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Abstract. We analyse the convergence of numerical schemes in the GDM–

ELLAM (Gradient Discretisation Method–Eulerian Lagrangian Localised Ad-
joint Method) framework for a strongly coupled elliptic-parabolic PDE which

models miscible displacement in porous media. These schemes include, but

are not limited to Mixed Finite Element–ELLAM and Hybrid Mimetic Mixed–
ELLAM schemes. A complete convergence analysis is presented on the cou-

pled model, using only weak regularity assumptions on the solution (which are
satisfied in practical applications), and not relying on L∞ bounds (which are

impossible to ensure at the discrete level given the anisotropic diffusion tensors

and the general grids used in applications).

1. Model and assumptions

We consider the following coupled system of partial differential equations, mod-
elling the miscible displacement of one fluid by another in a porous medium:

divu = q+ − q− on Q := Ω× (0, T )

u = − K

µ(c)
∇p on Q

(1a)

φ
∂c

∂t
+ div(uc−D(x,u)∇c) + q−c = q+ on Q (1b)

with unknowns p(x, t),u(x, t), and c(x, t) which denote the pressure of the mixture,
the Darcy velocity, and the concentration of the injected solvent, respectively. The
functions q+ and q− represent the injection and production wells respectively, and
D(x,u) denotes the diffusion–dispersion tensor

D(x,u) = φ(x) [dmI + dl|u|E(u) + dt|u| (I− E(u))] with E(u) =

(
uiuj
|u|2

)
i,j

.

Here, dm > 0 is the molecular diffusion coefficient, dl > 0 and dt > 0 are the
longitudinal and transverse dispersion coefficients respectively, and E(u) is the
projection matrix along the direction of u. Also, K is the symmetric, bounded
uniformly coercive diffusion tensor, and µ(c) = µ(0)[(1 − c) + M1/4c]−4 is the
viscosity of the fluid mixture, where M = µ(0)/µ(1) is the mobility ratio of the
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2 HANZ MARTIN CHENG, JÉRÔME DRONIOU, AND KIM-NGAN LE

two fluids. As usually considered in numerical tests, we take no-flow boundary
conditions:

u · n = (D∇c) · n = 0 on ∂Ω× (0, T ). (1c)

The concentration equation is completed by an initial condition, and the pressure
equation by an average condition:

c(x, 0) = cini for all x ∈ Ω,

∫
Ω

p(x, t)dx = 0 for all t ∈ (0, T ).

Problem (1) is used in enhanced oil recovery. Exact solutions of this model are
usually inaccessible, especially with data as encountered in applications; thus the
design and convergence analysis of numerical schemes for (1) is therefore of par-
ticular importance. The main purpose of this work is to provide a GDM–ELLAM
(Gradient Discretisation Method–Eulerian Lagrangian Localised Adjoint Method)
framework for model (1) and to establish convergence of numerical schemes that
fall under this framework. Some of the schemes covered by this framework are the
Mixed Finite Element–ELLAM and Hybrid Mimetic Mixed–ELLAM schemes. An
overview of studies and analysis involving ELLAM schemes is presented in [30].
Convergence analysis was performed for MFEM–ELLAM schemes (or similar) in
[5, 31]. We note here that [5] only considers the concentration equation (1b) (assum-
ing that u is given), whereas [31] provides error estimates for the complete coupled
model (1). However, these analysis were carried out under restrictive regularity as-
sumptions on the porosity φ and on the solution (p,u, c) to the model; in particular,
the minimal assumptions in [31] are c ∈ H1(0, T ;H2(Ω)) ∩ L∞(0, T ;W 2,r(Ω)) (for
r > 2) and u ∈W 1,∞(Ω× (0, T )), and [5] supposes that c,D∇c ∈ C1(0, T ;H1(Ω))
and φ,u ∈ W 1,∞(Ω× (0, T )). However, in reservoir modeling, transitions between
different rock layers are usually discontinuous; thus, the permeability may vary
rapidly over several orders of magnitude, with local variations in the range of 1mD
to 10D, where D is the Darcy unit [28]. Due to this discontinuity of K, the solutions
to (1) cannot expect to satisfy the regularity conditions stated above. Actually, all
reported numerical tests [8, 9, 11, 32] seem to have been on tests cases for which
such regularity of the data and/or the solutions do not hold.

More recent developments of ELLAM techniques involve Volume Corrected Char-
acteristic Mixed Methods (VCCMM), which are, in essence, ELLAM schemes with
volume adjustment to achieve local mass conservation. Convergence analysis, as
well as stability, monotonicity, maximum and minimum principles for these schemes
have been studied in [3, 4]. However, these studies only consider a single pure advec-
tion model (that is, (1b) with D = 0), and assume the regularity u ∈ C1(Ω×(0, T )),
which, as explained above, is not expected in applications. Without accounting for
diffusion, the maximum principle is accessible, and thus the analysis strongly ben-
efits from the resulting L∞ bounds on the approximate solution. On the contrary,
in the presence of anisotropic heterogeneous diffusion K and D(u), and on grids
as encountered in applications, constructing schemes that satisfy the maximum
principle is extremely difficult – to this day, only nonlinear schemes are known to
preserve the maximum principle in general, and even these do not necessarily have
nice coercivity features [14].

As a matter of fact, the convergence analysis of numerical approximations of (1)
under weak regularity assumptions has recently received an increasing interest; see,
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e.g., [8, 10] for finite volume methods and [25, 29] for discontinuous Galerkin meth-
ods. It therefore seems natural to consider doing such an analysis for characteristic-
based discretisation of the advection term. This leaves open the choice of partic-
ular discretisations of the diffusion terms in the model. Instead of selecting one
particular discretisation of these terms, we work inside a framework that enables a
simultaneous analysis of various such discretisations.

The Gradient Discretisation Method is a generic framework to discretise diffusion
equations [16]. It consists in replacing, in the weak formulation of the equation, the
continuous space and functions/gradients by a discrete space and reconstructions
of functions/gradients. This space together with the reconstruction operators are
called a gradient discretisation (GD). The convergence of the resulting scheme is
ensured under a few properties (3 or 4, depending on the non-linearities in the
model) on the GDs. The efficiency of the GDM is found in its flexibility: various
choices of GDs lead to various classical methods (conforming and non-conforming
finite elements, finite volumes, etc.), which means that the analysis carried out in
the GDM directly applies to all these methods at once.

The main contributions of this work are

• Presentation of a GDM–ELLAM framework for the complete coupled model
(1), which covers a variety of discretisations of the diffusion terms.
• Convergence analysis that only relies on energy estimates based on coer-

civity but not maximum principle, and is therefore adapted to anisotropic
heterogeneous diffusion on generic grids as encountered in applications.
• Analysis carried out under weak regularity assumptions on the data, as

seen in previously reported numerical tests on various schemes for (1).

The paper is made up of two main components, a conclusion and an appen-
dix. The first main component (Sections 2 to 4) focuses on the presentation of
the GDM–ELLAM, the main convergence result, and numerical schemes that fall
into this framework; whereas the second component (Sections 5 to 7) establishes
properties on the flows, a priori estimates on the solution to the scheme, and prove
its convergence by using compactness techniques. The conclusion (Section 8) re-
calls the main elements of the paper, and the appendix (Section 9) contains a few
technical compactness results.

We start by presenting the weak formulation of the model (1). This is followed
by Section 2, which gives a short overview of the gradient discretisation method,
together with some standard properties which ensure the convergence of the gradi-
ent schemes. Section 3 then presents the GDM–ELLAM for the model (1), followed
by the main results: existence and uniqueness of the solution to the scheme, and its
convergence to the weak solution of (1) under weak regularity assumptions. Section
4 then gives some of the numerical schemes that are covered by the GDM–ELLAM
framework, together with proofs on why they satisfy the regularity assumptions.

Since ELLAM schemes are based on characteristic methods, we need to solve
characteristics along which the solution flows. The properties of the flow (described
by the characteristics), together with some estimates that come with it, are pre-
sented in Section 5. These properties are not trivial to establish due to the weak
regularity assumptions. A priori estimates are then obtained in Section 6, which
lead us to compactness arguments that will help establish the proof of convergence.
Finally, we prove our convergence result in Section 7. The ELLAM discretisation
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of the advection term makes the energy estimates and the convergence analysis
of the corresponding terms rather tricky. The fine results from Sections 5 and 6
are instrumental to obtain the major estimates and the proper convergence of the
advection term. We also note that, at the core of our convergence analysis lies
some generic compactness results of [16], which are flexible enough to be used even
outside a purely GDM framework (as in the GDM–ELLAM framework here).

Throughout the article we assume the following properties, satisfied by D, K
and µ previously described.

cini ∈ L∞(Ω) and q+, q− ∈ L∞(Ω× (0, T )) with |q+| ≤Mq+ , |q−| ≤Mq− . (2a)

φ is piecewise smooth on a mesh, and there exists φ∗, φ
∗ > 0 such that

φ∗ ≤ φ ≤ φ∗ on Ω.
(2b)

A = K/µ is Carathéodory and there exists αA and ΛA s.t. for a.e. x ∈ Ω,

∀(s, ξ) ∈ R× Rd : A(x, s)ξ · ξ ≥ αA|ξ|2 and |A(x, s)| ≤ ΛA.
(2c)

D is Carathéodory and there exists αD and ΛD s.t. for a.e. x ∈ Ω,

∀ξ, ζ ∈ Rd : D(x, ζ)ξ · ξ ≥ αD(1 + |ζ|)|ξ|2 and |D(x, ζ)| ≤ ΛD(1 + |ζ|).
(2d)

Here, “Carathéodory” means measurable with respect to x and continuous with
respect to the other variables. In (2b) as well as (A4) below, “mesh” is to be
understood in the simplest intuitive way: a partition of Ω into polygonal (in 2D)
or polyhedral (in 3D) sets. Under these assumptions, we consider the following
standard notion of weak solution to (1) (see, e.g., [24]).

Definition 1.1 (Weak solution to the miscible displacement model). A couple (p, c)
is a weak solution of (1) if

p ∈ L∞(0, T ;H1(Ω)) ,

∫
Ω

p(x, t)dx = 0 for a.e. t ∈ (0, T ), and∫ T

0

∫
Ω

K(x)

µ(c(x, t))
∇p(x, t) · ∇ψ(x, t)dxdt

=

∫ T

0

∫
Ω

(q+(x, t)− q−(x, t))ψ(x, t)dxdt , ∀ψ ∈ C∞(Ω× [0, T ]),

(3)

and, setting u(x, t) = − K(x)
µ(c(x,t))∇p(x, t),

c ∈ L2(0, T ;H1(Ω)) , (1 + |u|)1/2∇c ∈ L2(Ω× (0, T ))d ,

−
∫

Ω

φ(x)cini(x)ϕ(x, 0)dx−
∫ T

0

∫
Ω

φ(x)c(x, t)
∂ϕ

∂t
(x, t)dxdt

+

∫ T

0

∫
Ω

D(x,u(x, t))∇c(x, t) · ∇ϕ(x, t)dxdt

−
∫ T

0

∫
Ω

c(x, t)u(x, t) · ∇ϕ(x, t)dxdt+

∫ T

0

∫
Ω

q−(x, t)c(x, t)ϕ(x, t)dxdt

=

∫ T

0

∫
Ω

q+(x, t)ϕ(x, t)dxdt , ∀ϕ ∈ C∞c (Ω× [0, T )).

(4)



ANALYSIS OF A FAMILY OF ELLAM FOR MISCIBLE DISPLACEMENT 5

Remark 1.2 (Injection concentration and gravity). The model (1) assumes an
injection concentration of 1 and neglects the gravity effects. A generic injection
concentration ĉ could be considered upon the trivial modification q+ ; ĉq+ in (1b).
To include gravity effect, we would have to set u = − K

µ(c) (∇p − ρ(c)g) (with ρ a

continuous function). The analysis we conduct thereafter can easily be adapted to
both changes.

2. Brief presentation of the gradient discretisation method

The gradient discretisation method (GDM) is a discretisation method for diffu-
sion equations which consists in replacing, in the weak formulation of the PDE, the
continuous space and time operators by discrete counterparts [16]. These discrete
elements are given by what is a called a gradient discretisation (GD). The conver-
gence of the resulting schemes (called gradient schemes (GS)) can be established
under a few assumptions on the gradient discretisations. We give here a brief pre-
sentation of GDs and the standard properties that ensure the convergence of the
corresponding GSs for standard elliptic and parabolic PDEs. In the rest of the
paper, the notations Lp(X) and Lp(0, T ;Lq(X)) are sometimes also used in lieu of
Lp(X)d and Lp(0, T ;Lq(X))d.

Definition 2.1 (Space and space–time gradient discretisations). A space gradient
discretisation for no-flow boundary conditions is D = (XD,ΠD,∇D), where

• the set of discrete unknowns XD is a finite dimensional vector space on R
• the function reconstruction ΠD : XD → L∞(Ω) is linear
• the gradient reconstruction ∇D : XD → L∞(Ω)d is linear.

The operators ΠD and ∇D must be chosen so that

‖v‖D :=

(
‖∇Dv‖2L2(Ω) +

∣∣∣∣∫
Ω

ΠDv(x)dx

∣∣∣∣2
) 1

2

is a norm on XD.
A space–time gradient discretisation is DT = (D, ID, (t(n))n=0,...,N ) such that D

is a space GD, 0 = t(0) < · · · < t(N) = T are time steps, and ID : L∞(Ω)→ XD is
an operator used to interpolate initial conditions onto the unknowns.

Considering for example (3) and replacing the space H1(Ω) with XD, the func-
tions by reconstructions using ΠD and the gradients by reconstructions ∇D, we
obtain the corresponding gradient scheme (6). The simplest example of a GD
can be described by considering P1 finite elements on a simplicial mesh. A vec-
tor v ∈ XD is made of vertex values (vs)s vertex of the mesh, ΠDv is the continuous,
piecewise linear reconstruction from these values, and ∇Dv is the standard gradient
of this reconstruction. Other examples of GDs are given in Section 4.

The accuracy of a GD and convergence properties of the resulting GS are mea-
sured through three parameters, that respectively correspond to a discrete Poincaré–
Wirtinger constant, an interpolation error, and a measure of defect of conformity
(error in a discrete Stokes formula):

CD = max
v∈XD

‖ΠDv‖L2(Ω)

‖v‖D
, (5)

∀ϕ ∈ H1(Ω) , SD(ϕ) = min
v∈XD

(‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)),
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∀φ ∈ Hdiv(Ω) , WD(φ) = max
v∈XD\{0}

∣∣∣∣∫
Ω

(∇Dv(x) · φ(x) + ΠDv(x)divφ(x)) dx

∣∣∣∣
‖v‖D

.

Definition 2.2 (Properties of GDs). A sequence (Dm)m∈N of space gradient dis-
cretisations is

• coercive if there exists Cp ∈ R+ such that CDm ≤ Cp for all m ∈ N,
• GD-consistent if, for all ϕ ∈ H1(Ω), SDm(ϕ)→ 0 as m→∞,
• limit-conforming if, for all φ ∈ Hdiv(Ω), WDm(φ)→ 0 as m→∞,
• compact if for any sequence vm ∈ XDm such that (‖vm‖Dm)m∈N is bounded,

the sequence (ΠDmvm)m∈N is relatively compact in L2(Ω).

