to DDH. For example, a natural generalization of the SDH problem is that of finding ¢
pairs (w;, u; = g’i/(“+w"))fori =1,...,4£,suchthat Zle ri =1 (mod p).Purported
solutions can then be verified using the equation,

14

[Te (i 2*2") =e(s. ). ()

i=1

Clearly, when £ = 1, this is identical to the SDH problem. For larger values of ¢, the
adversary is given to spread the exponent inversion task across multiple pairs, by means
of linear combination.
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Unfortunately, for £ > 1, the problem is in fact trivial, because Eq. (1) admits spurious
solutions that do not require the solver to know the secret & and invert the exponent:
For example, for ¢ = 2 the solution wy =1, u; =g, wy =0, up = g_1 satisfies the
equality regardless of «.

To remedy the preceding problem, we change the solver’s task slightly and ask that
the ¢ pairs to be output involve £ independent secrets «7p, . . ., &, that appear once each,
i.e., find,

14

(u)l-, u,-:g“i*l'”i ) i=1,...,¢, st Zr,-zl (mod p).

i=1

To decide whether a solution ((wg, u1), ..., (wg, ug)) to the new problem is cor-
rect, one needs, besides the generators g and g, the £ group elements (g1, ..., &¢) =
(g%, ..., g*%). The verification equation is then,

4

[Te(. 88")=e(e. 2). )

i=1

Notice that (1) is a special case of (2) where oy = --- = oy = «; however, for the
security of the assumption it is important that the ¢; be independently and uniformly
distributed. Despite the added variables, Eq. (2) is no more expensive to verify (but
necessitates large public parameters).

Based on the previous observations, the (g, £)-Poly-SDH problem can be informally
stated as:

(Poly-SDH) Given g, g%, ..., g% € G and g ¢ pairs (w; j, g/ @+vi))) for
l <i<{fand1l < j < q, choose fresh wy, ..., wy € F, (ie., such that
w; & {wj 1, ..., w;q}) and output £ pairs (w;, g'i/(@i+wi)y quch that Zle ri = 1.

The «; and w;_; in the instance are drawn from a uniform distribution. The w; and r; are
chosen by the respondent. We require that Vi, Vj, w; # w; ;, lest the task be easy. The
exponents r; need not be revealed, since Eq. (2) can establish that a solution is correct
and thus that D ; r; = 1, without having to see the 7;.

We have chosen to state the (g, £)-Poly-SDH problem in a form analog to Modified
SDH, rather than Original SDH. There are several justifications for this:

e the modified form results in a weaker assumption (as Original SDH implies Modi-
fied SDH);

e it has a clear input/output symmetry which simplifies the security reductions;

e its instances are more concisely stated when more than one iterator is needed (i and
7

e the modified problem form is impervious to a generic analysis described in [18],
which relies on the availability of g, g%, and g“d for certain d, as in Original SDH
instances.

The reason why there are no undesirably easy solutions to the (g, £)-Poly-SDH prob-
lem will become apparent as we prove generic hardness in Sect. 3.3. See also “Formal
Poly-SDH Definitions” of Appendix for formal definitions.
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3.3. Generic Hardness of Poly-SDH

We now take some time to explain why the Poly-SDH assumption based on Eq. (2)
is plausible, unlike our first attempt from Eq. (1) that was so easily broken. We give a
heuristic argument based on the impossibility of efficient generic attacks. Specifically, we
show that finding a solution to the (g, £)-Poly-SDH problem will require, on expectation,
Q(v/p/q ) generic-group operations.

The generic-group model [39] assumes the lack of any structure beyond that of an
(Abelian) cyclic group, restricting all manipulations on group elements to the group
operation and its inverse (i.e., multiplication and division if the group is written mul-
tiplicatively). In the bilinear version of the model [5], one can also compute a pairing
e: G x G — Gy, as well as an isomorphism ¢ : G — G (for “type-1” and “type-2”
contexts) and its inverse ¥ ! : G — G (for “type-1” only).

Let us assume that G = G, which only makes the attack easier.! Recall that
the Poly-SDH instance furnishes g, g%, ..., g%, and a large number of pairs
(wj,j, uj,j :gl/(“"*'w'?f)). Based on this information, the attacker must output ¢ pairs
(w;, u; =g’f/(°‘i+wi)) such that Zi r; =1, where w; is distinct from all w; ; with the
same index i.

First, notice that the pairing e is useful to verify a solution, but not really to find one.
This is because e maps to GG;, and once we have landed in G; we can never leave it.
Also, ¥ and ¥ ~! just model the identity function since we have already assumed that
G = G. We can thus focus on multiplication and division in the multiplicative group G
of prime order p.

Next, observe that all the group elements that can be created from g, {g“}, and

{gl/("‘”rw"v-f)} are of the form gﬂT, where m € Fplay, ..., aglgeq1 is any multi-
variate polynomial in «q, ..., oy of total degree at most g £ + 1, and where A is the
common denominator A = Hf: I H3=1 (at; + w;, ;). (Here, we use the notation I, [x, y]
to denotes the ring of polynomials in x and y over IF,, and use the shorthand notation
IF,[x]4 to denote the set of polynomials in x and y of total degree d or less.)

We need to produce ¢ elements u; = g"/@+%i) and the corresponding w;. Our task
is thus to find ¢ polynomials 7y, ..., m¢ € Fplai, ..., a¢lgeq1 such that m; /A =
ri /(e + w;) for some D, r; = 1, i.e., such that,

Lt q

¢
Z(Oli+wi)7fi ZAZHH(%‘FW:‘,J‘)-

i=1 i=1j=1

! Recall that, in general, we require G =~ G with an efficiently computable isomorphism ¥ : G - G.
Assuming that the reverse isomorphism ¢~ is also efficiently computable only increases the power given to
the adversary, thus making the attack easier. At the extreme, assuming G = G makes the attack even easier
because it allows the adversary not only to move elements back and forth between the isomorphic groups,
but also to mix them within the same algebraic expressions, which otherwise would not be allowed in the
generic-group model. As noted earlier, the three cases exist in actual realizations of bilinear groups. For this
proof, we place ourselves in the case where G = G in order to show the soundness of our hardness assumption
in the most adversary-friendly setting, which will imply the weaker results. (This also helps to simplify the
notation, by (temporarily) dropping all “hats” from the expressions.)
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We show that there can be no such polynomials ; using a linear change of variable.

Foralli =1,...,¢fand j =1,..., ¢, we define o] = o; + w; andwl’.’j =w;j — w;.
Notice that all w;, ; # 0. Our new task becomes to find ¢ polynomials my, ..., m,of
degree < g £ + 1 in the variables o/, . .., a;, such that,

Clearly, all the monomials in the left-hand side have degree in 0/1, R ozfé at least 1.
On the other hand, all wlf’ j are nonzero, so the right-hand side yields a non-vanishing
independent (degree-0) term equal to []; Hj wl/.’j =1T]; Hj (w;,; — w;) # 0, which is
a contradiction.

The contradiction shows that the equations above cannot be satisfied identically in
Fple, ..., ap] or Fplaq, ..., o], which proves that the polynomials 7/, and thus, 7;
cannot exist. A standard argument then shows that the equations can only be satisfied
in [F,, for certain assignments of a1, ..., a¢ € F,: the polynomial roots. Since the o;
are chosen at random, we can bound the probability of hitting those roots. We find that,
if g ¢ < O(¥p), it will take g5 = (/€ p/q €) operations to solve (g, £)-Poly-SDH
with probability € in generic groups of order p.

We give a precise theorem and a complete proof based on this argument in “Generic-
Group Complexity of Poly-SDH” of Appendix.

3.4. Pluri-SDH: A Weaker Assumption

Although we will need the Poly-SDH assumption to prove security of mesh signatures,
ring signatures can be based on a slightly weaker assumption, due to the lack of atomic
signature queries. Recall that in the (g, £)-Poly-SDH problem, we are given ¢ gener-
ators g% as well as £ series of g solution pairs (w;,;, u; j = g!/%+ Wiy Our weaker
assumption is similar, except that we only give out a single series of solution pairs,
conventionally for an extra generator of index i = 0.

We define the (g, £, 1)-Pluri-SDH problem as a relaxed version of (g, £ 4+ 1)-Poly-
SDH:

(Pluri-SDH) Given generators g, g%, ..., g% € Gandg pairs (wo j, g'/(@0+w0.))
for 1 < j < g, choose fresh wy, ..., wy € F, and output £ + 1 pairs
(w;, g"/@+wi)y guch that Zf:o ri=1.

See also “Formal Pluri-SDH Definitions” of Appendix for formal definitions, including
that of the (g, £, ¢')-Pluri-SDH problem which is stated in an obvious way for ¢’ > 1.

Generic Complexity. Regarding generic complexity, we can show that for g ¢ <
O(Y/p), a generic algorithm can solve the (g, £, 1)-Pluri-SDH problem with constant
probability € in a generic group of prime order p only by performing g; = Q(v/€ p/q)
generic-group operations on expectation.

A precise theorem for (g, £, 1)-Pluri-SDH and (g, ¢, £')-Pluri-SDH is given in
“Generic-Group Complexity of Pluri-SDH” of Appendix.
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3.5. Comparing SDH with Pluri-SDH and Poly-SDH

An interesting fact about the (g, £, 1)-Pluri-SDH problem in generic bilinear groups is
that it is quantitatively as difficult as the (modified) g-SDH problem: In particular, the
generic lower bounds are essentially the same as those found in [5] and do not strongly
depend on £. In other words, allowing the opponent to make ¢-wise linear combinations
has little adverse effect on generic security, provided that care has been taken to structure
the problem to rule out all of the trivial solutions. A similar comparison can be made for
the full (g, £)-Poly-SDH problem, except that the relevant benchmark here is the g¢-
SDH problem. Although we appear to lose a factor £ in the number of allowed queries
with respect to SDH, it will be a wash if the security reduction of interest allows £ times
as many queries, which will be the case of our mesh unforgeability simulator.

The main difference between SDH and Pluri-SDH/Poly-SDH is thus not one of hard-
ness. It is that the former is useful in any “Gap-DH” group where the Diffie—Hellman
problem has a decision procedure, while Pluri-SDH and Poly-SDH require a group with
an actually computable pairing (or at least an oracle for comparing products of pairings)
in order to verify its solutions.

4. Special Case: Ring Signatures

We first describe a ring signature based on Pluri-SDH as a special case of our technique.
It is more efficient than most other provably secure ring signature schemes without
random oracles, and the first of those schemes to offer unconditional anonymity. It is set
in the “public-coin” common random string model, i.e., requiring only minimal trust for
setup. The scheme is in fact very close to a ring scheme from [21], but not the proof.

Initialization: Given a security parameter « and a public random string K €
{0, l}pOIVfK), the parties generate from K a common bilinear instance G =
(p, G, G, Gy, g, g, ) < G(1%; K) and a collision-resistant hash function
H : {0, 1}* — ), shared by all. Since G has prime order and no hidden structure,
it can safely be generated from public coins.

The string K is also used to generate three random elements Ao, I§0, and éo in
G. These elements define a public verification key “in the sky” whose matching
signing key is undefined. .

For notational convenience, we suppose for now that the isomorphism ¢ : G —
G is efficiently computable in the instance G, and we let Ag = 1//(140), By =
v (éo), and Cg = w(éo) in G. This temporary restriction will be lifted later in this
section.