A sequence of space–time gradient discretisations (DTm)m∈N is coercive, limit-confor-
ming or compact if its underlying sequence of space gradient discretisations satisfy
the corresponding property. Finally, (DTm)m∈N is GD-consistent if the underlying
sequence of spatial GDs is GD-consistent and if

• with δt
(n+ 1

2 )
m = t

(n+1)
m − t(n)

m , maxn=0,...,Nm−1 δt
(n+ 1

2 )
m → 0 as m→∞,

• for all ϕ ∈ L∞(Ω), (ΠDmIDmϕ)m∈N is bounded in L∞(Ω) and converges to
ϕ in L2(Ω) as m→∞.

Remark 2.3. Actually, the limit-conformity or compactness of a sequence of space
GDs implies its coercivity. The latter is however explicitly mentioned as a bound
on CDm is useful throughout the analysis.

In the GDM, the interpolant ID is usually defined on L2(Ω); in the context of
Problem (1), the initial condition is always assumed to be bounded and it is therefore
natural to only consider interpolants of initial conditions in L∞(Ω).

If D is a space GD, 0 = t(0) < · · · < t(N) = T are time steps and z =
(z(n))n=0,...,N ∈ XN+1

D , we define the space–time reconstructions ΠDz ∈ L∞(Ω ×
(0, T )), Π̃Dz ∈ L∞(Ω× (0, T )) and ∇Dz ∈ L∞(Ω× (0, T ))d by

∀n = 0, . . . , N − 1 , ∀t ∈ (t(n), t(n+1)] , for a.e. x ∈ Ω ,

ΠDz(x, t) = ΠDz
(n+1)(x) , Π̃Dz(x, t) = ΠDz

(n)(x)

and ∇Dz(x, t) = ∇Dz(n+1)(x).

3. GDM–ELLAM scheme and main result

The diffusion terms in (1a) and (1b) are discretised by the gradient discretisa-
tion method. This enables us to carry out a unified convergence analysis for many
different numerical discretisations of these diffusion terms. There are grounds for
considering possibly different GDs for each equation in (1) (see e.g. Section 4.1.1).
We therefore take a space gradient discretisation P = (XP ,ΠP ,∇P) for the pres-
sure, and a space–time gradient discretisation CT = (C, ID, (t(n))n=0,...,N ) for the
concentration.

From here onwards, the variables x and t may be dropped in the integrals when
there are no risks of confusion.

Definition 3.1 (GDM–ELLAM scheme). The gradient scheme for (1) reads as:

find (p(n))n=1,...,N ∈ XN
P and (c(n))n=0,...,N ∈ XN+1

C such that c(0) = ICcini and,
for all n = 0, . . . , N − 1,
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i) p(n+1) solves∫
Ω

ΠPp
(n+1) = 0 and∫

Ω

A(x,ΠCc
(n))∇Pp(n+1) · ∇Pz =

∫
Ω

(q+
n − q−n )ΠPz , ∀z ∈ XP

(6)

where q±n (·) = 1

δt(n+1
2
)

∫ t(n+1)

t(n) q±(·, s)ds (or, alternatively, q±n = q±(t(n)) if

q± are continuous in time).

ii) A Darcy velocity u
(n+1)
P is reconstructed from p(n+1) and, to account for

the advection term in the concentration equation, the following advection
equation is considered; it defines space-time test functions from chosen final
values:

φ∂tv + u
(n+1)
P · ∇v = 0 on (t(n), t(n+1)) , with v(·, t(n+1)) given. (7)

iii) Setting U
(n+1)
P = A(x,ΠCc

(n))∇Pp(n+1) and using a weighted trapezoid rule

with weight w ∈ [0, 1] for the time-integration of the source term, c(n+1)

satisfies

For all z ∈ XC, setting v the solution to (7) with v(·, t(n+1)) = ΠCz,∫
Ω

φΠCc
(n+1)ΠCz −

∫
Ω

φΠCc
(n)v(t(n))

+ δt(n+ 1
2 )

∫
Ω

D(x,U
(n+1)
P )∇Cc(n+1) · ∇Cz

+ wδt(n+ 1
2 )

∫
Ω

ΠCc
(n)v(t(n))q−n + (1− w)δt(n+ 1

2 )

∫
Ω

ΠCc
(n+1)ΠCzq

−
n+1

= wδt(n+ 1
2 )

∫
Ω

q+
n v(t(n)) + (1− w)δt(n+ 1

2 )

∫
Ω

q+
n+1ΠCz,

(8)

where q±N = q±N−1 if these quantities are defined by averages on time inter-

vals (there is no time interval (t(N), t(N+1))).

Remark 3.2. Using a weighted trapezoid rule for the time discretisation of the
reaction/source terms is essential to obtain an accurate numerical scheme [2, 11].

Defining the flow Ft such that, for a.e. x ∈ Ω,

dFt(x)

dt
=

u
(n+1)
P (Ft(x))

φ(Ft(x))
for t ∈ [−T, T ], F0(x) = x, (9)

the solution to (7) is understood in the sense: for t ∈ (t(n), t(n+1))] and a.e. x ∈
Ω, v(x, t) = v(Ft(n+1)−t(x), t(n+1)). Hence, in (8), v(·, t(n)) = ΠCz(Fδt(n+1/2)(·)).
Under Assumptions (2b) and (A4) below, the existence and uniqueness of the flow

is discussed in Lemma 5.1. We note that Ft depends on n through u
(n+1)
P , but this

dependency is not explicitly indicated when there is no risk of confusion.

The convergence theorem is established under the following assumptions. We
show in Section 4 that various finite element and finite volume methods are given
by GDs that satisfy these assumptions.



8 HANZ MARTIN CHENG, JÉRÔME DRONIOU, AND KIM-NGAN LE

(A1) (Pm)m∈N and (CTm)m∈N are coercive, GD-consistent and limit-conforming
sequences of space–time GDs, and (CTm)m∈N is moreover compact. Denoting

by 0 = t
(0)
m < · · · < t

(Nm)
m = T the time steps of Cm, it is assumed that

there exists Mt ≥ 0 such that, for all m ∈ N and n = 1, . . . , N − 1,

δt(n+1/2)
m ≤Mtδt

(n−1/2)
m .

(A2) There exists MF ≥ 0 such that, for all m ∈ N, z ∈ XCm , all n = 0, . . . , Nm−
1, and all s ∈ [−T, T ],

‖ΠCmz(Fs)−ΠCmz‖L1(Ω) ≤MF |s|
∥∥∥u(n+1)
Pm

∥∥∥
L2(Ω)

‖∇Cmz‖L2(Ω) .

(A3) For all m ∈ N there is an interpolant JCm : C∞(Ω)→ XCm such that, for all
ϕ ∈ C∞(Ω), as m → ∞, ∇CmJCmϕ → ∇ϕ in L4(Ω)d and ΠCmJCmϕ → ϕ
in L∞(Ω).

(A4) There exists Mdiv > 0 such that, for all m ∈ N and n = 0, . . . , Nm − 1,

u
(n+1)
Pm ∈ Hdiv(Ω) is piecewise polynomial on a mesh, u

(n+1)
Pm ·n = 0 on ∂Ω,

and |divu
(n+1)
Pm | ≤Mdiv on Ω.

(A5) If (pm, cm) ∈ XNm
Pm ×X

Nm+1
Cm is a solution to the GDM–ELLAM scheme with

(P, CT ) = (Pm, CTm) and uPm : Ω × (0, T ) → Rd is defined by uPm(·, t) =

u
(n+1)
Pm for all t ∈ (t

(n)
m , t

(n+1)
m ) and n = 0, . . . , Nm − 1, then, when (A1)–

(A4) hold:
(a)

∥∥uPm∥∥L∞(0,T ;L2(Ω))
≤ Cm ‖∇Pmpm‖L∞(0,T ;L2(Ω)) with (Cm)m∈N boun-

ded.
(b) if p ∈ L2(0, T ;H1(Ω)) and c ∈ L2(Ω×(0, T )) are such that, as m→∞,

ΠDmpm → p, ΠCmcm → c and ∇Pmpm → ∇p in L2(Ω × (0, T )), then
uPm → u = − K

µ(c)∇p weakly in L2(Ω× (0, T ))d.

Theorem 3.3 (Convergence of the GDM–ELLAM scheme). Under Assumptions

(2) and (A1)–(A5), for any m ∈ N there is a unique (pm, cm) ∈ XNm
Pm × X

Nm+1
Cm

solution of the GDM–ELLAM scheme with (P, CT ) = (Pm, CTm). Moreover, up to a
subsequence as m→∞,

• ΠPmpm → p and ∇Pmpm → ∇p weakly-∗ in L∞(0, T ;L2(Ω)) and strongly
in Lr(0, T ;L2(Ω)) for all r <∞,
• ΠCmcm → c weakly-∗ in L∞(0, T ;L2(Ω)) and strongly in Lr(0, T ;L2(Ω))

for all r <∞,
• ∇Cmcm → ∇c weakly in L2(Ω× (0, T ))d,

where (p, c) is a weak solution of (1).

Remark 3.4 (About the assumptions). Assumption (A1) is standard in analysis
of gradient schemes, except for the assumption on the time steps, which is not very
restrictive in practice (it is for example satisfied by uniform time steps, used in most
numerical tests on (1), see e.g. [8, 32]). Assumption (A2) is probably the most
technical to check for specific methods; we however provide two results (Lemmas
5.3 and 5.5) which show that it is satisfied for a wide range of conforming or
non-conforming methods. Assumption (A3) is satisfied by all standard interpolants
associated with numerical methods for diffusion equations. Assumption (A4) is
natural given the pressure equation (1a) and the boundedness assumption (2a) on q+

and q−. Finally, Assumption (A5) is also rather natural since it is expected that the
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reconstructed Darcy velocity uP is closely related to the reconstructed concentration
ΠCc and pressure gradient ∇Pp.

Remark 3.5 (One GD per time step). In some particular cases, most notably the
discretisation via mixed finite elements (see Section 4.1.1), the gradient discretisa-
tion P changes with each time step. Each equation (6) is written with a specific
gradient discretisation P(n+1). Hence, the choice P of a gradient discretisation for
the pressure actually amounts to choosing a family P = (P(i))i=1,...,N . Theorem
3.3 remains valid provided that the coercivity, GD-consistency and limit-conformity

of a sequence (Pm)m∈N = ((P(i)
m )i=1,...,Nm)m∈N of such families of GDs are defined

as in Definition 2.2 with

CPm = max
i=1,...,Nm

CP(i)
m
, SPm = max

i=1,...,Nm
SP(i)

m
and WPm = max

i=1,...,Nm
WP(i)

m
.

4. Sample methods covered by the analysis

The ELLAM is a way to deal with the advection term in the concentration
equation. Various numerical methods can be chosen to discretise the diffusion terms
in this equation, as well as in the pressure equation. These methods correspond
to selecting specific gradient discretisations C and P. Here, we detail some of
the GDs corresponding to methods used in the literature in conjunction with the
ELLAM, and we show that they all satisfy the assumptions of Theorem 3.3. As a
consequence, our convergence result applies to all these methods.

In the following, for simplicity of notations, we drop the index m in the gradient
discretisations and we consider Assumptions (A1)–(A5) ‘as the mesh size and time
step go to zero’ (as opposed to ‘as m→∞’).

4.1. Conforming/mixed finite-element methods. When discretising the model
(1) using finite element methods for the diffusion terms and the ELLAM for the
advection term, it is natural to use a mixed method for the pressure equation
and a conforming method for the concentration equation. The mixed method pro-
vides an appropriate Darcy velocity that can be used to build the ELLAM char-
acteristics. This approach was considered in [31, 32]. We show here that such a
mixed/conforming FE–ELLAM scheme fits into our GDM–ELLAM framework, so
that the convergence result of Theorem 3.3 applies to the schemes in the afore-
mentioned references. Notice that, contrary to the convergence analysis done for
example in [31], our convergence result relies on very weak regularity assumptions
on the data and solution, that are usually satisfied in practical applications.

4.1.1. Description of the conforming and mixed FE GDs. Any conforming Galerkin
approximation, which include conforming finite element methods (such as Pk FE
on simplices, or Qk FE on Cartesian grids), fits into the GDM framework. A
finite-dimensional subspace Vh of H1(Ω) being chosen, we define (XC ,ΠC ,∇C) by
XC = Vh and, for v ∈ Vh, ΠCv = v and ∇Cv = ∇v. The interpolant IC can be
either chosen as the orthogonal projection on Vh, in the case of an abstract space,
or as the standard nodal interpolant for specific FE spaces.

We now describe a gradient discretisation P corresponding to the RT0 mixed
finite element method. The following construction can be extended to higher order
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RTk finite elements [23]. A conforming simplicial or Cartesian mesh M being
chosen, define

Vh,0 = {v ∈ Hdiv(Ω) : v|K ∈ RT0(K) , ∀K ∈M , v · n = 0 on ∂Ω}, (10a)

Wh = {z ∈ L2(Ω) : z|K constant , ∀K ∈M}, (10b)

where RT0 is the lowest order Raviart–Thomas space on the cell K (the description
of RT0 depends if this cell is a simplex or Cartesian cell). After choosing a diffusion
tensor A – that is, a symmetric, uniformly bounded and coercive matrix-valued
function Ω → Md(R) – a gradient discretisation P = (XP ,ΠP ,∇P) is constructed
by setting XP = Wh and, for z ∈ Wh, ΠPz = z. The reconstructed gradient ∇Pz
is defined as the solution to

A∇Dz ∈ Vh,0 and, for all w ∈ Vh,0,∫
Ω

w(x) · ∇Pz(x)dx = −
∫

Ω

z(x)divw(x)dx.

The existence and uniqueness of ∇Pz follows by applying the Riesz representation
theorem in Vh,0 with the inner product (w,v) 7→

∫
Ω
w · A−1vdx.

Taking A(x) = K(x)
µ(ΠCc(n)(x))

, the scheme (6) is exactly an RT0 mixed finite ele-

ment discretisation of the pressure equation at the n-th time step. We notice here
that A, and thus the gradient discretisation P built above, changes with each time
step; we are therefore in the context of Remark 3.5.

4.1.2. Assumptions (A1)–(A5). We show here that all required assumptions for
Theorem 3.3 are satisfied by sequences of GDs as in Section 4.1.1.

Under usual mesh regularity properties, Assumption (A1) follows from [16,
Chapters 8 and 9] (note that WC ≡ 0 and CC ≤ CP , where CP is the Poincaré–
Wirtinger constant in H1(Ω)). For the GD P built on the RT0 mixed FE, although
the matrix A changes with each time step, it always remains uniformly bounded
and coercive; the analysis in [23] thus shows that the notions of coercivity, GD-
consistency and limit-conformity as in Remark 3.5 are verified.

Thanks to (2a), the standard Darcy velocity u
(n+1)
P = − K

µ(ΠCc(n))
∇Pp(n+1) re-

sulting from the RT0 discretisation of the pressure equation already satisfies As-
sumption (A4), and is therefore naturally used as tracking velocity. Assump-
tion (A5)a) is trivially satisfied since |uP | ≤ ΛA|∇Pp|. Moreover, under (A1),

if ΠCc→ c in L2(Ω× (0, T )) as the mesh size and time step go to 0, then Π̃Cc also
converges to c in the same space (see, e.g., end of Section 7.1); thus, if ∇Pp→ ∇p
in L2(Ω × (0, T )), the assumption (2c) on K/µ ensures that uP = − K

µ(Π̃Cc)
∇Pp

strongly converges in L2(Ω× (0, T )) to u = − K
µ(c)∇p, which proves (A5)b).

For C coming from a conforming finite element method, the standard nodal in-
terpolation JC clearly satisfies (A3) (see [6, Theorem 4.4.20]). Finally, Assumption
(A2) follows from Lemma 5.3 applied to f = ΠCz ∈ H1(Ω), α = 1 and r = 2.

4.2. Finite-volume based. A number of finite volume numerical schemes can
be embedded in the gradient discretisation method [16]. Here, we focus on one
particular method, the Hybrid Mimetic Mixed method (HMM) [17], which covers in
particular the hybrid finite volume schemes [22], the mixed/hybrid Mimetic Finite
Differences presented for example in [7], and the mixed finite volume method [15].
The HMM method was used in [11, 12] to discretise the diffusion terms in both the
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pressure and concentration equations, together with the ELLAM for the advection
term. The analysis carried out here applies to many other numerical schemes based
on piecewise-constant reconstructions, such as the VAG scheme, the MPFA-O FV
method, mass-lumped FE methods or nodal Mimetic Finite Differences [16].

4.2.1. Description of the HMM gradient discretisation. Let us first introduce a few
mesh-related notations. We consider a polytopal mesh T = (M, E ,P) of Ω ⊂ Rd as
in [16, Definition 7.2]. M is the set of polytopal cells (polygons in 2D, polyhedra
in 3D), E the set of faces (edges in 2D) and P a set of one point xK inside each cell
K ∈M. No conformity is assumed on the mesh, which can therefore have hanging
nodes, be locally refined, have non-convex cells, etc. For K ∈ M, EK denotes the
set of faces of K and, if σ ∈ EK , DK,σ is the convex hull of σ and xK , dK,σ is the
orthogonal distance between xK and σ, nK,σ is the outer unit normal to σ and
xσ is the center of mass of σ (see Figure 1). It is assumed that each K ∈ M is
star-shaped with respect to xK .

Figure 1. Notations inside a cell.

σ
DK,σ

dK,σ

K

nK,σ

xσ
xK

A spatial gradient discretisation D = (XD,ΠD,∇D) and interpolant ID are then
constructed by setting

XD = {v = ((vK)K∈M, (vσ)σ∈E) : vK ∈ R , vσ ∈ R}

(that is, there is one unknown per cell and one unknown per face),

∀v ∈ XD , ∀K ∈M : ΠDv = vK on K,

∀ϕ ∈ L2(Ω) : IDϕ = ((ϕK)K∈M, (ϕσ)σ∈EK ) ∈ XD

where ϕK =
1

|K|

∫
K

ϕ(x)dx and ϕσ = 0

(note that only ΠDID is of interest – see Definition 2.2 – so the value of the edge
unknowns is irrelevant for ID) and

∀v ∈ XD , ∀K ∈M , ∀σ ∈ EK ,

∇Dv = ∇Kv +

√
d

dK,σ
[vσ − vK −∇Kv · (xσ − xK)]nK,σ on DK,σ ,

where ∇Kv =
1

|K|
∑
σ∈EK

|σ|vσnK,σ.

(11)
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Remark 4.1. In (11), ∇Kv represents a consistent discretisation of the gradi-
ent, in the sense that if (vσ)σ∈EK interpolate an affine mapping A at the points
(xσ)σ∈EK , then ∇Kv = ∇A. The second part of ∇Dv, akin to the remainder of a
discrete first order Taylor expansion, is a stabilisation term. More general forms
of stabilisation can be chosen [18], but we do not describe them to simplify the
presentation.

An HMM scheme for (1a) is obtained by writting (6) with P = D constructed
above. Such a scheme can be formulated as a finite volume scheme. Define, for
p ∈ XD and K ∈M, the fluxes (FK,σ(p))σ∈EK by

∀v ∈ XD ,
∑
σ∈EK

FK,σ(p)(vK − vσ) =

∫
K

A(x)∇Dp(x) · ∇Dv(x)dx (12)

with A a diffusion matrix. Then p solves (6) with P = D and A = A(·,ΠCc(n))
if and only if

∫
Ω

ΠDp = 0 and the corresponding fluxes satisfy the balance and
conservativity relations, constitutive equations of finite volume schemes [14]:

∀K ∈M ,
∑
σ∈EK

FK,σ(p) =

∫
K

(q+ − q−)(x)dx,

∀σ face between two cells K and L , FK,σ(p) + FL,σ(p) = 0,

∀σ face contained in ∂Ω , FK,σ(p) = 0.

(13)

4.2.2. Assumptions (A1)–(A3). Let us define the mesh regularity parameter

%T = max
K∈M

Card(EK) + max
K∈M

max
σ∈EK

diam(DK,σ)

inrad(DK,σ)
, (14)

where inrad(DK,σ) is the radius of the largest ball included in DK,σ. Under a
boundedness assumption on %T, the basic properties (A1) (with both C and P
given by an HMM GD as in Section 4.2.1) follow from the results in [16, Chapter
12]. The appendix of [1] describes an interpolant JD and shows that it satisfies
Assumption (A3).

Denoting by YM the space of piecewise constant functions on M, we have
ΠD(XD) ⊂ YM. Recalling the definition (32) of the discrete H1-semi norm on
YM, [16, Lemma 12.9 and Remark 7.6] show that |ΠD·|M ≤ βD ‖∇D·‖L2(Ω) with

βD depending only on an upper bound of %T (this estimate is not specific to the
HMM; it holds for all currently known GDs such that ΠD(XD) ⊂ YM). Assump-
tion (A2) is therefore a consequence of Lemma 5.5, provided that the reconstructed
Darcy velocity is piecewise polynomial (which is usually the case – see next section).

4.2.3. Reconstructed Darcy velocity and Assumptions (A4)–(A5). For methods like
the HMM that produce piecewise-constant gradients ∇Pp(n+1) and/or piecewise-
constant concentration ΠCc

(n), the natural Darcy velocity − K
µ(ΠCc(n))

∇Pp(n+1) does

not belong to Hdiv(Ω). It is therefore not suitable to define the characteristics used
in the ELLAM, and another velocity must be reconstructed to be used in (7).
Finite-volume methods naturally produce numerical fluxes on the mesh faces, that
satisfy the balance and conservativity relations (12)–(13). Such fluxes can be used
to reconstruct a Darcy velocity in a Raviart–Thomas space on a sub-mesh of M.

In [11, 12], this idea is applied to the HMM method on the sub-mesh of pyramids

(DK,σ)K∈M, σ∈EK . A velocity u
(n+1)
P ∈ Hdiv(Ω) is constructed from the pressure
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unknowns such that its restriction to each diamond DK,σ belongs to RT0 and that,
for each cell K ∈M,

For a.e. x ∈ K, divu
(n+1)
P (x) =

1

|K|
∑
σ∈EK

FK,σ(p(n+1)) ,

∀σ ∈ EK , ∀y ∈ σ , |σ|u(n+1)
P (y) · nK,σ = FK,σ(p(n+1)).

(15)

Given the flux balance equation in (13), this reconstruction of u
(n+1)
P satisfies As-

sumption (A4) with Mdiv = Mq+ +Mq− (see (2a)).
Let us now establish the estimate on uP stated in (A5). In the following es-

timates, A . B means that A ≤ CB with C depending only on an upper bound
of %T, and of αA and ΛA in (2c). Fix K ∈ M. The relations (15) boil down to
a linear system for internal fluxes in K – that is, fluxes Fτ on (∂DK,σ \ σ)σ∈EK
– in which the right-hand side is (FK,σ(p(n+1)))σ∈EK . Augmenting this system
with a consistency relation or fixing the solution to be of minimal `2 norm (see
[12, 27]) leads to a linear system MK(Fτ )τ = (FK,σ(p(n+1)))σ∈EK with MK de-
pending only on the number of faces of K, not on the geometry of this cell. Hence,∑
τ |Fτ |2 .

∑
σ∈EK |FK,σ(p(n+1))|2. Due to the shape regularity assumption (which

implies |τ |−1 . diam(K)/|K| for any face τ of any pyramid DK,σ) and by construc-
tion of RT0 functions, we infer that∥∥∥u(n+1)

P

∥∥∥2

L2(DK,σ)
.

∑
τ⊂∂DK,σ

diam(K)

|τ |
|Fτ |2

.
diam(K)2

|K|
∑
σ∈EK

|FK,σ(p(n+1))|2. (16)

Fix σ ∈ EK and take, in (12), vσ = 1 and vK = vσ′ = 0 if σ 6= σ′. The defini-
tion (11) of ∇D easily shows that |∇Dv| . diam(K)−1 and (12) therefore yields
diam(K)

∑
σ∈EK |FK,σ(p(n+1))| .

∫
K
|∇Dp(n+1)(x)|dx. Hence, by the Cauchy–

Schwarz inequality,

diam(K)2

|K|
∑
σ∈EK

|FK,σ(p(n+1))|2 .
∥∥∥∇Dp(n+1)

∥∥∥2

L2(K)
.

Combined with (16) this proves (A5)a).
Because of this bound, the weak convergence in (A5)b) follows if we can show

that uP converges to u against any ϕ ∈ C∞c (Ω × (0, T ))d. To establish this con-
vergence, we first evaluate uP − UP , where UP = − K

µ(Π̃Cc)
∇Dp. Fix ξ ∈ Rd

and apply the divergence theorem between u
(n+1)
P ∈ Hdiv(K) and the affine map

x 7→ ξ · (x− xK) to write∫
K

u
(n+1)
P (x) · ξdx =

∫
K

u
(n+1)
P (x) · ∇(ξ · (x− xK))dx

=
∑
σ∈EK

∫
σ

u
(n+1)
P (y) · nK,σ[ξ · (y − xK)]ds(y)

−
∫
K

divu
(n+1)
P (x)[ξ · (x− xK)]dx.
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Using then (15) and 1
|σ|
∫
σ
yds(y) = xσ leads to∫

K

u
(n+1)
P (x) · ξdx =

∑
σ∈EK

FK,σ(p(n+1))ξ · (xσ − xK)

−
∫
K

divu
(n+1)
P (x)[ξ · (x− xK)]dx.

(17)

Apply (12) with v ∈ XD the interpolant of the linear mapping x 7→ ξ · x, that is,
vK = ξ · xK and vσ = ξ · xσ. The P1-exactness property of ∇D [16, Lemma 12.8]
shows that ∇Dv = ξ and (12) thus gives∑

σ∈EK

FK,σ(p(n+1))ξ · (xσ − xK) =

∫
K

U
(n+1)
P (x) · ξdx.

Combining with (17) and using the generality of ξ then yields∫
K

u
(n+1)
P (x)dx−

∫
K

U
(n+1)
P (x)dx = −

∫
K

divu
(n+1)
P (x)(x− xK)dx.

Denoting by PrM : L2(Ω)d → L2(Ω)d the orthogonal projection on the piecewise
constant functions on M (that is, (PMf)|K = 1

|K|
∫
K
f(x)dx for all K ∈ M), the

above relation gives∥∥∥PrM(u
(n+1)
P −U

(n+1)
P )

∥∥∥
L1(Ω)

≤ hM
∥∥∥divu

(n+1)
P

∥∥∥
L1(Ω)

,

where hM = maxK∈M diam(K) is the mesh size. Owing to the boundedness of

divu
(n+1)
P , this shows that PrM(uP − UP) → 0 in L∞(0, T ;L1(Ω)) as hM → 0.

Take now ϕ ∈ C∞c (Ω× (0, T ))d. Using the orthogonality property of PrM,∣∣∣ ∫
Ω×(0,T )

(uP −UP) ·ϕ
∣∣∣

≤
∣∣∣ ∫

Ω×(0,T )

(uP −UP) · (ϕ− PrMϕ)
∣∣∣+
∣∣∣ ∫

Ω×(0,T )

(uP −UP) · PrMϕ
∣∣∣

≤ ‖uP −UP‖1 hM ‖Dϕ‖∞ +
∣∣∣ ∫

Ω×(0,T )

PrM(uP −UP) ·ϕ
∣∣∣

≤ ‖uP −UP‖1 hM ‖Dϕ‖∞ + ‖PrM(uP −UP)‖1 ‖ϕ‖∞ . (18)

where ‖·‖r = ‖·‖Lr(Ω×(0,T )) and we used ‖ϕ− PrMϕ‖∞ ≤ hM ‖Dϕ‖∞. The strong

convergence of ΠCc ensures the strong convergence of Π̃Cc (see end of Section 7.1);
hence, the strong convergences assumed in (A5) show that UP → u = − K

µ(c)∇p
in L2(Ω × (0, T ))d. Since the right-hand side of (18) tends to 0 as hM → 0, this
concludes the proof that uP → u weakly in L2(Ω × (0, T ))d as the mesh size and
time step tend to 0.

5. Properties of the Flow

A few properties on the solution of the characteristic equation (9) are established

here. To simplify the notations, we set u
(n+1)
P = V. Hence, for x ∈ Ω, t 7→ Ft(x)

solves
dFt(x)

dt
=

V(Ft(x))

φ(Ft(x))
for t ∈ [−T, T ], F0(x) = x. (19)
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Associated with the flow equation (19) is the advection equation

φ∂tw + V · ∇w = 0. (20)

A function w is a solution to such an equation if it satisfies, for all s, t ∈ [−T, T ]
such that s− t ∈ [−T, T ] and for a.e. x ∈ Ω, w(x, t) = w(Fs−t(x), s).

These flow and advection equations will be studied under the assumptions (2b) on
φ and (A4) on V. Upon considering a common sub-mesh of the meshes considered
in these assumptions there is no loss in generality in assuming that the meshes for
φ and V are the same. In other words, our leading assumption here is: there is a
mesh M (that is, a partition of Ω into polygonal/polyhedral cells) such that

φ is piecewise smooth on M and φ∗ ≤ φ ≤ φ∗,
V ∈ Hdiv(Ω) is piecewise polynomial on M,

|divV| ≤ Γdiv and V · n = 0 on ∂Ω.

(21)

Lemma 5.1 (The flow is well-defined). Under Assumption (21), there exists a
closed set C ⊂ Ω with zero Lebesgue measure such that, for any x ∈ Ω\C, there is
a unique Lipschitz-continuous map t ∈ [−T, T ] 7→ Ft(x) ∈ Ω\C that satisfies (19)
(except at an at most countable number of times for the ODE). Moreover, Ft has
classical flows properties: for all t ∈ [−T, T ], Ft : Ω\C → Ω\C is a locally Lipschitz-
continuous homeomorphism (which can thus be used for changes of variables in
integrals), and Ft+s = Ft ◦ Fs for all s, t ∈ [−T, T ] such that s+ t ∈ [−T, T ].