Key generation: To create a key pair, User #i draws a triple (a;, b;, ¢;) € (IE‘;‘)3 as
signingkey and posts (A;, Bi, C;, A;, Bi, Ci) = (g%, g, g%, g%, gV, g) e
G3 x G3 as verification key.

In case ¢ : G —> Gis easy to compute, users publish only (A;, Bi, C)) to avoid
redundancy.

Ring signature: To create a ring signature on message my, ..., my € F, attributed
to aring of £ users, any member of the ring would proceed as follows. W.l.0.g., sup-
pose that the signer is User #¢ in the ring R = (1,..., £). The signer selects



Unconditionally Anonymous Ring and Mesh Signatures 743

2¢ + 1 random integers So, S1,...,8¢—1,%,%,...,t¢ € [F, and outputs the
signature,
1
-1 s ag+bymy+cyp ty
K _ i i !
o = gfo’“.’gSel,(g-H(A,’Bim Ci) ) , to, oo, Iy
i=0
c Gt % F([Z)—q—l’
wheremyi, ..., mgarethe messagestobesigned,andmy = H((1, my), ..., (€, my)),
a collision-resistant hash of the statement expressed by the signature.
Ring verification: To verify a signature o = (Sy, ..., Se, t1, ..., tp), test the
equality,

where R = (1, ..., ¢) is the signature ring, my, ..., my are the messages being
signed, and mog = H((1, my), ..., (€, myp)).

Consistency of the algorithms is readily verified. Note that the scheme is trivially mod-
ified to force all messages m, ..., mg to be the same, as in the traditional definition of
ring signatures.

The purpose of including in the final signature a collision-resistant hash m of the
ring and all the messages, ostensibly binding m( to the public key “in the sky,” is
to prevent outsiders from appending new components to an existing signature, which
would otherwise give an easy forgery (though perhaps a rather benign one). The second
reason is that the key “in the sky” is useful in the security proof, and lets us rely on a
weaker assumption.

4.1. Anonymity

Independently of setup assumptions, our ring signatures have irrevocable or everlasting,
perfect, unconditional anonymity (i.e., with forward security against coerced disclosure
of the long-term signing keys, and the randomness that created them, of all users in the
system).

Theorem 6. The ring signature has everlasting perfect anonymity.

Proof.  See “Anonymity of the Ring Scheme” of Appendix. (]

4.2. Unforgeability

We then have existential unforgeability in the common random string model based
on our computational assumption. More precisely, we can give two alternative reduc-
tions: One establishes security in the ring forgery game provided that the (g, €, 1)-
Pluri-SDH problem is hard; the other proves security in the more demanding mesh
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forgery game from the hardness of (g,¢ + 1)-Poly-SDH. Here, we recall from
Sect. 2.3 that a mesh forger can also make atomic signature queries to the honest
users in addition to mesh (or ring) queries, whereas a ring forger makes no atomic
queries.

We now state the ring result, which is the most appropriate in the context of ring
signatures. In “Unforgeability of the Ring Scheme” of Appendix, however, we shall
state and prove the stronger result instead, because parts of that proof will be reused
when proving security of the full mesh scheme of Sect. 5.

Theorem 7. The ring signature is existentially unforgeable under an adaptive attack,
against a static adversary that makes no more than q adaptive ring signature queries,
provided that the (g, £, 1)-Pluri-SDH assumption holds in G, in the common random
string model.

Proof. See “Unforgeability of the Ring Scheme” of Appendix (I

4.3. Bilinearity Without Isomorphism

Since the most general types of bilinear instance G may fail to provide both an efficient
isomorphism ¢ : G — G and an efficient sampling procedure in G, it is useful to
modify the ring scheme in order to relax these requirements. Although it is typically
safe to rely on either one or the other [28], it is easy to eliminate both requirements at
once in the following way.

e First, we redefine the random key “in the sky” to consist just of Ag, B, and Cy, to be
sampled directly in G from the common random seed K (skipping G altogether).

e Next, we modify the group element of index 0 in the signature, replacing g* €
G with g% € G. The signature becomes, e.g., with User #¢ as the signer: o =
(So, ..., Se, to, ..., ty) =

-1 ag+bymy+cyty
A _ m; te —g;
gSO’ gﬂ? MR gsZ l’ (gH(AlBlICII) Sl) ’ th AR f@

i=0
e GxG'x Fﬁ“,

e Last, we exchange the arguments under the pairing of index 0 and amend the verifi-
cation equation into,

e (a0 By Cl. So) - TTe (i Ai Bl i) =el(s. &)

i=1

It is easy to see that the security theorems continue to hold in the modified ring signature
scheme. On the one hand, anonymity is unconditional and thus insensitive to the existence
of some efficient algorithm for ¥ or for sampling in G. On the other hand, unforgeability
relies no more on the presence of such algorithms than on their absence, as an inspection
of the proof would show.
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4.4. The Key “In the Sky”

A (tenuous) argument can be made that having a public key “in the sky” entails a stronger
flavor of CRS than the mere sharing of a bilinear instance G and a collision-resistant
hash function H.

The crux of the argument is that, for someone who controls the CRS, it is much easier
to implant a trapdoor into the public key VKj than to prepare G for the subsequent
efficient computation of discrete logarithms: The former can be done by constructing
VK from an explicit signing key (as the simulator does in the unforgeability proof),
whereas the latter might involve the infeasible pre-computation of an exponential-size
lookup table for the baby-step giant-step algorithm in G. A counterargument is that if
the CRS is truly random, then all of this is equally hard for everyone.

Either way, both flavors of the CRS model—with or without a plausible trapdoor—
seem more palatable than the TP model—with its inescapable third-party secrets
(ephemeral or permanent). We can even eliminate the “key in the sky” VKj altogether,
but omit the details.

5. General Case: Mesh Signatures

We now describe our mesh signature scheme, based on the Poly-SDH assumption. We
proceed in stages: We first define a few useful notions, which we then use to describe
the actual system.

5.1. Flattened Mesh Representation

Recall that a mesh signature is characterized by an expression Y generated by the
grammar,

Y= N
No=Li| ... Lel 2 {N1soo s N} | A{N1, oo s N} | VN1, ..., N

To harmonize the notation with the scheme description, we need to consider an extra
literal Ly whose meaning is unimportant for now, and let Y be as above with £+ 1 input
literals Lo, ..., Lg.

We show how to convert the recursive expression of Y into a representation as a list
of £+ 1 polynomials in £ + 1 variables (or fewer, depending on the structure of 1), akin
to linear secret sharing structures [34,40].

The principle is as follows. To each input symbol L;, we associate a degree-1 homo-
geneous polynomial ; = Zﬁ':o vi,j Zj, where the variables Zo, ..., Z; are common
to all polynomials and the coefficients y; ; are elements of IF,. The polynomials are such
that if the formula Y is satisfied by setting some subset of symbols to T, then the span of
the corresponding polynomials will contain the pure monomial Zy; conversely, any set
of polynomials whose span contains the monomial Z indicates a satisfying assignment.

The following algorithm computes such a representation from Y. Proceeding recur-
sively, it assigns temporary polynomials to the interior nodes as it walks down the tree
from the root to the leaves (i.e., from the output gate to the input symbols):
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1. Initialize a counter k. < 0.
The counter k¢ is used for allocating new variables, so that each Z; 1 is always a
“fresh” variable that is never used before or after in the algorithm.

2. Label the root node Ny with the polynomial ry, < Zo.

3. Select a non-leaf node N with non-empty label 7y # 9.

(a) Denote by Ny, ..., Ny, the m > 2 children of N.

(b) If Nis V{Ny,..., Ny}, thenVi =1,... ,mletmy, =my.

© IfNis A{NI, ..., Ny} then Vi = 1,...,mlety, = 7y + S0 ik Ziske
where [; € F),. The selection of /; x is explained below.

(d If Nis>; {Ny,..., Ny}, thenVi =1,... mletmy, =7y + 22;11 Lk Zitk,
where /; ; € F,. The selection of /; ¢ is explained below.

(e) Label each child N; with the polynomial 7.

(f) Unlabel node N, i.e., set my < @.

(g) Increment k. <— kc+1t—1 (using ¢ = 1 for an V-gate, and t = m for an A-gate).

(h) Continue at step 3 if an eligible node remains, otherwise skip to step 4.

4. Let® <« k¢ and output the polynomials (7, . .., 7¢) associated with the leaf nodes
Lo, ..., Ly.
Each polynomial 7r; is represented as a vector of coefficients (y; o, ..., yi,») € ]FZJrl

such that ; = ZZ:o Yi .k Zi is the result of the sequence of operations in steps 3b,
3¢, and 3d.

We note that the only variables with nonzero coefficients in the output polynomials are
Zo, ..., Zy,where ¥ =k is the final counter value and may be equal to or lesser than £.

In steps 3c and 3d, the coefficients /; x need to ensure that no linear relation exists
within any set of 7y, of size < m or < ¢. (By construction, i or ¢ of them will always be
linearly dependent.) To achieve this property, we let (li,k) form a Vandermonde matrix
in ]F';,”(mfw or IF’;‘X(FI), ie.,setlx = af‘ for distinct ¢; € F; independence follows
from the existence of polynomial interpolation. We also require that (l ,-,k) be constructed
deterministically, so that anyone can verify that the 7; faithfully encode Y simply by
reproducing the process.

The following lemma shows the equivalence between the recursive specification of T
and its flattened representation. It is adapted from a classic result [34] for linear secret
sharing structures and proven by induction on the structure of Y. We refer to the literature
[40] for further details.

Lemma8. [34] Let Y be an arborescent monotone threshold circuit, and Qs ..., TT¢
a flattened representation of it per the above algorithm. A minimal truth assignment
x : {Lo, ..., L¢} = {L, T} satisfies T(X(Lo), ..., x(Lg)) = T if and only if there
exist in ¥, coefficients vy, ..., ve such that,

1

Zvim =Zy, and Yi:v; =0 < x(L;) = L.
i=0
In this context, a minimal assignment x with respect to some monotone boolean
function Y is one that satisfies Y but ceases to do so when any literal of x is flipped
from true to false.
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Equivalently, if we expand the polynomials m; into their coefficients y; i, and write
0.k for the Kronecker delta function, it holds that, Vk =0, ..., 6,

l
Vk=0,....0: > v yik = S0k
i=0

5.2. Information-Theoretic Blinding

In the signature scheme (yet to be described), we use both the polynomials (g, ..., 7¢)
and the linear combination (v, ..., v¢) from Lemma 8: the latter to create a signature
and the former to indicate how to verify it. However, since the linear coefficients v;
reveal which of the L; are true, they must be kept secret. In the actual signature, these
coefficients appear not as integers but as exponents of elements of G and are thus already
computationally hidden; however, this is not enough and we need to take an extra step
to ensure information-theoretic hiding.

By Lemma 8, we know that Zf:o v; m; = Zp, where each v; € F, and each
i € FplZo, ..., Zy]1. We hide the linear coefficients v; using random blinding terms
(ho, ..., he)such thathzo h; m; = 0. Since Zf:o (v; + h;) m; = Zj, the blinded coef-
ficients v; + h; still bear witness that ?(Lo, ..., Lg) = T. However, these witnesses
have been rendered information-theoretically indistinguishable, because the distribution
of (vo + ho, ..., v¢ + hy¢) is conditionally independent of the truth values of the L; given
that Y(Lo, ..., Ly) = T.