Proof. By smoothness of V and φ in each cell, the flow t 7→ Ft(x) of V/φ can
clearly be defined until it reaches a cell boundary. Assume that it reaches at a time
t = tσ a cell boundary at a point y that is not a vertex or on an edge of the cell
(we use here the 3D nomenclature), that is, y is in the relative interior of a face
σ. Denote by H1 and H2 the two half-spaces on each side of σ, and by nσ the
normal to σ from H1 to H2. Since V ∈ Hdiv(Ω), V ·nσ is continuous across σ. The
function φ being positive, it means that the sign, if not the value, of (V/φ) · nσ
is continuous across σ. Assuming for example that (V/φ)|H1

(y) · nσ > 0, then
the flow arrives at y from H1 and, (V/φ)|H2

(y) · nσ being also strictly positive,
t 7→ Ft(x) can be restarted from (tσ,y) by considering (V/φ)|H2

(which drives the
flow into H2). Note that the Hdiv-property of V is essential here to ensure that
the flow can indeed be continued into H2, and that the values of V/φ at y from
H1 and H2 do not simultaneously drive the flow in the other domain, thus freezing
it at y.

Following this process, the flow can be continued as long as it does not cross (or
starts from) a vertex/edge or, for a face σ, the set Zσ = {y ∈ σ : V(y) · nσ = 0}.
Let C be the set consisting of all x ∈ Ω whose flow arrive (or starts from) at a
vertex/edge, or one of the sets Zσ. The set C can be obtained by tracing back on
[−T, T ], following the process above, the vertices, edges or sets Zσ (until the flow
can no longer be constructed, that is, the tracing-back process arrives on a vertex,
edge or a set Zσ′). Since each such set is closed, C is closed. Moreover, vertices
and edges have dimension d − 2 or less, and are therefore traced-back by the flow
into sets of zero d-dimensional measure. Consider now a set Zσ. Since V · nσ is a
polynomial, either Zσ = σ or Zσ has dimension d− 2 or less. In the latter case, as
for vertices/edges, its traced-back set has zero d-dimensional measure. If Zσ = σ,
then V is parallel to σ (whatever the side we consider for the values of V) and the
traced-back region of Zσ is contained in σ, which has zero d-dimensional measure.
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Hence, C has zero d-dimensional measure. This reasoning also shows that the flow
never crosses the boundary of Ω, since V · n = 0 on ∂Ω.

This construction ensures that, for all x 6∈ C, the flow t 7→ Ft(x) ∈ Ω\C is
well-defined on [−T, T ], satisfies the ODEs except at a countable number of points
(where it intersects faces), is Lipschitz-continuous (since it is globally continuous
and Lipschitz inside each cell, with a Lipschitz constant bounded by ‖V‖L∞(Ω) /φ∗),

and satisfies the flow property Ft+s = Ft ◦ Fs. To see that it is locally Lipschitz
on Ω\C with respect to its base point x, we simply have to notice that for x 6∈ C,
by construction of C, there is a ball B(x, θ) centered at x such that, for any y ∈
B(x, θ), the flow t 7→ Ft(y) travels into the same cells and crosses the same faces as
t 7→ Ft(x). Since, in each cell, the flow is Lipschitz-continuous w.r.t. its base point
with a uniform Lipschitz constant (because V and φ are smooth in each cell, with
bounded derivatives), gluing the Lipschitz estimate thanks to the flow property we
can check that y 7→ Ft(y) is Lipschitz continuous on B(x, θ). Note that because the
open set Ω\C can be disconnected, this does not prove a global Lipschitz property
of the flow.

The homoeomorphism property follows from the flow property which shows that,
on Ω\C, Ft ◦ F−t = F0 = Id.

Let us now establish some relations and estimates on this flow.

Lemma 5.2 (Estimates on the flow). Under Assumptions (21), for a.e. x ∈ Ω and
all s ∈ [−T, T ], denoting by JFt the Jacobian determinant of Ft,∫ s

0

|JFt(x)|(divV) ◦ Ft(x)dt = φ(Fs(x))|JFs(x)| − φ(x) (22)

and

|JFs(x)| ≤ C1(s) :=
φ∗

φ∗
exp

(
Γdiv

φ∗
|s|
)
. (23)

Moreover, let w ≥ 0 be a solution of (20). Then, for all s, t ∈ [−T, T ] such that
s− t ∈ [−T, T ],∫

Ω

φ(x)w(x, t− s)dx ≤
(

1 +
ΓdivC1(T )

φ∗
|s|
)∫

Ω

φ(x)w(x, t)dx (24)

and ∫
Ω

w(x, t− s)dx ≤ C1(T )

φ∗

∫
Ω

φ(x)w(x, t)dx. (25)

Proof.
Step 1: we establish the following generalised Liouville formula: for any mea-

surable set A ⊂ Ω,

d

dt

∫
Ft(A)

φ(y)dy =

∫
Ft(A)

divV(y)dy, (26)

where the time derivative
d

dt
is taken in the sense of distributions (this also shows

that the function t 7→
∫
Ft(A)

φ(y)dy belongs to W 1,1(−T, T )).

Let v0 ∈ C∞c (Ω) and set v(x, t) = v0(F−t(x)). Then v is Lipschitz-continuous
with respect to t and, by the flow property, v(x, t) = v(Fs−t(x), s). Hence,

∂tv(x, t) = ∇v(Fs−t(x), s) · d
dt

(Fs−t(x)) = −∇v(Fs−t(x), s) · V(Fs−t(x))

φ(Fs−t(x))
.
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Given the piecewise regularity assumptions on V and φ, for a.e. x ∈ Ω we can

let s → t in the above relation to find ∂tv(x, t) = −∇v(x, t) · V(x)
φ(x) . Hence, since

V ∈ Hdiv(Ω) with V · n = 0 on ∂Ω,

d

dt

∫
Ω

φ(x)v(x, t)dx =

∫
Ω

φ(x)∂tv(x, t)dx

= −
∫

Ω

∇v(x, t) ·V(x)dx =

∫
Ω

v(x, t)divV(x)dx.

Let us now take a sequence (v
(n)
0 )n∈N in C∞c (Ω) that converges a.e. on Ω to the

characteristic function 1A of A, and such that 0 ≤ v
(n)
0 ≤ 1. The relation above

yields
d

dt

∫
Ω

φ(x)v
(n)
0 (F−t(x))dx =

∫
Ω

v
(n)
0 (F−t(x))divV(x)dx. (27)

As n→∞, the right-hand side converges (by dominated convergence) to∫
Ω

1A(F−t(x))divV(x)dx =

∫
Ft(A)

divV(x)dx.

The sequence of mappings t 7→
∫

Ω
φ(x)v

(n)
0 (F−t(x))dx converge pointwise to

t 7→
∫

Ω

φ(x)1A(F−t(x))dx =

∫
Ft(A)

φ(x)dx,

while remaining bounded. Hence, they converge weakly-∗ in L∞(−T, T ). We can
therefore pass to the distributional limit in (27) to see that (26) holds.

Step 2: estimates on JFt.
Set A = B(x, r) a ball of center x and radius r contained in Ω. Integrating (26)

with respect to time from 0 to s and using a change of variables y = F−t(x), we
obtain∫

B(x,r)

φ(Fs(y))|JFs(y)|dy −
∫
B(x,r)

φ(y)dy

=

∫ s

0

∫
B(x,r)

|JFt(y)|(divV) ◦ Ft(y)dtdy.

Dividing by the measure of B(x, r) and taking the limit as r → 0, we obtain (22)
for a.e. x ∈ Ω, due to the piecewise smoothness of V and φ.

Assume to simplify the writing that s ≥ 0 and use the assumption on divV to
deduce from (22) that φ(Fs(x))|JFs(x)|−φ(x) ≤ Γdiv

∫ s
0
|JFt(x)|dt, and thus that

|JFs(x)| ≤ φ∗

φ∗
+

Γdiv

φ∗

∫ s

0

|JFt(x)|dt.

Use then Gronwall’s inequality to obtain (23).

Step 3: Estimates on w.
We recall that w(x, t− s) = w(Fs(x), t). Hence, a change of variables and (22)

yield∫
Ω

φ(x)w(x, t− s)dx =

∫
Ω

φ(x)w(Fs(x), t)dx =

∫
Ω

w(y, t)φ(F−s(y))|JF−s(y)|dy

=

∫
Ω

w(y, t)

(
φ(y) +

∫ −s
0

|JFρ(y)|(divV) ◦ Fρ(y)dρ

)
dy.



18 HANZ MARTIN CHENG, JÉRÔME DRONIOU, AND KIM-NGAN LE

Estimate (24) follows by writing, thanks to (23), for a.e. y ∈ Ω,∣∣∣∣∫ −s
0

|JFρ(y)|(divV) ◦ Fρ(y)dρ

∣∣∣∣ ≤ ΓdivC1(T )|s| ≤ ΓdivC1(T )

φ∗
|s|φ(y).

To establish (25), we simply write, still using a change of variables,∫
Ω

w(x, t− s)dx =

∫
Ω

w(Fs(x), t)dx =

∫
Ω

w(y, t)|JF−s(y)|dy

and we use (23) and φ ≥ φ∗ to conclude.

The following lemma is used to prove that conforming discretisations satisfy
Assumption (A2) (see Section 4.1.2), and to establish convergence properties, as
the time step tends to 0, of functions transported by the flow (see Lemma 5.7).

Lemma 5.3 (Translation estimate for Sobolev functions). Under Assumption (21),
let Ft be the flow defined by (19), and let r, α ∈ [1,∞] be such that 1

α = 1
2 + 1

r .

Then, for any f ∈W 1,r(Ω) and s ∈ [−T, T ],

‖f(Fs)− f‖Lα(Ω) ≤
C1(T )1/α

φ∗
|s| ‖V‖L2(Ω) ‖∇f‖Lr(Ω) ,

where C1(T ) = φ∗

φ∗
exp(ΓdivT

φ∗
) as in (23).

Proof. By density it suffices to prove the estimate for f ∈ C1(Ω) (in the case
r = ∞, we first establish it for r < ∞ and corresponding αr, using the density of
smooth functions in W 1,r, and then let r →∞). For a.e. x ∈ Ω,

f(Fs(x))− f(x) =

∫ s

0

d

dt
f(Ft(x))dt =

∫ s

0

∇f(Ft(x)) · dFt(x)

dt
dt

=

∫ s

0

∇f(Ft(x)) · V(Ft(x))

φ(Ft(x))
dt

Take the absolute value, the power α (using Jensen’s inequality) and integrate over
Ω. Using φ ≥ φ∗ and applying a change of variables y = Ft(x) along with (23),
this leads to∫

Ω

|f(Fs(x))− f(x)|αdx ≤ |s|
α−1

φα∗

∫
Ω

∫
[0,s]

|∇f(Ft(x))|α|V(Ft(x))|αdtdx

≤ |s|
α−1

φα∗

∫
[0,s]

(∫
Ω

|∇f(Ft(x))|α|V(Ft(x))|αdx
)
dt

≤ C1(T )|s|α

φα∗

∫
Ω

|∇f(y)|α|V(y)|αdy.

The proof is complete by applying Hölder’s estimate with exponents r/α and 2/α,
and by taking the power 1/α of the resulting inequality.

We now want to establish a similar result but for piecewise-constant functions.
This will be useful to establish that discretisations based on piecewise-constant ap-
proximations, such as most FV methods, satisfy Assumption (A2). Before stating
this lemma, we need a preliminary result.

Lemma 5.4 (Volume covered by a face transported by the flow). Under Assump-
tion (21), let Ft be the flow defined by (19). Let σ be a face of the mesh over which
V and φ are piecewise smooth. Let Vt = |F[0,t](σ)| be the volume of the region
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covered by σ when transported over [0, t] by the flow, that is, Vt = |{Fs(y) : s ∈
[0, t] , y ∈ σ}|. Then

∀t ∈ [−T, T ] , Vt ≤
C1(T )

φ∗
|t|
∫
σ

|V(y) · nσ|ds(y), (28)

where C1(T ) is given by (23) and nσ is a normal to σ.

Proof. Notice first that since V ∈ Hdiv(Ω), the normal components of V across
the faces of the mesh are continuous, and thus |V(y) · nσ| is independent of the
side of σ chosen to compute V. Without loss of generality, we assume t ≥ 0.

If the face σ is such that Zσ := {y ∈ σ : V(y) · nσ = 0} = σ, then even
though σ ⊂ C (see Lemma 5.1 and its proof), we clearly have Vt = 0 since each
point on the face is transported inside the face to one of its vertex/edge, which
are (d − 2)-dimensional objects then transported by the flow onto null sets in Ω
(whatever side of σ chosen to compute V and φ). Hence, (28) holds for such faces.

Let us now assume that Zσ 6= σ. Then, since V · nσ is polynomial, Zσ is a
negligible set in σ for the (d− 1)-dimensional measure and Ft(y) is defined for all
y ∈ σ\Zσ. Since F[0,t+h](σ) = F[0,t](σ)∪F(t,t+h](σ), the flow property, a change of
variables and (23) yield

Vt+h − Vt = |F(t,t+h](σ)| = |Ft(F(0,h](σ))|

=

∫
F(0,h](σ)

|JFt(y)|dy ≤ C1(T )|F(0,h](σ)|. (29)

Choose an orthonormal basis of Rd such that σ ⊂ {0}×Rd−1 and nσ = (1, 0, . . . , 0),
and define G : R×σ → Rd by G(t,y) = Ft(y). Using the area formula [20, Theorem
1] we have

|F(0,h](σ)| =
∫
Rd

1G((0,h]×σ))(x)dx ≤
∫
Rd

Card
[
((0, h]× σ) ∩G−1({x})

]
(x)dx

=

∫
(0,h]×σ

|JG(t,y)|dtds(y) =

∫ h

0

(∫
σ

|JG(t,y)|ds(y)

)
dt (30)

where JG is the Jacobian determinant of G. Given the choice of basis in the range
of G,

JG(t,y) = det
[

∂G
∂t (t,y) ∂G

∂y1
(t,y) · · · ∂G

∂yd−1
(t,y)

]
= det

[
dFt
dt (y) ∂Ft

∂y1
(y) · · · ∂Ft

∂yd−1
(y)

]
= det

[
V(Ft(y))
φ(Ft(y))

∂Ft
∂y1

(y) · · · ∂Ft
∂yd−1

(y)
]
.

For a fixed y ∈ σ\Zσ and for small t the flow Ft(y) occurs in a region where V
and φ (and thus Ft) are smooth – namely, the side of σ determined by the sign of
V(y) · nσ. Hence, since F0 = Id, denoting by (V1, . . . ,Vd) the components of V
in the chosen basis and recalling that nσ = (1, 0, . . . , 0),

lim
t→0

JG(t,y) = det
[

V(y)
φ(y)

∂F0

∂y1
(y) · · · ∂F0

∂yd−1
(y)

]
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= det



V1(y)
φ(y) 0 · · · · · · 0

... 1 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

Vd(y)
φ(y) 0 · · · 0 1


=

V1(y)

φ(y)
=

V(y) · nσ
φ(y)

. (31)

Here, the value of φ is of course considered on the side of σ into which Ft(y) flows
for small t > 0 (as already noticed, the value of V(y) · nσ does not depend on the
considered side). Recalling that (31) holds for y ∈ σ\Zσ and that Zσ has zero
(d− 1)-dimensional measure, the dominated convergence theorem thus shows that∫

σ

|JG(t,y)|ds(y)→
∫
σ

|V(y) · nσ|
φ(y)

ds(y) as t→ 0.

Dividing (30) by h, letting h→ 0, and plugging the result in (29) we infer that

dVt
dt
≤ C1(T )

φ∗

∫
σ

|V(y) · nσ|ds(y).

The mapping t 7→ Vt is a non-decreasing function, so its derivative in the sense
of distributions always exists as a positive measure; the relation above shows that
this derivative is actually a bounded function, and thus that t 7→ Vt is Lipschitz-
continuous. Integrating this relation and using V0 = 0 leads to (28).

We can now state a result that mimics Lemma 5.3 but for piecewise-constant
functions. This result is used in Section 4.2.2 to prove that HMM schemes, among
others, satisfy (A2).

Lemma 5.5 (Translation estimate for piecewise-constant functions). Let T be a
polytopal mesh and YM be the set of piecewise-constant functions on M. Define
the discrete H1-semi norm on YM by

∀f ∈ YM , |f |T =

( ∑
σ∈Eint

|σ|dσ
∣∣∣∣fK − fLdσ

∣∣∣∣2
)1/2

, (32)

where fK is the constant value of f on K ∈ M, Eint is the set of internal faces
(that is, σ ∈ E such that σ ⊂ Ω), K and L are the two cells on each side of σ, and
dσ = dK,σ + dL,σ (see Figure 1). Assume that (φ,V) satisfy (21) on the sub-mesh
made of (DK,σ)K∈M, σ∈EK and let k be the maximal polynomial degree of V.

Then, if % ≥ %T (defined by (14)), there exists R depending only on k, d and %
such that, for all s ∈ [−T, T ],

∀f ∈ YM , ‖f(Fs)− f‖L1(Ω) ≤ R
C1(T )

φ∗
|s| ‖V‖L2(Ω) |f |T

where C1(T ) = φ∗

φ∗
exp(ΓdivT

φ∗
) as in (23).

Proof. We start by writing f(Fs(x))−f(x) as the sum of the jumps of f along the
curve (Ft(x))t∈[0,s] =: F[0,s](x). For σ ∈ Eint, letting χσ(x) = 1 if σ ∩ F[0,s](x) 6= ∅
and χσ(x) = 0 otherwise, this leads to

|f(Fs(x))− f(x)| ≤
∑
σ∈Eint

χσ(x)|fK − fL|. (33)
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Notice that σ ∩ F[0,s](x) 6= ∅ if and only if F[−s,0](σ) ∩ {x} 6= ∅, that is, x belongs
to the region covered by σ transported by the flow over [−s, 0]. Lemma 5.4 gives∫

Ω

χσ(x)dx ≤ C1(T )

φ∗
|s|
∫
σ

|V(y) · nσ|ds(y)

where nσ is a unit normal to σ. Hence, letting C = C1(T )
φ∗

and using the Cauchy–

Schwarz inequality (on the combined sum and integral terms),∫
Ω

|f(Fs(x))− f(x)|dx

≤ C|s|
∑
σ∈Eint

∫
σ

|V(y) · nσ| |fK − fL|ds(y)

= C|s|
∑
σ∈Eint

∫
σ

√
dσ|V(y) · nσ|

1√
dσ
|fK − fL|ds(y)

≤ C|s|

( ∑
σ∈Eint

∫
σ

dσ|V(y) · nσ|2ds(y)

)1/2( ∑
σ∈Eint

∫
σ

1

dσ
|fK − fL|2ds(y)

)1/2

= C|s|

( ∑
σ∈Eint

dσ

∫
σ

|V(y) · nσ|2ds(y)

)1/2

|f |T . (34)

Since V is polynomial on each DK,σ, we can use the discrete trace inequality of
[13, Lemma 1.46] to find R depending only on k, d and % such that

∀K ∈M , ∀σ ∈ EK , diam(DK,σ)

∫
σ

|V(y) · nσ|2ds(y) ≤ R2

∫
DK,σ

|V(x)|2dx.

Noticing that dK,σ ≤ diam(DK,σ), we infer

dσ

∫
σ

|V(y) · nσ|2ds(y) ≤ R2

∫
DK,σ∪DL,σ

|V(x)|2dx.

The proof of the lemma is completed by plugging this estimate into (34).

Remark 5.6 (Estimate in Lα norm?). A natural question would be the extension
of Lemma 5.5 to estimate the Lα norm of f(Fs) − f , as in Lemma 5.3, by using
the discrete W 1,r-semi norm |f |T,r of f obtained by replacing 2 with r in (32).

Considering for example the simple case of a constant unit velocity V = V0 (and
forgetting about boundary conditions for simplification), this would amount to esti-
mating ‖f(·+ sV0)− f‖Lα(Ω) in terms of |s| |f |T,r. For meshes admissible for the

TPFA finite volume scheme, such an estimate is known with α = r = 2 and |s|
replaced by

√
|s|(|s|+ maxK∈M diam(K)) [21, Lemma 3.3]. For general meshes,

however, no similar estimate seems to be attainable if α > 1.

The next lemma is instrumental in passing to the limit in the reaction and ad-
vection terms of the GDM–ELLAM scheme. Let us first introduce some notations.
Given time steps 0 = t(0) < t(1) < . . . < t(N) = T and velocities V = (Vn)n=1,...,N

that satisfy (21), we identify V with the global velocity Ω × (0, T ) → Rd given
by V(·, t) = V(n+1) for all t ∈ (t(n), t(n+1)] and all n = 0, . . . , N − 1. Define TV
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and T̂V as the linear mappings L2(Ω × (0, T )) → L2(Ω × (0, T )) such that, for
ψ ∈ L2(Ω× (0, T )),

for a.e. x ∈ Ω, for all t ∈ (t(n), t(n+1)) and n = 0, . . . , N − 1,

TVψ(x, t) = ψ
(
F

(n+1)

t(n+1)−t(n)(x), t
)

and T̂Vψ(x, t) = ψ
(
F

(n+1)

t(n+1)−t(x), t
) (35)

where F
(n+1)
t is defined by (19) for the velocity V(n+1). The difference between TV

and T̂V is the time at which this flow is considered.

Lemma 5.7 (Convergence of functions transported by the flow). Let φ satisfy

(2b) and, for each m ∈ N, take 0 = t
(0)
m < t

(1)
m < . . . < t

(Nm)
m = T time steps and

Vm = (Vn
m)n=1,...,Nm that satisfy (21) with Γdiv not depending on m. Assume that

δtm := maxn=0,...,Nm−1(t
(n+1)
m −t(n)

m )→ 0 as m→∞ and that (Vm)m∈N is bounded

in L2(Ω× (0, T )). Then TVm
and T̂Vm

satisfy the following properties.

(1) There is C not depending on m such that, for ψ ∈ L2(Ω× (0, T )),

‖TVm
ψ‖L2(Ω×(0,T )) +

∥∥∥T̂Vm
ψ
∥∥∥
L2(Ω×(0,T ))

≤ C ‖ψ‖L2(Ω×(0,T )) . (36)

(2) The dual operators T ∗Vm
and T̂ ∗Vm

of TVm
and TVm

are given by: for ψ ∈
L2(Ω× (0, T )),

T ∗Vm
ψ = φT−Vm

(
ψ

φ

)
+RmT−Vm

ψ

T̂ ∗Vm
ψ = φT̂−Vm

(
ψ

φ

)
+ R̂mT̂−Vmψ

(37)

where Rm, R̂m ∈ L∞(Ω × (0, T )) and, over each interval [t(n), t(n+1)],

Rm, R̂m are bounded by δt(n+ 1
2 )φ−1
∗ ΓdivC1(T ).

(3) If fm → f strongly (resp. weakly) in L2(Ω × (0, T )) as m → ∞, then

TVm
fm → f and T̂Vm

fm → f strongly (resp. weakly) in L2(Ω× (0, T )).

Proof.
We only prove the results for TVm

, as the proof for T̂Vm
follows by simply

replacing F
(n+1)

t(n+1)−t(n)(y) by F
(n+1)

t(n+1)−t(y). In the first two steps, we drop the index

m in Vm and Nm for simplicity of notation.

Step 1: bound on the norms of TV and T̂V.
By a change of variables and invoking (23), there is C not depending on m,

s ∈ [−T, T ] or n ∈ {0, . . . , N−1} such that, for all h ∈ L2(Ω), ‖h(F
(n+1)
s (·))‖L2(Ω) ≤

C‖h‖L2(Ω). Estimate (36) easily follows from this.

Step 2: description of the dual operator.
A change of variables yields, for any ϕ,ψ ∈ L2(Ω× (0, T )),∫

Ω×(0,T )

(TVϕ)(x, t)ψ(x, t)dxdt

=

N−1∑
n=0

∫ t(n+1)

t(n)

∫
Ω

ϕ(F
(n+1)

t(n+1)−t(n)(x), t)ψ(x, t)dxdt

=

N−1∑
n=0

∫ t(n+1)

t(n)

∫
Ω

ϕ(y, t)ψ(F
(n+1)

t(n)−t(n+1)(y), t)|JF (n+1)

t(n)−t(n+1)(y)|dydt. (38)
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Relation (22) and Estimate (23) shows that

|JF (n+1)

t(n)−t(n+1)(y)| = φ(y)

φ(F
(n+1)

t(n)−t(n+1)(y))
+R(y, t(n)) (39)

with |R(y, t(n))| ≤ δt(n+ 1
2 )φ−1
∗ ΓdivC1(T ). Since t 7→ F

(n+1)

t−t(n+1)(y) is the flow corre-

sponding to −V, Relations (38) and (39) then yield (37) for T ∗V.

Step 3: proof of the strong convergence.
For simplicity of notation, denote ‖·‖2 = ‖·‖L2(Ω×(0,T )). Assume that fm → f

strongly in L2(Ω × (0, T )), and let fε be a smooth approximation of f such that
‖f − fε‖2 ≤ ε. The triangle inequality and (36) yield

‖TVm
fm − f‖2 ≤ ‖TVm

(fm − f)‖2 + ‖TVm
(f − fε)‖2 + ‖TVm

fε − fε‖2
+ ‖fε − f‖2

≤ C ‖fm − f‖2 + (C + 1)ε+ ‖TVm
fε − fε‖2 .

Invoking Lemma 5.3 with α = 2, r =∞ and fε(·, t) instead of f gives gives C ′ not

depending on m or ε such that, if F
(n+1)
m,t is the flow for the velocity V

(n+1)
m ,

‖TVmf
ε − fε‖22 =

Nm−1∑
n=0

∫ t(n+1)

t(n)

∥∥∥fε(F (n+1)

m,t(n+1)−t(n)(·), t)− fε(·, t)
∥∥∥2

L2(Ω)
dt

≤ C ′δt2m
Nm−1∑
n=0

∫ t(n+1)

t(n)

∥∥∥V(n+1)
m

∥∥∥2

L2(Ω)
‖∇fε(·, t)‖2L∞(Ω) dt

= C ′δt2m ‖Vm‖22 ‖∇f
ε‖2L∞(Ω×(0,T )) .

Hence,

‖TVm
fm − f‖2 ≤ C ‖fm − f‖2 + (1 + C)ε+

√
C ′δtm ‖Vm‖2 ‖∇f

ε‖L∞(Ω×(0,T )) .

Taking the superior limit as m → ∞ and using the boundedness of (Vm)m∈N in
L2(Ω × (0, T )) thus yields lim supm→∞ ‖TVm

fm − f‖2 ≤ (1 + C)ε. Letting ε → 0
concludes the proof that TVmfm → f strongly in L2(Ω× (0, T )).

Step 4: proof of the weak convergence.
Assume that fm → f weakly in L2(Ω× (0, T )). Then, for all ψ ∈ L2(Ω× (0, T )),∫
Ω×(0,T )

(TVm
fm − f)ψ =

∫
Ω×(0,T )

TVm
(fm − f)ψ +

∫
Ω×(0,T )

(TVm
f − f)ψ

=

∫
Ω×(0,T )

(fm − f)T ∗Vm
ψ +

∫
Ω×(0,T )

(TVm
f − f)ψ. (40)

Since ψ/φ ∈ L2(Ω × (0, T )), the formula (37), the fact that Rm → 0 in L∞(Ω ×
(0, T )), the estimate (36) and the result of Step 3 applied to −Vm instead of Vm

show that T ∗Vm
ψ → ψ strongly in L2(Ω× (0, T )) as m→∞. Hence, the first term

in the right-hand side of (40) tends to 0 since fm − f → 0 weakly L2(Ω × (0, T )).
The second term in the right-hand side of (40) also converges to 0 since, by Step
3 (applied to fm = f for all m), TVmf − f → 0 in L2(Ω× (0, T )). The proof that
TVmfm → f weakly in L2(Ω× (0, T )) is therefore complete.
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6. A Priori Estimates

Throughout this section, A . B means that A ≤ CB, where C is a constant
depending only on the quantities |Ω|, T , φ∗, φ

∗, αA, αD, ΛA, ΛD, Mq− , Mq+ , Mt,
MF , Mdiv, supm∈N CPm , supm∈N CCm appearing in Assumptions (2) and (A1)–
(A5) (CPm and CCm are given by (5)). Likewise, in the proofs, C denotes a generic
constant that can change from one line to the other, but only depends on the
aforementioned parameters.

We also consider that (pm, cm) is a solution to the GDM–ELLAM scheme with
(P, CT ) = (Pm, CTm) and we drop the index m for legibility. Let UP = − K

µ(Π̃Cc)
∇Pp.

Lemma 6.1 (Estimates on the pressure). The following estimate holds:

‖ΠPp‖L∞(0,T ;L2(Ω)) + ‖∇Pp‖L∞(0,T ;L2(Ω)) + ‖UP‖L∞(0,T ;L2(Ω)) . 1.

Proof. Setting z = p(n+1) in the gradient scheme (6), we get:∫
Ω

A(x,ΠCc
(n))∇Pp(n+1) · ∇Pp(n+1) =

∫
Ω

(q+
n − q−n )ΠPp

(n+1).

Using (2c) for the left hand side, followed by Cauchy–Schwarz’ inequality∥∥∥∇Pp(n+1)
∥∥∥2

L2(Ω)
.
∥∥q+
n − q−n

∥∥
L2(Ω)

∥∥∥ΠPp
(n+1)

∥∥∥
L2(Ω)

.
∥∥∥∇Pp(n+1)

∥∥∥
L2(Ω)

(41)

where we used ∥∥∥ΠPp
(n+1)

∥∥∥
L2(Ω)

.
∥∥∥p(n+1)

∥∥∥
P

=
∥∥∥∇Pp(n+1)

∥∥∥
L2(Ω)

(42)

since
∫

Ω
ΠPp

(n+1) = 0. Equation (41) proves the estimate on ∇Pp which gives the
bound on UP (owing to (2c)) and, using (42) once more, provides the estimate on
ΠPp.

Lemma 6.2 (Estimates on the concentration). The following estimate holds:

‖ΠCc‖L∞(0,T ;L2(Ω)) +
∥∥∥(1 + |UP |)1/2∇Cc

∥∥∥
L2(0,T ;L2(Ω))

. 1 + ‖ΠCICcini‖L2(Ω) .

As a consequence, ‖∇Cc‖L2(0,T ;L2(Ω)) . 1 + ‖ΠCICcini‖L2(Ω).