The difficulty is that no scalar #; will satisfy Zf:o h; m; = 0 when the m; contain
uninstantiated variables. However, given a specific set of m;, it is easy to build 4; that
have polynomial values.

1. Draw a random vector s = (s1, ..., 8¢) € IE"‘IZ, of scalar coefficients.
2. Fori = 1,...,¢, define h; = —s;mp, and set the remaining term hy =
4
2 =15 T

In the actual scheme, these polynomials are evaluated “in the exponent” for unknown
assignments to the Zj, but regardless of their values, we have Zf:o him =
(Z‘;:] sjj)mo+ Zf=1 (—s; mo) m; = 0, and so the blinding terms (hy, ..., h¢) meet
our requirements.

The random vector s can be chosen independently of the ;. This is important for
the actual signature scheme, where the relevant polynomials will have coefficients that
involve discrete logarithms not known explicitly (in addition to the Z; being instantiated
as discrete logarithms of random group elements). In spite of this, we will be able to
select a suitable vector s and compute the blinding terms %; “in the exponent.”

5.3. Construction

The full mesh signature scheme can now be described as follows. (In this description, we
shall provide a somewhat “wasteful” construction and defer to Sect. 5.5 for a discussion
of simple but effective ways to optimize it.)
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Initialization: This step is parameterized by a security parameter « and a bound A
on the number of clauses that can be incorporated into a mesh. It also assumes an
agreed-upon public random string K € {0, 1}POy(),

Given the security parameter « and the reference string K, all the participants gen-
erate a common bilinear instance G = (p, (E} (@ Gy, g, 8,€) < G(1¥; K). Here, we
require that the implied isomorphism v : G — G be efficiently computable.

The security parameter « and the string K are also used to obtain a common hash
function H : {0, 1}* — ), from a collision-resistant family.

Given the mesh size parameter A and the string K, the participants then extract A 4 1
common elements gg, g1, ..., & in G, and the corresponding images go, g1, - - - » &
in G under 1. The extraction process must ensure that the discrete logarithms of the
gi are unknown.

Finally, K defines A + 1 random triples (Ao,k, éo,k, CA’o,k) e G3fork e {0,..., A}
these elements together constitute a public verification key “in the sky”” with no known
signing key. Using the map 1, everyone computes Ao x = 1//(1&0’;(), By = 1//(13’0’1(),
Cox= Iﬁ(éo,k), in G. We note that the public key “in the sky” is not well formed,
in the sense that it satisfies none of the internal Diffie-Hellman relationships that
regular user public keys, defined next, do.

Key generation: To create a key pair, User #i draws a triple (a;, b;, ¢;) € (IF‘;)3 as
signing key. User #i computes for each k € {0, ..., A} the triple (Ai,k, é,-yk, CA‘,;k) =
&, gfj", g € G, and lets these 3 (A + 1) group elements constitute his or her
verification key. . A .

For simplicity, we write (A, Bix, Cix) = W(Aix), ¥ (Bix), ¥(Cix)) =
(g,f" , g,l:i , g;" ) € G3, which anyone can compute from the verification key of User #i
thanks to .

Mesh signature: Consider the following mesh signature prototype information:

e { statements [VK,~ : Msgi], assumed w.l.o.g. to involve the public keys of
Users #1, ..., £, and whose propositional truth values are denoted by the lit-
erals L; fori =1,...,¢.

e an arborescent monotone threshold circuit YT where each literal Ly, ..., Ly is
an input leaf; and an assignment xy : {Ly,..., Ly} — {L, T} that satisfies
Y(Li,...,Ly) =T,

e Vi=1,...,¢suchthat x(L;) = T, a valid Boneh-Boyen signature in G, given

as a pair,
1
(ui = gutbiviteit g ) , forsome t; € Fp,
where w; = Msg; and (a;, b;,c;) is the signing key for the statement
[VKi: Msg;].
e Optionally, a prescribed “random” value #; € F, for any index i such that
x(Li) = L.

To create a mesh signature based on the preceding data, the signer firsts extends T
into a new specification that involves the verification key “in the sky’:
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1. Hash the public mesh specification to get Msgy = H([VKi: Msg],....

[ VK¢ : Msg,] . Y), andimplicitly associate the literal Lo to the clause [ VKo : Msgy|.
2. Construct Y = Lo Vv Y, a well-formed arborescent monotone threshold circuit.
3. Extend y so that x(Lo) = L, as we lack the corresponding atomic signature.

The signer then builds the mesh signature from the circuit T, the assignment x, and
the atomic signatures (u;, t;) known for such i that x (L;) = T, as follows:

4. Create a flattened representation of Y and y as discussed in Sect. 5.1. Accordingly,
let mo, ..., m¢ € FplZo, ..., Zy] be public degree-1 multivariate polynomials
that encode T, and vp, ..., v € ), the secret scalar coefficients of a linear
combination that expresses x, as in Lemma 8. Compute the coefficients y; € F),
of the polynomials 77; = ZZ:() Vik Zk.

. Create a random blinding vector s = (s, ..., s¢) € IF‘;],.

6. Vi €{0,...,¢} : x(L;) =1, randomly draw #; € [F),, and arbitrarily fix u; =
¢ = 1 € G. Alternatively, instead of a random #;, a prescribed value can be used.”
(Recall that for x (L;) = T, the t; and u; are supplied with the atomic signatures.)

7. Forall j =0,...,f£andk =0, ..., ¢, calculate,

91

mji t; \Vik .
Vjk = (Aj‘k By ijk) , setting mj = Msg;.

(Note that if we instantiate Z; = dlogg (gk), we get v; = HZ:O Vjik =
glaitbimjtej1) 7 for all j except j = 0 since the key “in the sky” is ill formed.)
8. Compute, fori =1,...,¢,and k =0, ..., ¥, respectively,

¢
o s .
Si=ui"v ™, Pe=[]vjx
j=1

(The value of any intervening u; such that x (L;) = L is unimportant since then
v; = 0; this is true in particular for the user “in the sky” of index 0.)
9. Output the mesh signature, consisting of the statement Y and the tuple,

o=1C(ty, ..., tg, St, ..., S¢e, Py, ..., Py) € Fﬁ,—H x GO+

Mesh verification: A fully qualified mesh signature package consists of:

e alist of £ 4 1 propositions [VK(): Msgo] sy [VK@ : Msgl] viewed as inputs to,
e an arborescent monotone threshold circuit Y : {1, T} — {1, T},
e amesh signature o = (to, ..., S1,..., 8¢, Po, ..., Py) € Ff;“ x GEHo+L,

2 The facility to use a prescribed value for #; in clauses that are “false” is to give the appearance that such
clauses are constructed from Boneh—Boyen atomic signatures with given 7;, as if they were “true.” Without
this provision, should a clause have the same #; as that of a published signature (e.g., a certificate), it would
be exposed as “true.”
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To verify such a signature, the verifier proceeds as follows:

1. Ascertain that 'f(T,*,...,*) = T, extract from f(Lo,...,Lg) the sub-
circuit Y(Ly,...,Ly) such that Y = TV Lo, and verify that Msg, =
H([VK;: Msgy],....[VKe: Msg]. ).

2. Recompute the polynomials (7o, . . . , 77¢) representing the formula Y by reproduc-
ing the deterministic conversion of Sect. 5.1.

3. Fori =0,...,¢, determine the coefficients y; x € I, of the polynomials 7; =
> oo ik Zk-

4. Fori =0,...,Land k =0, ..., 9, retrieve (A,-,k, éi,k, CA’,',k) from the key VK,
and calculate,

Yik u

A n Smi At L A A .

Vik = (Ai,k B} Cl.'fk) , b= I I ik, setting m; = Msg;.
k=0

5 Using the pairing, verify the equalities, forallk =0, ..., ¥,

) ~

. . e(g, go) fork =0
e (Px. Do) -He (Si Dik) = {1 otherwise -
i=1

6 Accept the signature as valid if and only if all ¥ + 1 preceding equalities hold in
Gy.

(Optional) Probabilistic check: Mesh signatures can be verified using fewer total
pairings, at the cost of some additional random bits and exponentiations. In the same
setting as above, it suffices to replace the end of the verification algorithm from step
5 onward by the following:

5'. Using the pairing, for dy = 1 and random dj, ...,dy € [, verify the single
equality,

0 ¢ 9
dp A ~d ~
e( [T~ vo) : He(Si, I1 v,-,i) = e(g, §o)-
k=0 i=1 k=0
6'. Accept the signature as valid if and only if the preceding equality holds in G;.

The probabilistic verification incurs a negligible statistical error of accepting a signature
that would not be accepted by the deterministic algorithm. It is however significantly
faster.

5.4. Security

We state the correctness, anonymity, and unforgeability theorems for the mesh scheme.
A corollary to the latter is also given, based on a weaker assumption, for the case where
only a subset of the honest users are willing to answer atomic signature queries (e.g.,
certificate authorities).

Theorem 9. The mesh signature is consistent.
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Proof.  For any list of public polynomials g, .. ., ¢ and secret coefficients v, ..., vy
that, respectively, encode per Lemma 8 a well-formed mesh specification T and an
assignment x that satisfies it, we need to show that a signature created by the above
algorithm will be accepted by the same. A straightforward sequence of substitutions in
the scheme description shows this to be the case. (]

Theorem 10. The mesh signature has everlasting perfect anonymity.
Proof. See “Anonymity of the Mesh Scheme” of Appendix (I

Theorem 11. The mesh signature is existentially unforgeable under an adaptive chosen
message attack, against a static adversary that makes no more than g mesh signature
queries, and no more than q atomic signature queries to each of the £ honest users,
adaptively, provided that the (g, £+ 1)-Poly-SDH assumption holds in G, in the common
random string model.

Proof. See “Unforgeability of the Mesh Scheme” of Appendix (]

Corollary 12. The mesh signature is existentially unforgeable under an adaptive cho-
sen message attack, against a static adversary that makes no more than q mesh signature
queries, and no more than q atomic signature queries to each of £’ among a total of
£ + €' honest users, adaptively, provided that the (q, £, £’ + 1)-Pluri-SDH assumption
holds in G, in the common random string model.

5.5. Optimizations for Shorter Keys and CRS

As previously mentioned, we can make both the ring and mesh signature schemes more
compact and more efficient, by noting that there is no need for three secrets in the atomic
signature triplets (a;, b;, ¢;). As we shall see, two of them would suffice, though one
is not enough. We exploit this by arbitrarily anchoring all instances of private keys’ b;
to the constant 1 and accordingly fixing the corresponding public keys’ B; to known
values that need no longer be published. The justification for this will become apparent
in “Ring Scheme Security Proofs” and “Mesh Scheme Security Proofs” of Appendices,
wherein the simulators that we construct are always allowed to know the value of the b;,
indicating that the latter do not actually contribute to security. Further anticipating from
the security reductions, we note that we shall need to construct two different simulators,
that will know either one of the remaining private-key secrets a; and c;, and that is the
reason why we cannot shrink the private keys further. In summary, in both the mesh
and the ring schemes, we can set b; = 1 wherever it appears and omit the publication
of any instance of B, ; = g,ff = gx. This results in public keys (including the key “in
the sky”) being shrunken to 2/3 of their original size. The scheme also becomes more
computationally efficient as a result.?