Proof. Denote Yn =
∥∥ΠCc

(n)
√
φ
∥∥
L2(Ω)

. The gradient scheme (8) with z = c(n+1)

yields

Y 2
n+1 −

∫
Ω

φΠCc
(n)v(t(n)) + δt(n+ 1

2 )

∫
Ω

D(x,U
(n+1)
P )∇Cc(n+1) · ∇Cc(n+1)

+ wδt(n+ 1
2 )

∫
Ω

ΠCc
(n)v(t(n))q−n + (1− w)δt(n+ 1

2 )

∫
Ω

(ΠCc
(n+1))2q−n+1

= wδt(n+ 1
2 )

∫
Ω

q+
n v(t(n)) + (1− w)δt(n+ 1

2 )

∫
Ω

q+
n+1ΠCc

(n+1) =: ∆.

Now, by Cauchy-Schwarz, recalling that 0 ≤ w ≤ 1 and that |q−n /
√
φ| ≤Mq−/

√
φ∗,

and using the coercivity property of the diffusion tensor D,

∆ ≥ Y 2
n+1 − Yn

∥∥∥v(t(n))
√
φ
∥∥∥
L2(Ω)

+ αDδt
(n+ 1

2 )
∥∥∥(1 + |U(n+1)

P |)|∇Cc(n+1)|2
∥∥∥
L1(Ω)

−
Mq−√
φ∗
δt(n+ 1

2 )Yn

∥∥∥v(t(n))
∥∥∥
L2(Ω)

.
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Consider the term Yn
∥∥v(t(n))

√
φ
∥∥
L2(Ω)

in the right hand side of the inequality.

Estimate (24) with w(x, t) = v(x, t)2 and s = δt(n+ 1
2 ) (so that v(t(n+1) − s) =

v(t(n))), followed by Young’s inequality, give, for any ε > 0,

Yn

∥∥∥v(t(n))
√
φ
∥∥∥
L2(Ω)

≤ YnYn+1

√
1 + Cδt(n+ 1

2 ) ≤ YnYn+1(1 + Cδt(n+ 1
2 ))

≤ 1

2
Y 2
n +

1

2
Y 2
n+1 +

C2δt(n+ 1
2 )

2ε
Y 2
n +

δt(n+ 1
2 )ε

2
Y 2
n+1.

(43)

Using (25),

Yn

∥∥∥v(t(n))
∥∥∥
L2(Ω)

≤ CYnYn+1 ≤
C2

2ε
Y 2
n +

ε

2
Y 2
n+1. (44)

Using (43) together with (44), we then have

∆ ≥ Y 2
n+1 −

(
1

2
Y 2
n +

1

2
Y 2
n+1 +

C2δt(n+ 1
2 )

2ε
Y 2
n +

δt(n+ 1
2 )ε

2
Y 2
n+1

)
+ αDδt

(n+ 1
2 )
∥∥∥(1 + |U(n+1)

P |)|∇Cc(n+1)|2
∥∥∥
L1(Ω)

−
Mq−√
φ∗
δt(n+ 1

2 )

(
C2

2ε
Y 2
n +

ε

2
Y 2
n+1

)
,

which implies that

1

2
Y 2
n+1 −

1

2
Y 2
n + αDδt

(n+ 1
2 )
∥∥∥(1 + |U(n+1)

P |)|∇Cc(n+1)|2
∥∥∥
L1(Ω)

. ∆ +
δt(n+ 1

2 )

ε
Y 2
n + εδt(n+ 1

2 )Y 2
n+1. (45)

Now, using the boundedness of q+, Young’s inequality, the fact that w ∈ [0, 1] and

(25) with w(x, t) = v(x, t)2 and s = δt(n+ 1
2 ) ,

∆ . δt(n+ 1
2 )

(∥∥∥v(t(n))
∥∥∥
L2(Ω)

+
∥∥∥ΠCc

(n+1)
∥∥∥
L2(Ω)

)
. δt(n+ 1

2 )

[
1

ε
+ ε

∥∥∥v(t(n))
∥∥∥2

L2(Ω)
+ εY 2

n+1

]
.
δt(n+ 1

2 )

ε
+ δt(n+ 1

2 )εY 2
n+1.

Combining with (45), we find

1

2
Y 2
n+1 −

1

2
Y 2
n + αDδt

(n+ 1
2 )
∥∥∥(1 + |U(n+1)

P |)|∇Cc(n+1)|2
∥∥∥
L1(Ω)

.
δt(n+ 1

2 )

ε
+
δt(n+ 1

2 )

ε
Y 2
n + εδt(n+ 1

2 )Y 2
n+1,
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which, upon taking a telescoping sum, yields

1

2
Y 2
n+1 −

1

2
Y 2

0 + αD

n∑
k=0

δt(k+ 1
2 )
∥∥∥(1 + |U(n+1)

P |)|∇Cc(n+1)|2
∥∥∥
L1(Ω)

.
1

ε

n∑
k=0

δt(k+ 1
2 ) +

1

ε

n∑
k=0

δt(k+ 1
2 )Y 2

k + ε

n+1∑
k=1

δt(k−
1
2 )Y 2

k

.
1

ε
T +

1

ε
δt(

1
2 )Y 2

0 + εδt(n+ 1
2 )Y 2

n+1 +

(
1

ε
+ ε

) n∑
k=1

(δt(k+ 1
2 ) + δt(k−

1
2 ))Y 2

k .

Denoting by C the hidden multiplicative constant in the last . above, choose

ε = 1/(4CT ) to absorb the term εδt(n+ 1
2 )Y 2

n+1 in the left-hand side. Since ε depends
only on fixed quantities, we no longer make it explicit and it disappears into the

. symbols. Setting δt(−
1
2 ) = 0 the term δt(

1
2 )Y 2

0 can be integrated in the last sum
and we find

Y 2
n+1 +

∥∥(1 + |UP |)|∇Cc|2
∥∥
L1(Ω×(0,t(n+1))

. 1+Y 2
0 +

n∑
k=0

(δt(k+ 1
2 ) +δt(k−

1
2 ))Y 2

k . (46)

Dropping for a moment the second term in the left-hand side, and letting C
denote the hidden multiplicative constant in ., a discrete Gronwall’s inequality
[26, Section 5] yields, for any n = 0, . . . , N − 1,

Y 2
n+1 ≤ C(1 + Y 2

0 ) exp
( n∑
k=0

C(δt(k+ 1
2 ) + δt(k−

1
2 ))
)
≤ C(1 + Y 2

0 ) exp(2CT ).

By noticing that Y0 ≤
√
φ∗
∥∥ΠCc

(0)
∥∥
L2(Ω)

=
√
φ∗ ‖ΠCICcini‖L2(Ω), this proves the

estimate on ‖ΠCc‖L∞(0,T ;L2(Ω)). Plugging this estimate in (46) with n = N−1 yields

the estimate on
∥∥(1 + |UP |)1/2∇Cc

∥∥
L2(0,T ;L2(Ω))

which, in turn, trivially provides

a bound on ‖∇Cc‖L2(0,T ;L2(Ω)).

Remark 6.3 (Estimate of the advection–reaction terms). A formal integration-by-
parts shows that, if u satisfies (1a),∫

Ω

div(cu)c+

∫
Ω

q−c2 =
1

2

∫
Ω

(q+ + q−)c2 ≥ 0.

When using c as a test function in the continuous equation, the advection and
reaction terms thus combine to create a non-negative quantity that can simply be
discarded from the estimates (which thus hold under very weak assumptions on
q±). This can be reproduced at the discrete level for upwind discretisations [8, 10].
However, the structure of the ELLAM discretisation does not seem to lend itself
to such an easy estimate of the advection–reaction terms, which is why the proof
of Lemma 6.2 is a bit technical, and requires the boundedness of q± (to bound the
Jacobian of the changes of variables – note that we do not require a bound on u
itself, though).

A crucial step in the convergence proof is to establish the strong compactness of
ΠCc. This is done by using a discrete version of the Aubin–Simon theorem. The
gradient estimates in Lemma 6.2 provides the compactness in space, which must
be complemented by some sort of boundedness (in a dual norm) of the discrete
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time-derivative of c. Establishing this boundedness is the purpose of the following
lemma. A dual norm ‖·‖?,φ,C is defined on ΠC(XC) the following way:

∀w ∈ ΠC(XC)

‖w‖?,φ,C := sup

{∫
Ω

φwΠCv : v ∈ XC , ‖∇Cv‖L4(Ω) + ‖ΠCv‖L∞(Ω) = 1

}
.

It can easily be checked that this is indeed a norm (if w 6= 0, write w = ΠCz, take
v = z/N where N = ‖∇Cz‖L4(Ω) + ‖ΠCz‖L∞(Ω) > 0, and notice that ‖w‖?,φ,C ≥∫

Ω
φw(x)ΠCv(x)dx = N−1

∥∥√φw∥∥2

L2(Ω)
).

Lemma 6.4. Defining the discrete time derivative of c by

δCc(t) =
ΠCc

(n+1) −ΠCc
(n)

δt(n+ 1
2 )

for all t ∈ (t(n), t(n+1)) and all n = 0, . . . , N − 1,

we have ∫ T

0

‖δCc‖2?,φ,C dt . 1 + ‖ΠCICcini‖2L∞(Ω) .

Proof. Take z ∈ XC arbitrary in (8). Subtract and add
∫

Ω
φΠCc

(n)ΠCz to get∫
Ω

φ(ΠCc
(n+1) −ΠCc

(n))ΠCz

= −
∫

Ω

φΠCc
(n)(ΠCz − v(t(n)))− δt(n+ 1

2 )

∫
Ω

D(x,U
(n+1)
P )∇Cc(n+1) · ∇Cz

− wδt(n+ 1
2 )

∫
Ω

ΠCc
(n)v(t(n))q−n − (1− w)δt(n+ 1

2 )

∫
Ω

ΠCc
(n+1)ΠCzq

−
n+1

+ wδt(n+ 1
2 )

∫
Ω

q+
n v(t(n)) + (1− w)δt(n+ 1

2 )

∫
Ω

q+
n+1ΠCz.

The terms on the right hand side of the equation are referred to as T1, T2, . . . , T6,
respectively. For the term T1, recall that v(x, t(n)) = ΠCz(Fδt(n+1/2)(x)). If n = 0,

recalling that c(0) = ICcini and applying (A2) shows that

|T1| . ‖ΠCICcini‖L∞(Ω) ‖ΠCz −ΠCz(Fδt(1/2))‖L1(Ω)

. δt(
1
2 ) ‖ΠCICcini‖L∞(Ω)

∥∥∥u(1)
P

∥∥∥
L2(Ω)

‖∇Cz‖L2(Ω) .
(47)

If n 6= 0, a change of variables yields

−T1 =

∫
Ω

φΠCc
(n)ΠCz

−
∫

Ω

φ
(
F−δt(n+1/2)(x)

)
ΠCc

(n)
(
F−δt(n+1/2)(x)

)
ΠCz(x)

∣∣JF−δt(n+1/2)(x)
∣∣ dx.

Applying (22) with s = −δt(n+ 1
2 ), we can thus write −T1 = T11 − T12 with

T11 =

∫
Ω

φΠCc
(n)ΠCz −

∫
Ω

φ(x)ΠCc
(n)
(
F−δt(n+1/2)(x)

)
ΠCz(x)dx

T12 =

∫
Ω

[
ΠCc

(n)
(
F−δt(n+1/2)(x)

)
ΠCz(x)

×
∫ −δt(n+1

2
)

0

|JFt(x)|(divu
(n+1)
P ) ◦ Ft(x)dt

]
dx.
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Using (A2) leads to

|T11| ≤
∫

Ω

∣∣∣φΠCz
(

ΠCc
(n) −ΠCc

(n)(F−δt(n+1/2))
)∣∣∣

. δt(n+ 1
2 ) ‖ΠCz‖L∞(Ω)

∥∥∥u(n+1)
P

∥∥∥
L2(Ω)

∥∥∥∇Dc(n)
∥∥∥
L2(Ω)

.

The boundedness of divu
(n+1)
P in (A4) and of |JFt| (see (23)) yield, by a change

of variables,

|T12| . δt(n+ 1
2 )
∥∥∥ΠCc

(n)(F−δt(n+1/2))
∥∥∥
L2(Ω)

‖ΠCz‖L2(Ω)

. δt(n+ 1
2 )
∥∥∥ΠCc

(n)
∥∥∥
L2(Ω)

‖ΠCz‖L2(Ω) .

For the term T2, the property (2d) of the diffusion tensor D and Hölder’s in-
equality with exponents 4, 2 and 4 give

|T2| . δt(n+ 1
2 )

∫
Ω

√
1 + |U(n+1)

P |
(√

1 + |U(n+1)
P | |∇Cc(n+1)|

)
|∇Cz|

. δt(n+ 1
2 )
∥∥∥1 + |U(n+1)

P |
∥∥∥ 1

2

L2(Ω)

∥∥∥(1 + |U(n+1)
P |) 1

2 |∇Cc(n+1)|
∥∥∥
L2(Ω)

‖∇Cz‖L4(Ω) .

The terms T3 to T6 are estimated by using the Cauchy–Schwarz inequality:

|T3| . δt(n+ 1
2 )
∥∥∥ΠCc

(n)
∥∥∥
L2(Ω)

∥∥∥v(t(n))
∥∥∥
L2(Ω)

,

|T4| . δt(n+ 1
2 )
∥∥∥ΠCc

(n+1)
∥∥∥
L2(Ω)

‖ΠCz‖L2(Ω) ,

|T5 + T6| . δt(n+ 1
2 )
∥∥∥v(t(n))

∥∥∥
L2(Ω)

+ δt(n+ 1
2 ) ‖ΠCz‖L2(Ω) . δt(n+ 1

2 ) ‖ΠCz‖L2(Ω)

(we used (25) with w = v2 and s = δt(n+ 1
2 ) to obtain

∥∥v(t(n))
∥∥
L2(Ω)

. ‖ΠCz‖L2(Ω)).

For n 6= 0, combining the estimates from T1 to T6 leads to∫
Ω

φ(ΠCc
(n+1) −ΠCc

(n))ΠCz

. δt(n+ 1
2 ) ‖ΠCz‖L∞(Ω)

∥∥∥u(n+1)
P

∥∥∥
L2(Ω)

∥∥∥∇Cc(n)
∥∥∥
L2(Ω)

(48)

+ δt(n+ 1
2 )
∥∥∥ΠCc

(n)
∥∥∥
L2(Ω)

‖ΠCz‖L2(Ω)

+ δt(n+ 1
2 )
∥∥∥1 + |U(n+1)

P |
∥∥∥ 1

2

L2(Ω)

∥∥∥(1 + |U(n+1)
P |) 1

2 |∇Cc(n+1)|
∥∥∥
L2(Ω)

‖∇Cz‖L4(Ω)

+ δt(n+ 1
2 )
∥∥∥ΠCc

(n+1)
∥∥∥
L2(Ω)

‖ΠCz‖L2(Ω) + δt(n+ 1
2 ) ‖ΠCz‖L2(Ω) .

Divide both sides by δt(n+ 1
2 ) and take the supremum over all z ∈ XC with ‖∇Cz‖L4(Ω)+

‖ΠCz‖L∞(Ω) = 1 to obtain, for all n = 1, . . . , N − 1 and t ∈ (t(n), t(n+1)),

‖δCc(t)‖?,φ,C .
∥∥∥u(n+1)
P

∥∥∥
L2(Ω)

∥∥∥∇Cc(n)
∥∥∥
L2(Ω)

+
∥∥∥ΠCc

(n)
∥∥∥
L2(Ω)

+
∥∥∥ΠCc

(n+1)
∥∥∥
L2(Ω)

+
∥∥∥1 + |U(n+1)

P |
∥∥∥ 1

2

L2(Ω)

∥∥∥(1 + |U(n+1)
P |) 1

2∇Cc(n+1)
∥∥∥
L2(Ω)

+ 1. (49)
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Square this, integrate for t ∈ (t(n), t(n+1)) and sum over n = 1, . . . , N − 1. The
assumption on the time steps in (A1) ensures that

N−1∑
n=1

δt(n+1/2)
∥∥∥∇Dc(n)

∥∥∥2

L2(Ω)
.
N−1∑
n=1

δt(n−1/2)
∥∥∥∇Dc(n)

∥∥∥2

L2(Ω)

=

N−2∑
n=0

δt(n+1/2)
∥∥∥∇Dc(n+1)

∥∥∥2

L2(Ω)
≤ ‖∇Cc‖2L2(Ω×(0,T ))

(and similarly for the terms involving ΠCc
(n)), so that∫ T

t(1)
‖δCc(t)‖2?,φ,C dt . ‖uP‖

2
L∞(0,T ;L2(Ω)) ‖∇Cc‖

2
L2(Ω×(0,T )) + ‖ΠCc‖2L2(Ω×(0,T ))

+ ‖1 + |UP |‖L∞(0,T ;L2(Ω))

∥∥∥(1 + |UP |)
1
2∇Cc

∥∥∥2

L2(Ω×(0,T ))
+ 1. (50)

To estimate
∫ t(1)

0
‖δCc(t)‖2?,φ,C dt, we come back to (48) with n = 0. The first term

in the right-hand side of this inequality must be replaced by the right-hand side

of (47), and thus the first term in (49) is replaced by ‖ΠCICcini‖L∞(Ω) ‖u
(1)
P ‖L2(Ω).

Hence,∫ t(1)

0

‖δCc(t)‖2?,φ,C dt . δt(1/2) ‖ΠCICcini‖2L∞(Ω)

∥∥∥u(1)
P

∥∥∥2

L2(Ω)

+ δt(1/2) ‖ΠCICcini‖2L2(Ω) + ‖ΠCc‖2L2(Ω×(0,T ))

+ ‖1 + |UP |‖L∞(0,T ;L2(Ω))

∥∥∥(1 + |UP |)
1
2∇Cc

∥∥∥2

L2(Ω×(0,T ))
+ 1. (51)

The reason for separating the case n 6= 0 from the case n = 0 is that, for n = 0,
(48) involves ∇Cc(0) = ∇CICcini on which no bound has been imposed. The proof
is completed by adding together (50) and (51), and by invoking Assumption (A5)
and Lemmas 6.1 and 6.2.

7. Proof of the main theorem

At each time step, (6) and (8) are square linear equations on p(n+1) and c(n+1).
The estimates of Lemma 6.1 and 6.2, together with the definition of the norms
in XP and XC , show that any solutions to these linear systems remains bounded.
Hence, the matrices associated with these systems do not have any kernel, which
ensures the existence and uniqueness of (p, c) solution to the GDM–ELLAM scheme.

We now establish the compactness of (ΠCmcm)m∈N, which is essential to proving
the convergence of the pressure. Once this latter is establish, we conclude the proof
by dealing with the convergence of the concentration.

7.1. Compactness and initial convergence of ΠDmcm.

Theorem 7.1. Under the assumptions and notations of Theorem 3.3, the sequence
(ΠCmcm)m∈N is relatively compact in L2(0, T ;L2(Ω)).

Proof. The idea is to apply Theorem 9.3 with Xm = ΠCm(XCm) equipped with
the norm ‖u‖Xm = min{‖w‖Cm : w ∈ XCm s.t. ΠCmw = u} and Ym = Xm with the

norm ‖·‖Ym = ‖·‖?,φ,Cm .
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Let us show that (Xm, Ym)m∈N is compactly–continuously embedded in L2(Ω)
(Definition 9.2). Item 1 follows by the compactness of (Cm)m∈N, see Definition 2.2.
Take now (um)m∈N as prescribed in Item 2 and let u be the limit in L2(Ω) of this
sequence. Let ϕ ∈ C∞c (Ω) and consider the interpolant JCm given by Assumption
(A3). Then ‖ΠCmJCmϕ‖L∞(Ω) + ‖∇CmJCmϕ‖L4(Ω) ≤ Cϕ for some Cϕ > 0 not

depending on m, and thus, by definition of ‖·‖Ym = ‖·‖?,φ,Cm ,∣∣∣∣∫
Ω

φum
ΠCmJCmϕ

Cϕ

∣∣∣∣ ≤ ‖um‖Ym .
Taking the limit asm→∞, we get

∫
Ω
φuϕ = 0. Since this is true for all ϕ ∈ C∞c (Ω),

we deduce that u = 0 as required.

We are left to show that the sequence fm = (ΠCmcm)m∈N satisfies the properties
in Theorem 9.3. The first property is trivially satisfied by the definition fm, whereas
the second and third one follow from Lemma 6.2 and the definition of the norm
‖·‖Cm (Definition 2.1). The last property holds due to Lemma 6.4.

Thus, we may use Theorem 9.3 to conclude that the sequence (ΠCmcm)m∈N is
relatively compact in L2(0, T ;L2(Ω)).

Theorem 7.1 together with Lemma 9.1 give c ∈ L2(0, T ;H1(Ω)) such that, up to a
subsequence as m→∞, ΠCmcm → c strongly in L2((0, T )× Ω) and ∇Cmcm → ∇c
weakly in L2((0, T ) × Ω)d. From here on we always consider subsequences that
satisfy these convergences. Let αm : [0, T ] → R be the piecewise affine map that

maps each interval (t
(n)
m , t

(n+1)
m ) onto (t

(n−1)
m , t

(n)
m ), for n = 1, . . . , Nm − 1. That is,

αm(t) = t−(1− δt(n−1/2)
m

δt
(n+1/2)
m

)(t−t(n))−(t(n)−t(n−1)) for t ∈ (t(n), t(n+1)). Recalling the

definition of Π̃Cmcm at the start of Section 6, we have Π̃Cmcm = ΠCmcm(·, αm(·))
on Ω × (t(1), T ) and Π̃Cmcm = ΠCmICmcini on Ω × (0, t(1)). We have αm(t) → t
uniformly as m→∞ and, due to (A1), the derivative of the inverse function α−1

m

is uniformly bounded. Hence, a triangle inequality, a change of variables using α−1
m ,

and the strong convergence of (ΠCmcm)m∈N show that Π̃Cmcm → c in L2(Ω×(0, T ))
as m→∞.

7.2. Convergence of the pressure.
Step 1: weak convergences of ΠPmpm and ∇Pmpm. We use Lemmas 6.1 and 9.1 to
obtain p ∈ L∞(0, T ;H1(Ω)) such that, up to a subsequence

ΠPmpm → p weakly-∗ in L∞(0, T ;L2(Ω))

∇Pmpm → ∇p weakly-∗ in L∞(0, T ;L2(Ω)d).

The zero-average condition in (6) shows that
∫

Ω
ΠPmpm(·, t) = 0 for all t ∈

(0, T ). Hence, the weak-∗ convergence of ΠPmpm ensures that
∫

Ω
p(·, t) = 0 for a.e.

t ∈ (0, T ) (test the zero-average condition on ΠPmpm with functions ρ ∈ L∞(0, T )
and pass to the limit).

Consider ψ(x, t) = Ξ(t)η(x) with Ξ ∈ C∞([0, T ]) and η ∈ C∞(Ω). Define
Ξδtm(t) = Ξ(t(n+1)) on (t(n), t(n+1)) for each n and note that (Ξδtm)m∈N converges
to Ξ uniformly.

By consistency of (Pm)m∈N, there exists zm ∈ Pm such that ΠPmzm → η and
∇Pmzm → ∇η strongly in L2(Ω). Recalling that A = K/µ satisfies (2c), [16,

Lemma C.4] shows that A(x, Π̃Cmcm)∇Pmzm → A(x, c)∇η strongly in L2(Ω ×
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(0, T ))d. Apply the second equation of (6) to z = Ξ(t(n+1))zm, multiply by δt
(n+ 1

2 )
m ,

and take the sum over n = 0, . . . , Nm− 1. denoting by q±δtm the piecewise-constant-

in-time functions equal to q±n on (t(n), t(n+1)), we obtain

∫ T

0

∫
Ω

A(x, Π̃Cmcm)∇Pmpm · (Ξδtm∇Pmzm)

=

∫ T

0

∫
Ω

(q+
δtm
− q−δtm)ΞδtmΠPmzm. (52)

By symmetry of A, strong convergence of Π̃Cmcm and of ∇Pmzm, together with
the weak convergence of ∇Pmpm, a weak–strong convergence result (see, e.g., [16,

Lemma C.3]) shows that the left-hand side of (52) converges to
∫ T

0

∫
Ω
A(x, c)∇p ·

Ξ∇η. Moreover, q±δtm → q± in L1(0, T ;L2(Ω)) and thus the right-hand side of (52)

converges to
∫ T

0

∫
Ω

(q+ − q−)Ξη. This shows that p satisfies the second equation
in (3) when ψ = Ξη. By linear combination, this equation is also satisfied for all
tensorial functions and, by a density argument, for all smooth functions. Hence, p
satisfies (3).

Step 2: strong convergence of ∇Pmpm and UPm . Let z = p
(n+1)
m in (6), multiply by

δt
(n+ 1

2 )
m and take the sum over n = 0, . . . , Nm − 1. By weak convergence of ΠPmpm

and since p satisfies (3) (which also holds, by density, for ψ ∈ L1(0, T ;H1(Ω))),

lim
m→∞

∫ T

0

∫
Ω

A(x, Π̃Cmcm)∇Pmpm · ∇Pmpm

= lim
m→∞

∫ T

0

∫
Ω

(q+
δtm
−q−δtm)ΠPmpm =

∫ T

0

∫
Ω

(q+−q−)p =

∫ T

0

∫
Ω

A(x, c)∇p ·∇p.

This convergence, the weak convergence of ∇Pmpm and the strong convergence of

A(x, Π̃Cmcm)∇p show that∫ T

0

∫
Ω

A(x, Π̃Cmcm)(∇Pmpm −∇p) · (∇Pmpm −∇p)

=

∫ T

0

∫
Ω

A(x, Π̃Cmcm)∇Pmpm · ∇Pmpm −
∫ T

0

∫
Ω

A(x, Π̃Cmcm)∇Pmpm · ∇p

−
∫ T

0

∫
Ω

A(x, Π̃Cmcm)∇p · (∇Pmpm −∇p)→ 0.

By coercivity of A (Assumption (2c)), we infer that ∇Pmpm → ∇p strongly in
L2(Ω× (0, T ))d . Moreover, since ∇Pmpm is bounded in L∞(0, T ;L2(Ω)) (Lemma
6.1), this implies that∇Pmpm → ∇p strongly in Lr(0, T ;L2(Ω))d for any r ∈ (1,∞).

Up to a subsequence Π̃Cmcm → c a.e. on Ω×(0, T ). The properties (2c) of A and
the above convergence of ∇Pmpm show that UPm = − K

µ(Π̃Cmcm)
∇Pmpm → U =

− K
µ(c)∇p strongly in Lr(0, T ;L2(Ω))d.

Step 3: strong convergence of ΠPmpm. Since p ∈ L2(0, T ;H1(Ω)), by [16, Lemma

4.9] we can find Pm ∈ XNm+1
Pm such that ΠPmPm → p and ∇PmPm → ∇p strongly

in L2(0, T ;L2(Ω)). Then, for each t ∈ (0, T ), by definition of the coercivity constant



32 HANZ MARTIN CHENG, JÉRÔME DRONIOU, AND KIM-NGAN LE

CPm ,

‖ΠPm(Pm − pm)‖2L2(Ω) ≤ C
2
Pm

(
‖∇Pm(Pm − pm)‖2L2(Ω) +

∣∣∣∣∫
Ω

ΠPm(Pm − pm)

∣∣∣∣2
)
.

Integrating from 0 to T and using
∫

Ω
p =

∫
Ω

ΠPmpm = 0 yields

‖ΠPm(Pm − pm)‖2L2(Ω×(0,T ))

≤ C2
Pm ‖∇Pm(Pm − pm)‖2L2(Ω×(0,T ))d + C2

Pm

∫ T

0

∣∣∣∣∫
Ω

(ΠPmPm − p)
∣∣∣∣2 .

The first term on the right hand side converges to 0 since both ∇PmPm and ∇Pmpm
converge strongly to ∇p (and (CPm)m∈N is bounded by coercivity of (Pm)m∈N).
The second term converges to 0 since ΠPmPm converges to p strongly. This shows
that ΠPmpm also converges strongly to p in this space, and the convergence in
Lr(0, T ;L2(Ω)) follows due to the bound on ΠPmpm in Lemma 6.1.

7.3. Convergence of the concentration. The proof of Theorem 3.3 is con-
cluded by showing that c satisfies (4). It has already been established that c ∈
L2(0, T ;H1(Ω)). Lemma 6.2 shows that (1 + |UPm |)1/2∇Cmcm is bounded in
L2(Ω× (0, T ))d and therefore weakly converges, up to a subsequence, in this space
to someW. Since UPm converges strongly in L2(Ω× (0, T ))d and ∇Cmc→ ∇c con-
verges weakly in this space, (1 + |UPm |)1/2∇Cmcm → (1 + |U|)1/2∇c in the sense of
distributions. Hence, (1 + |U|)1/2∇c = W ∈ L2(Ω × (0, T ))d. It remains to prove
that the equation in (4) is satisfied.

Take a test function ϕ(x, t) = Θ(t)ω(x) with Θ ∈ C∞([0, T )) and ω ∈ C∞(Ω).
For m ∈ N let Θδtm : (0, T ) → R be such that Θδtm = Θ(t(n+1)) on (t(n), t(n+1)]
for all n = 0, . . . , Nm − 1 (for legibility, we drop the index m in the time steps

t
(k)
m ). Using Assumption (A3), define the interpolant zm := JCmω of ω. Now,

consider z = Θ(t(n+1))zm ∈ XCm in (8), so that v = v
(n)
m is given by v

(n)
m (x, t(n)) =

Θ(t(n+1))ΠCmzm(F
(n+1)

t(n+1)−t(n)(x)) (here, we make explicit the dependency on the

flow F
(n+1)
t with respect to the time step n, but not with respect to m). Sum the

resulting equations over n = 0, . . . , Nm − 1 and recall the definition (35) of TuPm .