3 We note that with the B; removed from the public keys, the ring scheme becomes syntactically very close
to the ring signature scheme of [21]. If one temporarily ignores the generalization to the full mesh signature
model, one way of looking at the ring signature scheme of Sect. 4 is a provably secure version of [21] from a
provably sound hardness assumption (in the sense of being provably hard in the generic-group model).
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A second way to achieve optimizations is further to compress the key “in the sky”
to just two elements of G. This is based on the observation that, for T = Y v Lo, the
encoding algorithm of Sect. 5.1 always gives my = Zy, i.e., yp,0 = 1 and ypx = O for
k # 0. This means that the tuples (Ao,k, éo,k, CA'o,k) for k # 0 are in fact never used.
Since it is safe to set I§0,0 = g as discussed above, the key “in the sky” can thus shrink
to a mere pair (Ao,o, CA'o,o) of random elements.

6. Conclusion

We have introduced mesh signatures as a generalization of ring signatures with a richer
language for expressing signer ambiguity. Mesh signatures scale to large crowds with
many cosigners and independent certificate authorities; they can even implicate unwilling
individuals who, by withholding their ring public key, would have otherwise remained
out of reach. Because in principle mesh signatures require no central authority and only
a minimal-trust CRS, they provide a credible answer to the question of how to leak a
secret authoritatively.

We have constructed a simple and practical mesh signature scheme in prime-order
bilinear groups, which achieves everlasting unconditional anonymity, and existential
unforgeability in the common random string model. To obtain this result, we introduced
a new complexity assumption, which we prove sound in the generic model; it is in the
spirit of the SDH assumption, but better exploits the group structure of the values com-
puted by pairing. Incidentally, we obtain a very efficient and the first unconditionally
anonymous ring signature without random oracles as a special case of our construc-
tion.

Appendix 1: The Poly-SDH and the Pluri-SDH Assumptions

We gave informal definitions of the Poly-SDH and Pluri-SDH assumptions in Sects. 3.2
and 3.4. Next, we give concrete and asymptotic definitions of the Poly-SDH and Pluri-
SDH assumptions, whose generic hardness we prove in “Generic-Group Complexity of
Poly-SDH” and “Generic-Group Complexity of Pluri-SDH” of Appendices.

Formal Poly-SDH Definitions

Our formal statement of the (g, £)-Poly-SDH problem applies to canonical bilinear
groups of all types, whether G = G or G # G. In general, most of the group elements
that appear in the problem instance will belong in G, and the solution is required to be
in group. Several elements must also be given in G, mainly to enable the pairing-based
verification of the solutions; but rather than require the isomorphism r : G — Gtobe
efficiently computable and let the user do the translation, we shall give these elements
in both groups explicitly.
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Definition 13. 1In a bilinear context G = (p, G, (@, Gy, g, &, e), the (g, £)-Poly-SDH
problem is:

Given, Vi = 1,...,¢, V] = 1,...,q, g% € G, g% € G, and

I
(wi,j, a’+w”) S IF x G,

output Vi, (w;, g% +“’z) subject to: Zle ri =1 (mod p), Vi,Vj, w; #
w,',j.

The advantage of an algorithm A in solving the (g, £)-Poly-SDH problem is,

1
o .. ajtw;
PolySDH 8 (8L (w,,,, g )1<i<z
=Pr| A 1<j<q

04
( l)l§i§Z

Adv

The probability is over the random choice of generators g € G\{1}and g € G\ {1}, of
exponents g, ..., 0 € ]F;,ofintegers w;,j € Fp\{—a;}, and therandom bits consumed
by A. (Nevertheless, we allow g and/or g to be given externally, as it is convenient in
type-1 and type-2 bilinear contexts to take g = v (¢) under a fixed isomorphism 1/.)

Definition 14. We say that the (q, ¢, ¢, €)-Poly-SDH assumption holds in G =
(p, G, (ﬁ}, Gy, g, &, e) if no 7-time and e-advantage randomized algorithm solves the
(g, £)-Poly-SDH problem in G.

Formal Pluri-SDH Definitions

As in the previous case, we formally define the (¢, €, 1)-Pluri-SDH problem for bilinear
groups of all types, whether symmetric (G = G) or asymmetric (G # G), with or
without efficient isomorphism (¢ : G — G), at the cost of some possible redundancy
in the instance statement in some cases.

Definition 15. In a bilinear context G = (p, G, G Gy, g, 8, e), the (g, £, 1)-Pluri-
SDH problem is:

N 1
Given: Vi =0, ..., ¢, (g%,8%) € GxG,and: Vj =1,...,q, (wp,j, g“00J)
eF, xG,

output: Vi, (w;, g“il“’i ), subjectto: Zf:o ri =1 (mod p), and: Vj, wg #
w()’j.

The advantage of an algorithm A4 in solving the (g, £, 1)-Pluri-SDH problem is,
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1
o . ag+wo_j
8 (g )0515( ’ (wO»J’ 8 ! )
1<j=q

Al

g (8

Advi{”ﬁSDH =Pr| A

)Ogigl

ri ¢
= (wi, gt ) Pwo # wo . D=1
0<i<t i=1

The probability is over the random choice of g € G\{l}and g € @\ {1}, ofag, ..., ¢ €
F,f ,ofwg ; € F,\ {—ap}, and over the random bits consumed by A. (We allow g and/or
g to be externally given, as it is convenient in some bilinear contexts to take g = /(&)
under a fixed isomorphism 1/.)

Deﬁnitipn 16. We say the (¢, ¢, 1,1, €)-Pluri-SDH assumption to hold in G =
(p,G,G, Gy, g, g,e) if no t-time and e-advantage randomized algorithm solves the
(g, ¢, 1)-Pluri-SDH problem in G.

A Spectrum of Assumptions from Pluri-SDH to Poly-SDH. Given the clear similarity
between the (¢, £ + 1)-Poly-SDH and (g, ¢, 1)-Pluri-SDH problems, it is natural to
consider a generalized notion of Pluri-SDH with £ + ¢’ random generators in total, only
¢ of which would be given with accompanying series of solution pairs. (In the basic
Pluri-SDH problem, we had ¢/ = 1.)

Definition 17. In a bilinear context G = (p, G, @ Gy, g, 2. ), the (g, £, £')-Pluri-
SDH problem is (using positive and negative indices i # 0 to differentiate the two types
of generators):

Given: Vi’ =1,...,¢, (g% ,8%) e G x G,

and: Vi’ = —0,....,-1,Vj = 1,...,q, (g¥%,8%) € G x
1

G, (wirj, g""""i) € Fp x G,

output: Vi = —¢, ..., —1,1,..., ¢, (w;, g&+m),

subject to: > ;¢ ooy i = 1 (mod p), andalso: Vi <0,Vj, w; #

Wi, j-

The advantage of an algorithm A in solving the (g, £, £')-Pluri-SDH problem is,

1
@ 7= =T
8 (8 l)i=—e’,.__, ’ (w”/’ g )1sjsq
: —1,1,...8 i=—t,..,
Advi{unSDH — Pr A Ll,l,...,l
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L

i
= (wi, g"i”’i) Dwp FEwi, D=1
i

i=1

The probability is over the random choice of g € G\ {1} and g € @\ {1}, ofalle; € FIX, ,
of all w; ; € F), \ {—«;}, and over the random bits consumed by 4. (We allow g and/or
g to be externally given, as it is convenient in some bilinear contexts to take g = (&)
under a fixed isomorphism 1/.)

Deﬁnitipn 18. We say the (q, £, ¢, t, €)-Pluri-SDH assumption to hold in G =
(p,G,G, Gy, g, g,e) if no t-time and e-advantage randomized algorithm solves the
(g, £, £')-Pluri-SDH problem in G.

The generalized (g, £, £')-Pluri-SDH problem is useful to prove security of the mesh
scheme in the case where there are £ + ¢’ honest users, but only £’ of them are willing to
answer queries for atomic signatures (e.g., certificate authorities willing to issue certifi-
cates on demand, vs. ordinary users only occasionally making opportunistic signatures).

Asymptotic Definitions

For completeness, we also give a complexity-theoretic statement of either assumption,
based on the asymptotic limit in an infinite family of bilinear groups. All our security
theorems are easy to restate in terms of the asymptotic definition.

Definition 19. We say that the Poly-SDH assumption holds for a bilinear instance
generaror G if, for any polynomially bounded functions ¢ (-), £(-), t(-), €(-), and any
algorithm A4, there exists a threshold «*, beyond which for all values of the security
parameter k > x*, the (q(k), £(k), t(«), €(k))-Poly-SDH assumption holds against A
in all bilinear instances G generated by G(1°).

Definition 20. We say that the Pluri-SDH assumption holds for a bilinear instance
generaror G if, for any polynomial functions ¢ (), £(-), £'(-), t(-), €(-), and any algorithm
A, there exists a threshold «*, beyond which for all values of the security parameter
Kk > k*, the (q(k), £(k), €' (k), t (), € (k))-Pluri-SDH assumption holds against .A in all
bilinear instances G generated by G(1%).

Generic-Group Complexity of Poly-SDH

We now give a complete proof that the Poly-SDH assumption (and hence, also the weaker
Pluri-SDH assumption) is sound in the generic group model in the sense of Shoup [39].
The proof is based on the argument given in Sect. 3.3. .

In this model, slightly extended to incorporate bilinearity, the groups G, G, and G,
are assumed to have a generic presentation, i.e., only canonical operations may be
performed on their elements (the group operations in each of G, G, and Gy, the iso-
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morphism from G to G and its inverse, and of course the pairing). Specifically, the
solver A performs the canonical operations by interacting with an oracle O, in such
a way that A only sees arbitrary representations of the group elements. This is mod-
eled using arbitrary injective encoding functions f, f ,and f;, one for each group, and
by representing any group element 7 € G as the string f (k) when interacting with
A (and similarly for elements of the other groups).* A is otherwise computationally
unbounded.

The following theorem gives an upper bound on the success probability of any generic
Poly-SDH attacker A, or equivalently, a lower bound on the complexity of solving Poly-
SDH generically.

Theorem 21. Let A be a computationally unbounded algorithm for the (q, £)-Poly-
SDH problem in generic bilinear groups of prime order p, that makes at most 4 generic-
group oracle queries in total (i.e., for e, ¥, w—l, and x in G, G, and G;). Then,

1
) f(g)a f(gai)15i5( s (wi,js f(g"‘i"’wi.j ) )195[
Pr| A 1<j<q

F@, @) iz

ri ¢
= (wi, f(g‘“l”f)) PwpEwig D i =1
I<i<t

i=1

2 2 3
:AdviflySDH< (CIG-I—QE-I-ZEl-I—Z) (g0 ZO(qu£+(qE) )
p— P

In order to be as general as possible, we state and prove the theorem assuming the solver
is given access to both ¥ and ¥ !, as in type-1 bilinear groups. Since the withholding
of one or both of these capabilities can only hurt 4, the same theorem gives us valid
bounds for type-2 and type-3 groups without needing another proof (albeit, at the cost
of a small slack factor).

Proof.  'We merely sketch the oracle simulation, which follows a similar routine as in
[5]; the subsequent analysis will be the core of the argument.