Letting q̂±δtm be the function equal to q±n+1 on (t(n), t(n+1)) for all n = 0, . . . , Nm−1,
we obtain[Nm−1∑

n=0

∫
Ω

φΠCmc
(n+1)
m Θ(t(n+1))ΠCmzm −

Nm−1∑
n=0

∫
Ω

φΠCmc
(n)
m v(n)

m (t(n))

]

+

∫ T

0

∫
Ω

D(x,UPm)∇Cmcm ·Θδtm(t)∇Cmzm

+

∫ T

0

∫
Ω

[
wΠ̃CmcmTuPm [Θδtm(t)ΠCmzm]q−δtm + (1− w)ΠCmcmΘδtm(t)ΠCmzmq̂

−
δtm

]
=

∫ T

0

∫
Ω

[
wTuPm [Θδtm(t)ΠCmzm]q+

δtm
+ (1− w)q̂+

δtm
Θδtm(t)ΠCmzm

]
.

Let us write T
(m)
1 + T

(m)
2 + T

(m)
3 = T

(m)
4 this relation.

The limits of the last two terms are the easiest to establish. By the strong

convergences of ΠCmcm, Π̃Cmcm and ΘδtmΠCmzm in L2(Ω × (0, T )), Lemma 5.7
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shows that

T
(m)
3 →

∫ T

0

∫
Ω

cϕq− and T
(m)
4 →

∫ T

0

∫
Ω

q+ϕ. (53)

Let us turn to T
(m)
2 . Since UPm → U strongly in L2(Ω × (0, T ))d, the growth

assumption (2d) on D ensures that (see, e.g., [19, Lemma A.1])

D(·,UPm)1/2 → D(·,U)1/2 strongly in L4(Ω× (0, T ))d×d. (54)

By Lemma 6.2 the sequence D(·,UPm)1/2∇Cmcm is bounded in L2(Ω × (0, T ))d.
The weak convergence of ∇Cmcm in L2(Ω×(0, T ))d and [19, Lemma A.3] thus show
that D(·,UPm)1/2∇Cmcm → D(·,U)1/2∇c weakly in L2(Ω × (0, T ))d. Using (54)
and the fact that Θδtm → Θ uniformly, the strong convergence ∇Cmzm → ∇ω in
L4(Ω)d (see (A3)) shows that, as m→∞,

T
(m)
2 =

∫ T

0

∫
Ω

D(x,UPm)1/2∇Cmcm ·D(x,UPm)1/2Θδtm(t)∇Cmzm

→
∫ T

0

∫
Ω

D(x,U)1/2∇c ·D(x,U)1/2∇ϕ =

∫ T

0

∫
Ω

D(x,U)∇c · ∇ϕ. (55)

We now consider T
(m)
1 . Since Θ(t(Nm)) = 0, a change of index in the first sum

of T
(m)
1 and recalling the definition of v

(n)
m (tn) yield

T
(m)
1 =

Nm−1∑
n=0

∫
Ω

φΠCmc
(n)
m Θ(t(n))ΠCmzm −

∫
Ω

φΠCmc
(0)
m Θ(t(0))ΠCmzm

−
Nm−1∑
n=0

∫
Ω

φΠCmc
(n)
m Θ(t(n+1))ΠCmzm

(
F

(n+1)

δt
(n+1/2)
m

(x)
)

=

Nm−1∑
n=0

∫
Ω

φΠCmc
(n)
m (Θ(t(n))−Θ(t(n+1)))ΠCmzm −

∫
Ω

φΠCmc
(0)
m Θ(t(0))ΠCmzm

−
Nm−1∑
n=0

∫
Ω

φΠCmc
(n)
m Θ(t(n+1))

(
ΠCmzm

(
F

(n+1)

δt
(n+1/2)
m

(x)
)
−ΠCmzm

)
= T

(m)
11 − T (m)

12 − T (m)
13 .

Since c
(0)
m = ICmcini, the consistency of (Cm)m∈N (see Definition 2.2) ensures that

T
(m)
12 →

∫
Ω

φciniΘ(0)ω =

∫
Ω

φciniϕ(·, 0). (56)

Since Θ(t(n)) − Θ(t(n+1)) = −
∫ t(n+1)

t(n) Θ′ the strong convergences of ΠCmzm and

Π̃Cmcm show that

T
(m)
11 = −

∫ T

0

∫
Ω

φΠ̃CmcmΘ′ΠCmzm → −
∫ T

0

∫
Ω

φc
∂ϕ

∂t
. (57)

It remains to analyse T
(m)
13 . Let ζm = ΠCmzm − ω and write

ΠCmzm(F
(n+1)

δt(n+1/2))−ΠCmzm =
(
ω(F

(n+1)

δt(n+1/2))− ω
)

+ ζm(F
(n+1)

δt(n+1/2))− ζm.
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Letting I be the identity map and κ(t) be the piecewise-constant function equal to

δt
(n+ 1

2 )
m on (t(n), t(n+1)), this yields

T
(m)
13 =

Nm−1∑
n=0

∫
Ω

φΠCmc
(n)
m Θ(t(n+1))

(
ω
(
F

(n+1)

δt
(n+1/2)
m

)
− ω

)
+

∫ T

t(1)

∫
Ω

φ

κ(t)
Π̃Cmcm

(
TuPm − I

)
[Θδtm(t)ζm]

+ Θ(t(1))

∫
Ω

φΠCmc
(0)
m

(
ζm(F

(1)

t(1)
)− ζm

)
.

We note that, in the last two terms, the case n > 0 is separated from the case n = 0,

as we do not have any information regarding the boundedness of ∇Cmc
(0)
m (which

would arise in the estimates after invoking (A2)). For a.e. x ∈ Ω, t 7→ F
(n+1)
t (x)

is Lipschitz-continuous and the chain rule therefore yields

ω(F
(n+1)

δt
(n+1/2)
m

(x))− ω(x) = −
∫ t(n+1)

t(n)

∂t

[
ω(F

(n+1)

t(n+1)−t(x))
]

=

∫ t(n+1)

t(n)

∇ω(F
(n+1)

t(n+1)−t(x)) ·
u

(n+1)
Pm (F

(n+1)

t(n+1)−t(x))

φ((F
(n+1)

t(n+1)−t(x)))
. (58)

The operator TuPm does not directly act on the time component in L2(Ω× (0, T )).

Hence, the representation (37) of its dual is also valid in L2(Ω × (t(1), T )), and
space-independent functions can be taken out of these operators. Using this repre-

sentation, (58) and recalling the definition (35) of T̂uPm , we obtain

T
(m)
13 =

∫ T

0

∫
Ω

φΠ̃CmcmT̂uPm

[
Θδtm(t)∇ω ·

uPm
φ

]
+

∫ T

t(1)

∫
Ω

φ

κ(t)

(
T−uPm − I

)
(Π̃Cmcm)Θδtm(t)ζm

+

∫ T

t(1)

∫
Ω

Rm
κ(t)
T−uPm (φΠ̃Cmcm)Θδtm(t)ζm

+ Θ(t(1))

∫
Ω

φΠCmc
(0)
m

(
ζm(F

(1)

t(1)
)− ζm

)
= T

(m)
131 + · · ·+ T

(m)
134 .

(59)

By weak convergence of Θδtm(t)∇ω · uPm/φ (owing to (b) in (A5)) and strong

convergence of Π̃Cmcm, Lemma 5.7 shows that T
(m)
131 →

∫ T
0

∫
Ω
cu ·Θ∇ω =

∫ T
0

∫
Ω
cu ·

∇ϕ. Using (A2) we have, for n = 1, . . . , Nm − 1,∥∥∥ΠCmc
(n)
m (F

(n+1)

−δt(n+1/2)
m

)−ΠCmc
(n)
m

∥∥∥
L1(Ω)

δt(n+1/2)
m

≤MF

∥∥∥u(n+1)
Pm

∥∥∥
L2(Ω)

∥∥∥∇Cmc(n)
m

∥∥∥
L2(Ω)

.

Hence, invoking (A1),

|T (m)
132 | ≤ φ∗MF ‖ζm‖L∞(Ω) ‖Θ‖L∞(0,T )

×
Nm−1∑
n=1

δt(n+1/2)
m

∥∥∥u(n+1)
Pm

∥∥∥
L2(Ω)

∥∥∥∇Cmc(n)
m

∥∥∥
L2(Ω)
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≤ φ∗MF ‖ζm‖L∞(Ω) ‖Θ‖L∞(0,T )

∥∥uPm∥∥L∞(0,T ;L2(Ω))

×Mt

Nm−2∑
n=0

δt(n+1/2)
m

∥∥∥∇Cmc(n+1)
m

∥∥∥
L2(Ω)

≤ φ∗MF ‖ζm‖L∞(Ω) ‖Θ‖L∞(0,T )

∥∥uPm∥∥L∞(0,T ;L2(Ω))
‖∇Cmcm‖L1(0,T ;L2(Ω)) .

Using the bounds on uPm and∇Cmcm given by (a) in (A5) and Lemmas 6.1 and 6.2,
and the convergence ζm = ΠCmJCmω − ω → 0 in L∞(Ω) from (A3), we infer that

T
(m)
132 → 0. The term T

(m)
133 also converges to 0, due to the bound on Rm in Lemma

5.7 (which cancels out the term 1/κ(t)), the bound (36) and the convergence of ζm
to 0 in L∞(Ω).

Finally, let us study T
(m)
134 . Since ΠCmc

(0)
m = ΠCmICmcini is bounded in L∞(Ω)

(see Definition 2.2), there is C not depending on m such that |Θ(t(1))ΠCmc
(0)
m | ≤ C

a.e. on Ω. Split ζm = ΠCmzm − ω and write, using (A2) on zm and Lemma 5.3 on
ω,

|T (m)
134 | ≤ C

(∥∥∥ΠCmzm(F
(1)

t(1)
)−ΠCmzm

∥∥∥
L1(Ω)

+
∥∥∥ω(F

(1)

t(1)
)− ω

∥∥∥
L1(Ω)

)
≤ C

∥∥∥u(1)
Pm

∥∥∥
L2(Ω)

|δt(1)
m |
(
MF ‖∇Cmzm‖L2(Ω) +

C1(T )

φ∗
‖∇ω‖L2(Ω)

)
.

The bounds on u
(1)
P (from (a) in (A5) and Lemma 6.1) and on ∇Cmzm (from (A3))

then show that T
(m)
134 → 0.

Hence, T
(m)
13 →

∫ T
0

∫
Ω
cu · ∇ϕ. Together with (56) and (57), this shows that

T
(m)
1 → −

∫ T

0

∫
Ω

φc
∂ϕ

∂t
−
∫

Ω

φciniϕ(·, 0)−
∫ T

0

∫
Ω

cu · ∇ϕ.

Gathering this with (53) and (55), we infer that c satisfies the equation in (4) when-
ever ϕ = Θω. By linear combination, this equation is also satisfied for all tensorial
functions and, by density argument, for all smooth functions. This concludes the
proof that c satisfies (4).

8. Conclusion

We analysed the convergence of numerical schemes for a coupled elliptic–parabolic
system modelling the miscible displacement of a flow by another in a porous
medium. The advective terms were discretised by the Eulerian–Lagragian Localised
Adjoint Method (ELLAM), and the diffusive terms by the generic framework of the
Gradient Discretisation Method (GDM). As a consequence, our analysis applies to
a wide range of schemes, given the variety of numerical methods for diffusion prob-
lems that fit into the GDM. In particular, our results apply to MFEM–ELLAM of
[32] and to the HMM–ELLAM of [12]. The GDM–ELLAM framework also gives an
easy way to construct further ELLAM-based schemes, by discretising the diffusion
terms using any of the method known to fit into the GDM.

Contrary to previous convergence analysis of schemes involving the ELLAM,
the analysis here relies neither on L∞ bounds on the concentration (which, given
the anisotropic diffusive terms and generic meshes used in reservoir engineering,
would not hold at the discrete level), nor on the smoothness of the data or the
solutions (which cannot be established in practical situations, with discontinuous
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data such as the permeability, porosity, etc.). The convergence is established under
minimal regularity assumptions on the data, using energy estimates and discrete
compactness techniques.

To carry out this analysis, fine properties of the flow of possibly discontinu-
ous Darcy velocities have been established. These properties, as well as some
other techniques we develop for the analysis, could certainly prove useful for other
characteristic-based discretisations (such as the Modified Method Of Characteris-
tics).

9. Appendix: generic compactness results

The following results are particular cases of more general theorems on GDM that
can be found in [16].

Lemma 9.1 (Regularity of the limit, space-time problems [16, Lemma 4.7]).
Let p ∈ (1,∞), and ((DT )m)m∈N be a coercive and limit-conforming sequence of

space-time GDs. For each m ∈ N, take um ∈ XNm+1
Dm (identified with a piecewise-

constant function [0, T ]→ XDm) and assume that (‖um‖Lp(0,T ;XDm ))m∈N is bounded.

Then there exists u ∈ Lp(0, T ;H1(Ω)) such that, up to a subsequence as m → ∞,
ΠDmum → u and ∇Dmum → ∇u weakly in Lp(0, T ;L2(Ω)). The same property
holds with p = +∞, provided that the weak convergences are replaced by weak-∗
convergences.

Definition 9.2 (Compactly–continuously embedded sequence). Let (Xm, ‖·‖Xm)m∈N
be a sequence of Banach spaces included in L2(Ω), and (Ym, ‖·‖Ym)m∈N be a se-

quence of Banach spaces. The sequence (Xm, Ym)m∈N is compactly–continuously
embedded in L2(Ω) if:

(1) If um ∈ Xm for all m ∈ N and (‖um‖Xm)m∈N is bounded, then (um)m∈N is

relatively compact in L2(Ω).
(2) Xm ⊂ Ym for all m ∈ N and for any sequence (um)m∈N such that

(a) um ∈ Xm for all m ∈ N and (‖um‖Xm)m∈N is bounded,

(b) ‖um‖Ym → 0 as m→∞,

(c) (um)m∈N converges in L2(Ω),
it holds that um → 0 in L2(Ω).

Theorem 9.3 (Discrete Aubin–Simon compactness [16, Theorem 4.17]).
Let (Xm, Ym)m∈N be compactly–continuously embedded in L2(Ω), T > 0 and (fm)m∈N
be a sequence in L2(0, T ;L2(Ω)) such that

• For all m ∈ N , there exists N ∈ N∗, 0 = t(0) < · · · < t(N) = T and
(v(n))n=0,...,N ∈ XN+1

m such that fm(t) = v(n+1) for all n = 0, . . . , N − 1

and a.e. t ∈ (t(n), t(n+1)), fm(t) = v(n+1). We then set

δmfm(t) =
v(n+1) − v(n)

t(n+1) − t(n)
for n = 0, . . . , N − 1 and t ∈ (t(n), t(n+1)).

• The sequence (fm)m∈N is bounded in L2(0, T ;L2(Ω)).
• The sequence (‖fm‖L2(0,T ;Xm))m∈N is bounded.

• The sequence (‖δmfm‖L2(0,T ;Ym))m∈N is bounded.

Then (fm)m∈N is relatively compact in L2(0, T ;L2(Ω)).
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ume 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer,

Heidelberg, 2012.

[14] J. Droniou. Finite volume schemes for diffusion equations: introduction to and review of
modern methods. Math. Models Methods Appl. Sci., 24(8):1575–1619, 2014.

[15] J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems

on any grid. Numer. Math., 105(1):35–71, 2006.
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