We construct an algorithm 3 that simulates the generic-group oracle O without com-
mitting to values for the «;, and analyze what A can extract from it. Internally, 55 keeps
track of the group elements by their discrete logarithms to the generators g € G, g € G,
and g; = e(g, g) € G;. Since the variables «y, ..., ay are left undetermined, in all
generality these discrete logs will be multivariate expressions in IF,[a1, . . ., o], which
we denote by px, Ok or p;., depending on the group. Externally, 3 maps the correspond-

4 The encodings f(h), etc., of group elements can be thought of providing unique but intrinsically mean-
ingless “handles” for manipulating “opaque” group elements. The handles can be assigned at random, or
sequentially in the order of queries, as long as the handles remain independent of any arithmetic representa-
tion of the group elements.
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ing group elements to random strings it gives to A: in the group G it associates p; to

fi = f(g”),in G it maps p; to f; = f(£”), and in G, it maps pto f = fig!.

To initiate the interaction, B must provide .4 with an instance of the (g, £)-Poly-SDH
problem. To do so, B picks random w; ; € F,, fori =1,...,£and j = 1,..., ¢, and
creates:

e two strings, fo and fo, which it binds to the constants pg = 1 and py = 1 respec-

tively;

e 2 (¢ strings, f; and f, fori =1, ..., £,bound to the expressions p; = «; and p; = o;
respectively;

e g U strings, fr fork =i+ j€ wherei =1,...,fand j =1,..., g, bound to the
terms pp = 1

ajtwj j°

For simplicity, and to avoid dealing with ratios, we reduce all the expressions to the
common denominator A = Hle H?:] (a; +w; j): for all k, we define m; = px A,
Tr = pr A, and n,i = ,0,/{ A. Observe that all of these are polynomials in [ [y, .. . , g
of degree < g £ + 1.

B gives to A all the strings f; and fk created above (but not the corresponding
polynomials). 3 also initializes three counters: n < (g€ + €+ 1), 7 < (£ + 1), and
n; < 0.

A then makes a total of ¢ adaptive queries to the generic-group oracle, of the fol-
lowing kinds:

Group operations: Suppose A wants to compute the product of two operands in
the group G represented as f; and f;. To answer, B retrieves the polynomials 7;
and 7; that these strings correspond to (the same string may appear under multiple
indices i, but in all cases the associated polynomial will be the same, so there is
no inconsistency). It calculates the polynomial sum , = 7; + 7; € Fp[a]. If the
result 7, is already present in the G-mapping, the corresponding string is copied
into f,, otherwise a new string is created; then the entry (7, f;;) is added to the
mapping. Finally, B gives f, to A4, and then increments n <— n + 1.

If A had wanted the ratio in lieu of the product, B would have let 7, = m; — ; €
Fpla].

Group operation queries in G or Gy are serviced analogously, using the relevant
mappings.

Isomorphisms: Suppose .4 wants to map an operand f, in G to its image in G
by the isomorphism. To answer, I3 proceeds as above to retrieve the polynomial
7T;, assigns 7, = 7;, and lets f,, be the copy of an existing string or a new string
depending on whether 77, was already present in the G-mapping. It adds (7, f»)
to the mapping, gives f, to A, then increments n <— n + 1.

Inverse isomorphism queries are answered similarly, after exchanging the roles of
G and G. .
Pairing: Suppose A wants to compute the bilinear map between f; in G and fj inG.
To answer, B retrieves the polynomials 77; and 77 ;, computes the polynomial product
7y, = 7 - j € Fpla], determines whether m,, already exists in the G;-mapping,
and accordingly lets f,,, be a clone of the corresponding string or a new string. It
adds (i, , fn,) to the mapping, gives f,, to A, then increments n, < n; + 1.
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W.l.o.g., we have assumed that A only queried B on legitimate strings that were previ-
ously revealed, and similarly assume that it outputs its solution in terms of such strings

exclusively.
After g queries, A returns a solution to the Poly-SDH instance, in the form of £ pairs
(w1, fiy)s -, (we, fk,) where O < k; < n. We denote by my, the formal polynomials

that correspond to the generic representations f; .

To verify the solution, B randomly selects al.* € IF; for each i, and evaluates the
formal polynomials under the assignment («p, ..., o) = (o, ..., aZ‘). The validation
equation is,

14
D (i wi) o (e, ) = 1,

i=1

14
D@+ w) g (o) = A *)
i=1
A wins the game outright if Eq. (*) holds in I, under the random assignment.

A wins by default if any two distinct polynomials representing elements of the same
group (e.g., m; # mj, Of A; # Aj, or W # n}) evaluate to the same value in F),
under the assignment (viz., m; (o], . .., aZ) =miaf,..., az‘), etc.): if this is the case,
B’s simulation is flawed since it portrayed as distinct two instances of the same group
element.

A loses the game barring the two scenarios above. We shall bound the probability of
either event, below.

Notice that all polynomials 77 used by B to represent an element in G or G have degree
< g £ + 1, since they are constructed using sums and differences from an initial set of
polynomials with this property (the polynomials of highest degrees are m; = p; A =
aj Afori =1,...,¢, of degree g £+ 1). In the target group Gy, the polynomials can be
of degree < 2¢g ¢ + 2, which is the highest degree that the product of two polynomials
of degree < g £ + 1 can attain.

To bound the probability that A makes a correct answer, we bound the probability that
Eq. (») will be satisfied. First, we show that it cannot hold identically in F ,[aq, . . ., a¢].
Consider the following change of variables: foralli =1,...,fand j = 1,...,q, we
define oc = o; + w; and w ij = Wi j—wi, where we note that w ;é 0 because of the
constralnts on the w;. The change of variable is well-defined and unamblguous and lets
us rewrite Eq. (*) as,

Zank T—wi, .. —w) =A
q ¢ q
= H H (i +wjj) = H H (ozlf + wl/-’j). (x%)
i=1j=1 i=1j=1
Eq. (x*) cannot hold identically in IF,[a], ..., et ] since the left-hand side has no inde-

pendent term while the right-hand side contains the independent term []; [| j w; i =
[1;: [1; (wi,j —wi) # 0. Equation (%) then does not hold identically either, in
Fplai, ..., a¢], which means that it is a non-trivial polynomial equation of degree
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< g ¢ + 2. For a random assignment of (o1, ..., o) € (IF; )6, Eq. (») will thus be
satisfied in IF;, with probability < %

To bound the probability that .4 wins by default, recall that all the polynomials rep-
resenting elements in G and G have degree < g £ + 1, and those in G; have degree <
2 g £ +2. Again using the standard argument on the probability of satisfying polynomial
equations, and combining all of these with the union bound, we find that the probability

that there is at least one flaw in B’s simulation is < (’;) qu-rll + (;) qPZT+11 + ("2’) 2?)sz.

(The denominators are p — 1 rather than p to reflect that the «; are random in ]F;
and not in IF,: conceivably, the adversary could exploit this by forcing all polynomial
solutions to be nonzero.) Now, if we take the union bound over the two events, and bring
into account the loop invariant, (n + 7 + n;) = (g £ + 2 £ + 2 + q¢), we thus establish,

AdVi()lySDH < (2) ql+1+( ) ql+ll +(2) 2q€+2+qi+1+2 < (QG+5]£+2£+2)2
@O/(p—1),ie., Adv""lySDH =02 qt/p+ @03/ p). O

‘We can state the generic hardness of the asymptotic Poly-SDH assumption much more
simply, as follows.

Corollary 22. All algorithms that solve (g, £)-Poly-SDH problems with constant prob-
ability € > 0 in generic bilinear groups of order p such that g £ < O(J/p) require
Q (€ p/q ) generic operations.

Generic-Group Complexity of Pluri-SDH

Essentially the same proof as in “Generic-Group Complexity of Poly-SDH” od Appendix
gives the following generic-group complexity lower bounds for the Pluri-SDH assump-
tion. We give the bounds for the general (g, £, £')-Pluri-SDH problem, and note that
they also apply if we set £’ = 1, which is the relevant assumption for the ring signature
proof.

Theorem 23. Let A be a computationally unbounded algorithm for the (q, £, £')-Pluri-
SDH problem in generic bilinear groups of prime order p, that makes qg queries to a
generic-group oracle. Then,

f@, 1, _, (w,-,j, f(g“"+"""f)) 1=i%q

=11t i=—t,..,

Pr AO o 11,0
f@, f@&._,



760 X. Boyen

(Go+ql +20 4+20%(@ql +0)

= A dVE{uriSDH <

p—1
_ofZ a9t ae+y’
p
Proof. The proof is analogous to that of Theorem 21. (]

We can restate the generic hardness of the asymptotic Pluri-SDH assumption more
concisely:

Corollary 24. Any algorithm that solves the (q, £, £')-Pluri-SDH problem with con-
stant probability € > 0 in generic bilinear groups of prime order p such that

< qt' <O(YPp) requires QL (/€ p/q ') generic-group operations.

On Selecting the Group Order

A recent analysis of SDH shows that it may be helpful (but not required) to ensure that
p £ 1be “rough” or “non-smooth” (i.e., have large prime factors). Specifically, in [18] it
is shown how to recover the secret o generically from an Original SDH instance, in time
as low as ©(log p /p/d), given a smooth divisor d of p — 1 or p + 1 not exceeding J/p
or Y/ p respectively. Conversely, for p “safe” in the reciprocal sense, it is conjectured
that the generic time complexity of breaking SDH is the same “square root” ®(,/p)
generic lower bound proven for Discrete Log in [39]. We note that the analysis from
[18] does not violate the Original SDH “cube root” ® (.3/p) generic lower bound proven
in [5], but can come as close as within a logarithmic factor of that “prediction.”

For mesh signatures, like for regular signatures, it is enticing to parametrize secu-
rity based on optimistic conjectures rather than formal generic bounds, in the hope of
improving efficiency for a prescribed security level. To benefit from the “square root”
conjecture from [18] while avoiding known attacks, requires the simultaneous satisfac-
tion of extra constraints such as the primality of (p £ 1)/2, in conjunction to p itself
being prime and amenable to the construction of pairing-friendly groups of order p.
Undoubtedly this can complicate the setup.

A safer and more principled approach is to stick to the methodology advocated in
[5,6], which, in our context, means to abide by the “cube root” generic bounds given in
Sect. 3.3, and select the size of p accordingly. Since our generic bounds are valid for
all primes p, this opens up the possibility of working with bilinear groups that might
impose their own constraints on p.

Allin all, it is a judgment call—but one whose long-term security only affects the non-
repudiation security aspect of mesh signatures; recall that anonymity is unconditional.

Appendix 2: Ring Scheme Security Proofs

This section focuses on the security properties of the special-case ring signature scheme
of Sect. 4.
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Anonymity of the Ring Scheme

We prove Theorem 6 using an information-theoretic argument.

Proof of Theorem 6.  We need to show that it is impossible to determine which ring
member produced a signature, even if all the secret keys are revealed. Observe that
the distribution of ¢ is uniform over the (2 £ 4+ 1)-dimensional variety of GH! x Ff,“
defined by the ring verification equation, i.e.,

P(@) = U[ (So. ... St fo. ... 1) € G x B4

¢
He(Si, A éimi éfi) =e(g, &)
i=0

Conditionally on the public information, the random variable o is jointly independent of
the signer identity and all the secret data (including the random coins used to generate
the signing keys). The theorem follows immediately. (]

The reader will notice that the independence does not extend conditionally on the
ephemerals s; that were used to create the signature. Even though it is in the interest of
the signer to erase those immediately, a powerful adversary could possibly recompute
them (by solving a discrete logarithm, as infeasible as it sounds), so one may ask how
this affects anonymity. The answer is that is does not, because there are many possible
sets of ephemerals, one for each member of the ring, and by Theorem 6 none of them
can be preferred over any other based on public or secret information.”

Unforgeability of the Ring Scheme

We now prove a stronger version of Theorem 7 where the forger is allowed to make
atomic signature queries, based on the stronger (g, £ 4+ 1)-Poly-SDH assumption in G.
(The simpler Theorem 7 can be proven along the same lines.) The precise statement of
the theorem we prove is as follows.

Theorem 25. The ring signature is existentially unforgeable under an adaptive attack,
against a static adversary that makes no more than q ring signature queries, and q
atomic signature queries to each one of the £ honest users, adaptively, provided that the
(g, ¢ + 1)-Poly-SDH assumption holds in G, in the common random string model.

5 There remains the possibility that the signer could reveal the ephemerals voluntarily to revoke her
own anonymity, but this falls outside of the purview of Theorem 6: The same outcome can be achieved
generically in all ring signatures. To do so, the signer would append to the message being ring-signed, a
one-time signature verification key, an encrypted signature of the same under her public key, and a signature
of a hash of the decryption key under the one-time key; she could then provably de-anonymize herself by
revealing the decryption key.
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Proof. Let G = A( p, G, (@, Gy, g, &, ) be some bilinear instance with a computable
isomorphism ¢ : G — G. Suppose that H : {0, 1}* — [, is a collision-resistant hash
function.

We are given a random instance of the (g,¢ + 1)-Poly-SDH problem in G,
stated as ¢+ 1 pairs (g; = g%, & = g""’) fori = 0,...,¢, and (£ + 1)g pairs

(wij, uij = gl/“f+wff) fori = 0,...,£and j = 1,...,q. Our task is to output
€+ 1 pairs (w}, uf = g'i oty for i =0,...,¢, for some public choice of w} such
that w} ¢ {w,;l, .. w,,q} foralli =0,..., Z, and some secret choice of 7 such that

Zfzo ri=1 (mod D).

We construct an algorithm /5 that solves such instances of the Poly-SDH problem by
interacting with a black-box forger A for the ring scheme. For simplicity, we give sequen-
tial numbers in {1, 2, ...} to all users (i.e., potential ring members). Since the adversary
is static, we suppose w.l.o.g. that the target users will consist of the set {1, ..., £}. For
simplicity of notation, we further suppose that the target ring for the forgery is the whole
set R* = {1, ..., £}, rather than any subset. Indeed, in the model of Sect. 2.3, it is clear
that a signature by a subset ring “implies” a signature by the whole ring; we find it more
convenient for this first proof to assume a forgery with a fixed form. (The fully general
case of mesh signatures will be addressed in a later section).

In this setting, we use the index i = 0 for the key “in the sky”, and assume that 5
has ownership of the first £ users with 1 < i < ¢, and that A controls all the others with
L4 1 <i < Inax for some polynomial bound Iny,«. Each player reveals the public keys
of the users in its custody, first /3, and then A, without revealing the private keys.

For generality and homogeneity of notation, we will allow each ring signature com-
ponent to bear on an arbitrary message in I, i.e., we do not require that the messages
be the same.

Our proof makes use of two distinct simulations, one of which will be chosen at
random, to account for two possible behaviors of the adversary. (]

Regular Simulation. We first describe a “regular” simulation that 3 can use when the
forgery returned by the adversary A never causes the associated parameter w; to fall in
the set {w; 1, ..., w;x 4}. The reduction for this case follows.

To start, the simulator B must fix the common random string from the distrib-
ution expected by .A. First, B publishes the bilinear instance G and the isomor-
phism w Next, B chooses random by, ¢y € IFX and publishes (Ao, By, Co) =
(g0, g , 8°0) as the public key “in the sky’ ,thlslmphcltlyreveals (Ao, By, Cp) =
(g0, g%, g°). Last, B publishes the description of H.

B gives A the public keys of the first £ users. To do so, for eachi =1, ..

A

draws random b;, ¢; € IE‘; and publishes the tuple (A;, B;, C;, A,, B;,
(gis gbi9 gc,” gis gbis gci)-

A gives B the public keys (A;, B;, C;, Ai, éi, éi) of the users it controls,
i = (L+1),..., Inax. Here, I, is the total number of users, which must be
polynomially bounded.

Per the unforgeability model, A is allowed to give those values to B interactively,
interleaved with the signature queries described below. We only require that A
reveal a public key before it makes any signature query that involves that key.

et
Ci) =
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A makes g distinct ring signature queries to B, one at a time, proceeding adaptively.
To exhaust the quota of queries that are available to A, we assume w.l.o.g. that
qs = 4.

For j =1,..., qs, the j-th query is a pair (M, R;) where R; is aring and M is
a vector of messages to be signed by that ring. Let n be the number of users in the
ring. Let thus R; = {iy,...,iy} S {1,..., Inax}, and M; = (my, ..., my,) € ]F’;,.
We require that R; N {1, ..., £} # ¥; otherwise the simulator is not supposed to
respond and the query will be denied.

B responds to a well-formed j-th query as follows.

Selectn random exponents sy, ..., s, € IF,andnrandomintegersty, ..., t, € F,.
Compute mo = H((i1, m1), ..., (i, my)) and set tp = (wo,; — bo mo)/co. Here,
bo and cq are the secret exponents chosen during setup, and wy,; is taken from
(wo,j, uo,;) in the problem instance.

B replies to A by returning the signature o; = (So, ..., Sy, fo, ..., t;), which
is given by,

n —S, o o
L ( T (a5 52) ) (A0 B C) oo (Mo B )
J = k=1

fo, t1, -, In

Note that o is properly randomized and passes the validity test: [];_, e(Sk, A,-k

L A A ~
Bk Ctk) — e (gO‘O*"’O,j HZ:I (Aik Bi’:k C:]I:)_Sk’ Ao B(')”O C(t)()) . HZ:] e ((Ag

ik ik

L R T
B(’)"O Céo)sk’ Aik B?I:k Clt:) = (g agFug, , Ag Bgzo C(f)o) —e (g agFug, , goco-‘rwo_j)
= e(g, 8), as required.

A can also make g ; distinct atomic signature queries for each useri = 1,...,¢
controlled by B. These queries can be adaptive and interleaved with the ring sig-
nature queries. Again to exhaust the quota of queries that are available to A, we
assume w.l.o.g. thatgs; = g fori =1, ..., ¢

B responds to the j-th query (i, m) to the i-th user, by retrieving the pair (w; ;, u; ;)
from the Poly-SDH instance, computing t = (w;,j — b; m)/c;, and returning the
Boneh-Boyen signature (u; j, t) to A.

A eventually outputs a forgery o* on some list of messages M* = (m], ..., m})
attributed to the target ring R* = {1,..., ¢}. To preclude trivial forgeries, we
demand that (M* # M;) v (R* # R;) for all queries (M, R;) previously made
by A.

The forgery is a signature of the form o™ = (S¢, ..., Sz‘, 7 t,}*) and must
necessarily satisfy, for m§ = H((1,m7), ..., (€, m})),

4

noamE art R
[Te(sr 4B ¢) =es. &
i=0
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It follows that there exist £ unknown exponents r{, ..., r; € IF,, such that,

14
L\ b% g
So = | geottomotaos , and S;=|g®ithimital fori=1,...,¢.

Thus, if we compute wl* = b; ml* + ¢; tl.* fori = 0,...,¢, and formally define

rg =1- Zi:l ry, we obtain the following solution to the Poly-SDH problem
instance,

(g, S, ..., (Wi, SH)

e r;
— — +ug * ok Tk
_((wo, “0 g“o"),...,(wz,ug_g"“i “z)).

B can compute all the w} and u, even though it does not know any of the r;*.

The preceding reduction will succeed to produce a solution to the given Poly-SDH

instance, when the adversary’s forgery is such that w;‘ ¢ {wi1,...,wig) foralli =
0,...,¢
However, A could produce an anomalous forgery where w;.k* € {wix 1,..., wix 4} for

some i* < £, either by luck or by design. The preceding simulation is useless in this
case, since it would produce an easy solution to the Poly-SDH problem that is explicitly
forbidden. We use an ““alternative” simulation to deal with this anomaly.

Alternative Simulation. We construct an “alternative” reduction for the case where
A’s forgery causes the parameter w, to land in the set {w;+ 1, ..., w; 4} of parameters
explicitly listed in the problem instance given to 3. The simulation is as follows.

To start, the simulator 3 posts a common random string from the distribution
expected by A. To do so, BB publishes the bilinear instance G and the isomorphism
Y; it chooses random ag, by € ]F; and publishes (Ao, By, Co) = (8%, g, go);
it also publishes a description of H.

B gives A the public keys of the first £ users. To do so, for each i A= yees 4
draws random a;, b; € ]F; and publishes the tuple (A;, B;, Ci, A;, Bi, C)
(g%, g, &, 8, &", &

A gives B the public keys (A;, B;, C;, Ai, l§i, C‘i) of the users it controls,
i =W+1),..., Inax- Again, I,k is the total number of users, which must be
polynomially bounded.

As before, .4 may keep introducing new keys after it has started making signature
queries, as long as public keys are revealed before queries that depend on them.

A makes ¢ distinct ring signature queries to B, proceeding adaptively. As before,
the j-th query is given as a pair (M, R;) with M; = (my,...,m,) € (F,)" for
some n and R; = {i1,..., iy} € {1,..., Imax} such that R; N {1,..., ¢} # 0.
Upon receiving this query, B responds as follows.

B computes mg = H((i;,my), ..., (i, my)) and sets to = (ap + bomo)/wo,
using the j-th pair (wo,, uo, ;) from the problem instance. B also computes V; =
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Bg’ 0 C(’)0 and stores the tuple (0, V;, mo, o, M;, R;)insome searchable database
for future use.

B then chooses n random exponents s, ..., s, € ), and n random integers
1, ..., t, € Fp, and answers the query by giving to A the signature,

n
o (u(l)/jto T A B cl.’f)fk), (Ao By CP)™, ..., (Ao By CP)™,
J = k=1
to, 11, -, Iy

We show that the signature o; = (Sp, ..., Sy, fo, ..., ;) has the correct

distribution. First, it has the requisite 2n + 1 degrees of freedom, and so

is adequately randomized. Second, in the verification equation, all the factors

under the pairings cancel out, except for u(l)/;o Therefore, writing ip = O,
wo, j/(ag+by mg)

we find, [T{_oe(Sk. Ay B[ Cl) = e((uy'?). Ao By® CY) = e(g™ “0770i

wo, j 1

gaotbomo g1y = e(g 070, @) e(g 0", ) =e(g, &), as required.

A also makes ¢ distinct atomic signature queries for each of the usersi =1, ..., ¢

controlled by 5. These queries are adaptive and interleaved with the ring signature

queries.

B responds to the j-th query (i, m) on behalf of the i-th user, as follows.

It retrieves the fresh pair (w; ;, u; ;) from the Poly-SDH instance, and sets t =

(ai + b; m)/w; ;.Italso computes B also computes V = B!" Cl? and stores the tuple

@@, V, m, t, ¥, ¥) the database for future use. It then returns the Boneh—-Boyen

signature (ul.1 /jt, 1) to A.

A finally outputs a forgery o* bearing on a message vector M* = (mJ, ..., m})
and the target ring R* = {1, ..., £}, provided that (M* # M;) Vv (R* # R;) for
all queries (M, R;) made earlier. We let m§ = H((1, m}), ..., (£, m})).

The forgery o* = (S5, ..., S/, t5, ..., t;) is not valid unless Hf:o e(S;, Ai
NN Ay . _ 14

B; Cl. ) =e(g, 2),i.e.,there mustexistry, ..., rg € Fpandrg=1— Zk:l Tk
such that,

1 ri
S = (ga,+b1m,-+%ti ) fori =0,...,¢.

Fori =0, ..., ¢, letusdefine w;" = b; m;‘+c,- tl.* for the value ¢; = dlogg (C)) =a;
that would have given A the same view in the regular simulation. Let us also define
wi* = (a; + b; mY)/t} with a; and b; as chosen in the present simulation. Observe
that B3 is unable to compute any of the w, but it can and does compute all the w*.
B exploits all of this as follows. It computes V;* = (B)™ (C)i = gw;k fori =
0,..., ¢, and then searches the database for an entry (i, V;, mfj), ti(]), M;, Rj)
A ti(/) =w.

i

such that V; = V/*, or equivalently, such that b; m

There are three (possibly overlapping) possibilities for success, and one for failure:



766

. An entry was found with V; = V;* and m;

X. Boyen

. An entry was found with V; = V* and mEj ) # m] for some i: In this case, B

can resolve the Poly-SDH instance explicitly by recovering the secret exponent

o € FI”
()
(o)
o =——".
bi (m” —m?)
. An entry was found with V; = V' and m(J ) = = my: In this case, B has found a

collision in the supposedly colhs1on resistant hash function H, since we have,

)
mg *

= mg
H( f(M;, R)) ) H( f(M*, RY) )
—_— | —

((rom?) oo (fem)) 2 (L)oo (6 m))

D = m7 fori # 0: In this case, the ring
signature forgery includes a clause [VK[ : m;k] on which A had previously made
an atomic signature query (it being the j-th query to the i-th user). The forgery
is therefore inadmissible and this case may be discounted (regardless of whether

Vj = Vl* or Vj 75 Vl*)

. Noentry that matches the conditions was found in the database: This corresponds to

the event that Vi, Vj, (w} # b; m[(.'/) + ¢; tl.(j)) where ¢; = dlogg(C,-). In this case
B is stuck, because w; ¢ {w;= 1, ..., wix 4}, but from the point of view of A this
is precisely when the “regular” simulation will be able to proceed to completion.

Fair Prior Apportionment. Even though B will not know in advance which of the
“regular” and “alternative” simulation should be used, we can see that they all appear
identical to the adversary, so by a standard argument, if 5 makes a fair random choice
at the onset, the final reduction will be successful with probability %

For completeness, we mention that the alternative simulation may succeed not by
solving the Poly-SDH instance but by finding a hash collision. Since it is possible to
build (keyed) collision-resistant hash function families from CDH, and thus from SDH
or Poly-SDH, the theorem still holds without the need for a hashing assumption.

Appendix 3: Mesh Scheme Security Proofs

This section focuses on the security properties of the general mesh signature scheme of
Sect. 5.

Anonymity of the Mesh Scheme

We prove Theorem 10 using an information-theoretic argument.
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Proof of Theorem 10. 'We need to show that it is impossible to determine which assign-
ment caused Y to be satisfied in the signature o. By design of the blinding factors, the
distribution of ¢ is the uniform distribution U over the (2 ¢ 4 1)-dimensional variety of
Ff,“ x G+ defined by the mesh verification equation, i.e.,

(to, ..., te, S1, ..., Se, Py, ..., Py) EFﬁ,+l x GO+,
J 0.k Yi,0
[Te (P Aox By cin )™ -TTe (s Ano B Clio) ™" = els. 0)
k=0 i=1
i & amo Aty )P0 ¢ A A ap \ i
po)=U| AlTe(P AoxByy )™ TTe (s AuBlici)™ =1 ,
k=0 i=1
’ Y0,k Yi,o
ATe(Por Aow By )™ - Tle (s Aio B3 Cly) ™ =1
k=0 i=1
where Vi = 0, ..., £ the exponents y; y come from the polynomial coefficients of ; =
ZZ:O Yik Zk, whereasVk =0, ..., ¥ theelements A; x, B; x, C; x come from the public

verification keys VK.

First, we observe that P(o) is indeed uniform over the stated (2 £ 4+ 1)-dimensional
variety. Indeed, o lives in a (2 + ¥ + 2)-dimensional space and is subject to ¥ + 1
independent linear constraints in the verification algorithm, so it has at most 2 ¢ + 1
degrees of freedom. Conversely, for each joint random assignment to fg, ..., #; and
s1, ..., 8¢ there exists a distinct valid signature based on that assignment, and so o has
at least 2 £ 4 1 degrees of freedom, which are then as stated.

Next, we verify that P(o) is indeed independent of the true signer, and more gen-
erally of the secret linear combination vy, ..., v, that was used in the creation of o
(conditionally on Y being satisfied). This is immediate since the polynomials ; and
their coefficients y; x form a public encoding of Y determined independently of the
truth-value assignment x from which the v; derive.

Last, we note that the hash value Msg, = H([VK1 : Msgl] e, [VKgZ Msgl] ,T)
and all ancillary information adjoined to o is itself a function of public information only.
The theorem follows. O

Unforgeability of the Mesh Scheme
We prove Theorem 11 from the (g, £ 4+ 1)-Poly-SDH assumption in G.

Proof of Theorem 11. Let G = (p, G, G, Gy, g, &,e) be a bilinear instance with a
computable isomorphism i : G - G, and suppose that H : {0, 1}* — [, is a
collision-resistant hash function.

As before, we are given a random instance of the (g, ¢ + 1)-Poly-SDH prob-
lem in G, stated as £ + 1 pairs (g%, g%) fori = 0,...,¢, and (¢ + 1) g pairs

(wjj, ujj = gl/a,-+w,-,,-) fori = 0,...,¢and j = 1,...,q. Our task is to output
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£+ 1 pairs (w}, uf = g’f*/"‘i*wf) fori =0, ..., ¢, for some public choice of w} such
that wl* ¢ {wi1, ..., w; g} foralli, and some secret choice of rl.* such that Zfzo rl.* =1
(mod p). ([l

We construct an algorithm 5 that solves such instances of the Poly-SDH problem by
interacting with a black-box forger A for the mesh scheme. For simplicity, we give
sequential numbers in {1, 2, ...} to all users (that is, to all individuals that can be poten-
tially named as mesh members).

Since the adversary is static, we suppose w.l.o.g. that the target users will consist of

the set {1, ..., ¢}. Per the mesh security model, a successful forgery must bear on a
mesh expression Y over an arbitrary set of users, as long as it logically implies a weaker
expression Y’ that involves only the usersin {1, ..., £}, and no component that matches

an earlier atomic query. Recall that this is to ensure that Y" remains falsifiable even if the
adversary sets all the literals under its control to T, lest we accept a trivial forgery. We
remark that a maximally weak such Y’ representable in the language is a disjunction over
all targetusersin {1, ..., £},i.e., the ring signature disjunction Y” = \/f=1 [VKi : Msgl-].
Here, the clauses [VKi : Msgi] will be the same as in the original forgery, except for
those that were the object of earlier atomic queries in which case they are replaced by
[ VK; : Msg!] for some arbitrary Msg!. Observe that Y specifies aring signature forgery
analogous to that in the proof of Theorem 25.

Our strategy will thus be, first, to accept from A a forgery o with formula Y on some
arbitrary set of users. Next, we transform o into a pseudo-signature o’ with a weaker
formula Y’ defined as a disjunction of the clauses [VK[ : Msgi] from Y that involve no
adversarial user and match no prior atomic signature query, i.e., only clauses under the
simulator’s control are permitted in Y’; the result ¢’ is a ring signature that is technically
invalid because the clause [ VKq: mg] for the “key in the sky” pertains to the original
hash value mg = H(..., Y). Then, we transform ¢’ into an even weaker ring pseudo-
signature 0" whose formula Y is a disjunction over the entire ring R* = {1, ..., £} of
all honest users: for the latter step we simply add a clause [VK,~ : Msgl] for each user
of index i < ¢ that is missing from Y”; the messages Msg. may be arbitrary and match
Msg; from the forgery, as long as we steer clear from all messages used in atomic queries
made to VK;. From o”, which still contains the original hash mg but would otherwise
be a valid ring signature, 3 can compute a solution to the Poly-SDH instance exactly as
in Theorem 25.

It suffices to show how to respond to well-formed mesh signatures and atomic signature
queries during the adaptive query phase, and then how to effect the final transformation
o + o'+ ¢” corresponding to Y — Y’ + Y” at the end of the game.

Regular Simulation. We merely show how the regular mesh simulation generalizes
that of the basic ring signature.

To start, 3 publishes the bilinear instance G, the isomorphism v/, and the hash
function H. Furthermore, 53 chooses A + 1 random exponents zg, ..., 2 € IF;,
and for each k publishes the reference element g = (g%0)%, based on the value of
£ given in the Poly-SDH instance. This also induces g = (g%0)%* = vr(gx), for
k=0,...,A.
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Additionally, B publishes the verification key “in the sky,” consisting of 3 (A + 1)
elements A() k= (g¥0)d0k, B() k=28 bo.x C() k = &0k withrandomag x, bo k, co.x €
IF; fork =0, ..., L. (Notice that the Ao,k are powers of g% given in the Poly-SDH

instance, while the By x and Cy 4 are mere powers of g.)

B gives A the public keys of the first £ users. To do so, foreachi = 1,..., ¢, it
draws random exponents b;, ¢; € IE‘; and publishes A; y = (§%)%*, By = ghi
CA’,-,k = g% fork =0,..., A (Here, the Ai‘k derive from the g% from the Poly-
SDH instance, whereas the éi r and C i.k are known powers of g.)

A gives B the public keys of the users it controls, of indices i = (£ + 1), ..., Inax,
during the course of queries. For each such i, a key consists of 3 (A + 1) elements
Az,k, iks Cl kfork=0,.

It must be the case that dloggo (A,,()) =...= dlogé;.h(A,-,;L), and similarly for the
f?,',k and the CA‘,-,k, which the simulator can easily verify using the pairing.

A makes g5 = ¢ distinct mesh signature queries to B, one at a time, proceeding
adaptively.

Each query is a well-formed mesh statement Y to be signed by any coalition of
users that can satisfy Y. Let n be the number of mesh literals Ly, ..., L,, and let
the corresponding clauses be [ VK;, : m], . [VK,H : my|. We require that Y be
unsatisfiable using only clauses with user indlces ij > £, otherwise the adversary
should be able to create a signature without having to query for it. (We remark that
the simulator is still able to respond even in this case, using the signing key “in the
sky,” but chooses not to do so.)

The adversary may also specify, as part of the query, an atomic signature (u, t;)
onm  for any number of users i; > £ in its control. This is to simulate the scenario
where the signer wishes to make use of atomic signatures on messages it knows, e.g.,
PKI certificates on designated users’ keys, but lacks the ability to create different
signatures on those messages. (In the simulation, B simply ignores the given u;
and uses the ¢; instead of random values.)

B responds to a well-formed j-th query very much as in the ring signature simulation
of Theorem 25. The differences are as follows.

First, B creates Y = Y V Lo where L corresponds to the proposition [ VK : mg]
with mg = H([VK;: Msg,]....,[VKy: Msg,],Y), per the mesh scheme. B
computes a representation of Y as a list of degree-1 polynomials o, ..., 7, €
FylZo, ..., Zy] with coefficients y; € F),.

Next, B satisfies T with a truth assignment such that x(Log) = T and x(L;) =
L everywhere else. Accordingly, B uses the (0, j)-th pair (wo, j, uo,;) from the
Poly-SDH instance to obtain an atomic signature on m( under a combination of
the keys “in the sky” expressed by the polynomial 7ry. Precisely, it defines ap =
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ZZ:O ao,k Yo.k» by = ZZ:O b(),k Y0,k»CO = ZZ:O €0,k Y0,k > and builds the signature
as: (ug = u(),jl/”o, th = W)ﬁj

Then, B runs the mesh signing algorithm as in the real scheme, based on the 7r; and v;
it has. Specifically, B takes f(, chooses 1, . . ., t, at random (or uses the A-specified
values for them), and computes S;,, ..., S;, and Py, ..., Py as in the real scheme.
It can do so without knowing any signing key because v; = 0 for all users i # 0;
however, the mesh prototype it obtains is invalid precisely for that reason. (The
only nonzero coefficient in the linear combination is the coefficient v that applies
to the polynomial g, but the signing algorithm of Sect. 5.3 purposely ignores it
since in real life it is always zero. For T = Y V Lo, the algorithm of Sect. 5.1 gives
o = Zo, and thus vg = 1 per Lemma 8 since all other coefficients are zero. The
simulator needs to incorporate vy manually into the prototype signature.)

Thus, B has to amend the prototype to turn it into a valid mesh signature. This is
done by multiplying u( into the component Py. Indeed, because the prototype so
far contains only blinding factors and no actual signature, the left-hand sides of
all the verification equations resolve to 1 € Gy, including the main equation (the
one involving Pp), which should equate to e(g, g9) € Gy instead. A substitution
of u(v)o Py = ug Py for the prototype’s Py effects the desired correction without
disturbing the other equations.

The resulting mesh signature is given to A. It is valid, and uniformly distributed
over the correct space, as we count 2 n + 1 degrees of freedom amongits 2n+9 +1
components.

A also makes g5; = ¢ distinct atomic signature queries for eachuseri = 1,...,¢
controlled by B; these can be arbitrarily interleaved with the ring signature queries.
B responds to the j-th query (i, m) to the i-th user, by retrieving the (i, j)-th pair
(wj, j, u;, j) from the Poly-SDH instance, computing t = (w; ;j — b; m)/c;, and
returning the Boneh—Boyen signature (u; ;, t) to A.

A finally outputs a forgery o = (to, ..., t, S1, ..., Su, Po, ..., Py) bearing on
a well-formed mesh statement Y such that Y = Y’ for some other well-formed
statement Y that involves only users of indices i < ¢ and no clause that matches
an earlier atomic query. W.Lo.g., we can assume that Y’ is a disjunction, since
every well-formed formula in the language can be weakened into a disjunction of
its inputs.

B performs the first transformation Y + Y’ by eliminating from o the components
of user indices i > £, or those that match an atomic query, which will produce a
ring pseudo-signature o’ on the disjunction Y’. The process amounts to performing

6 Notice that, unlike the user keys which have a lot of internal structure (exhibited by the many obvious dis-

cret

e log relations), the various components of the key “in the sky” are independently distributed and so a signa-

ture that will verify under one triple (Ao, ks éO,kl , I§0, k) will not verify under another (A(), ks BOJQ, 1§0, k)

Wh

at we need is a signature that will verify for the particular combination of such triples given by the coeffi-

cients of (.

71t can also be shown that for ¥ = TV Lg, the algorithm of Sect. 5.1 always gives 19 = Z(, and so we have

yo.k = 0 for k # 0. It follows that the public key “in the sky” only needs one triple (AO,Oa E’O,O’ EO,O) instead
of A4+ 1 > ¥ + 1 of them. We omit this optimization from the present proof to avoid further complicating the
argument, but since it greatly shortens the CRS we explicitly recommend its use in Sect. 5.5.
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Gaussian elimination of every variable S; that corresponds to an undesirable clause,
in the linear system that lives “in the exponents” of the verification equations. Each
step of the Gaussian elimination will “consume” exactly one of the ¥ supplemental
verification equation (i.e., those that involve some Py for k # 0), with the aim of
eliminating one of the remaining offending S;, thus chosen as our “pivot.” As in
classical Gaussian elimination, only an S; whose coefficient y; x # O at the end of
a previous step can serve as pivot and hence be eliminated by consuming the next
equation in Py. Observe that we do not eliminate Py. A straightforward argument
shows that if ¥ = Y’ where Y’ represents a disjunction over Ly, ..., L¢, then a
pseudo-signature corresponding to Y’ can be obtained by the Gaussian elimination
process (“pseudo” because, once again, the hash value mg is not updated in the
process). We now describe Gaussian elimination “in the exponent”.

Suppose w.l.0.g. that BB seeks to eliminate S,, from o, where S,, appears with expo-
nent y, » 7 0 in the equation that involves Py, i.e.,

n .
e (Pﬂ, f)()) -He (S,', (Ai,ﬂ élmé éffﬁ)ylﬁ) =1.

i=1

The idea is to find a linear combination that will cancel out S, in the main equation,
ie.,

n

. A A An \Yi0 .
e (Po. %) - [Te (81 (Aio B Cfo) ™) = ets. 0.

i=1

This is easy to do once we observe that (A; g f?lmé CA'ffl,)ZO = (Ao f?lm(’) CA'Z'O)Z" for
alli = 1,...,n. We raise both sides of the Py equation (on top) to the power of
p = %, and divide the result into the main equation, causing the pairing with
S, to vanish. We then consolidate the new terms into the existing ones to preserve

the form of the equation. That is, we let Py = Py/ Plf replace the ratio of Py and P/,

and foralli = 1,...,n — 1, we merge the ratio of e(S;, (A; o B™ C" )¥i0) and
g 020 %i0
A A A ~ A A @y,
e(Si, (Aiy By Cl1y)0)P = e(S;, (Ao B C/')” "), into the one pairing
N A At Ny . . . .
e(Si, (Aio By Ci'o)"0) by letting ] o = yio—p 2 yi,o = Yio— 3" vi.o. Notice

that y,’z’0 = 0 is evidence that S, has vanished from the equation.

We similarly eliminate S,, from each of the remaining verification equations, for
k =1,..., 9 —1,using the same technique. This produces new points P, to replace
the old Py, as well as new exponents ylf‘ (foralli =0,...,n—1toreplace the y; 1.
The signature o has been transformed into (tg, ..., #—1,S1,..., Su—1, Pé, R
Pé_l ), which has three fewer components.

After ¢ iterations of this process, we obtain a signature (fo, ..., f,—g, S1, .-,
Sn—v, P{), which corresponds to a mesh statement Y’ which is a flat disjunction
of n — ¥ + 1 inputs. We have thus obtained a ring signature over a ring of size
n — ¥ plus the user “in the sky.” We can rename the component P’ as Sy and
rearrange the signature into the familiar form o’ = (Sg, ..., Sp—, 05 -+ - » ln—p),
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which represents a disjunction, and should only contain target users and honest
clauses if the original forgery was admissible in the first place.

B then performs the second transformation Y’ +— Y”. Starting from ¢’, it expands
the ring to cover all £ users, by adding dummy signatures by the missing users on
arbitrary messages: this is done by adding S; components for randomly chosen ¢;.
Since these dummy signature components need not (and must not) contribute to the
final output, they consist only of a blinding factor that is easy to cancel in an existing
S;, using the usual reciprocity trick under the pairing. We finally obtain a ring
pseudo-signature o” = (19, ..., t7, So, ..., S¢) for the full ring R* = {1, ..., £} of
honest users plus the verification key “in the sky.”

The final step of the reduction is to turn o” into a solution to the Poly-SDH problem.
We omit the description of this step as it is exactly the same as in the regular
simulation in Theorem 25, once B3 has removed whichever (known) exponent yl” 0
still remains in each S;.

We already mentioned that the ring pseudo-signature ¢” is technically invalid
since the message mg borne by the key “in the sky” is the hash value mg =
H([VK1 : Msgl] ey [VKn: Msgn] , T) from the original mesh specification Y, and
not Y. This does not affect the final reduction.

However, just as in the proof of Theorem 25, for some i € {0, ..., ¢} the forgery
message m; could induce a value w € {w; 1, ..., w; ]} that was already given in the
Poly-SDH instance (using the w; notation from Theorem 25). If the component §; can
be eliminated by the above process, then all is well. Otherwise, we need an alternative
reduction from the same mold as in Theorem 25.

Alternative Simulation. The alternative reduction works only on a final forgery that
“matches” one of the Poly-SDH pairs that was given to the simulator, in the sense that
it corresponds to a value wa‘ € {wo,1, ..., wo,q}. In this case, the simulator can either
recover the Poly-SDH secret exponent «, or find a collision under the hash function H.

The simulation proceeds as in the ring signatures of Theorem 25, based on the same
judicious choice of known and unknown discrete logarithms to let the final reduction go
through. As in the regular simulation above, there are two main difficulties compared to
the ring signature case:

1. We need to answer queries not for ring signatures but for more complicated mesh
signatures. This is easy to do by using the signing key “in the sky” and the method
described in the regular mesh simulation above, except for how the atomic signature
of index 0 is created. Here, the simulator knows the discrete logarithm of Ay and
By instead of By and Cp, and so the atomic signature is constructed as in the
alternative simulation for ring signatures.

Queries on atomic signatures for the £ honest users are answered using the lists of
pairs for values of i =1, ..., £, as the alternative simulator in the ring proof.

2. We need to transform the final mesh forgery (provided it is admissible) into a ring
forgery that exactly covers the target users {1, . .., £}. The transformation operates
in two steps analogous to those of the regular mesh simulation, except for a minor
modification: in order for the final reduction to work, the simulator must arrange
to know the discrete logarithms of the private key components A; and B;, instead
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of 13’,- and éi. However, this does not affect the transformation, which exploits a
different set of discrete logarithms, namely the zj.

Success Probability. The important point that justifies that either the regular or the
alternative simulation will give the desired result, is that in both cases the final reduced
ring signature ¢ still contains a component of index O that bears on a hash mg of
the full unretouched mesh specification Y given by the forger (and with the pristine
original randomizer #(, too). Since it is those values and the given Poly-SDH instance
that determine which of the regular and alternative simulations will work, we have the
desired perfect dichotomy.

We conclude that if B chooses one at random at the onset, the overall success proba-
bility of the reduction (conditionally on A’s success) will be % (I
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