arXiv:1710.01897v3 [math.NA] 15 Nov 2017

CONVERGENCE ANALYSIS OF A FAMILY OF ELLAM
SCHEMES FOR A FULLY COUPLED MODEL OF MISCIBLE
DISPLACEMENT IN POROUS MEDIA

HANZ MARTIN CHENG, JEROME DRONIOU, AND KIM-NGAN LE

ABSTRACT. We analyse the convergence of numerical schemes in the GDM—
ELLAM (Gradient Discretisation Method—Eulerian Lagrangian Localised Ad-
joint Method) framework for a strongly coupled elliptic-parabolic PDE which
models miscible displacement in porous media. These schemes include, but
are not limited to Mixed Finite Element—-ELLAM and Hybrid Mimetic Mixed—
ELLAM schemes. A complete convergence analysis is presented on the cou-
pled model, using only weak regularity assumptions on the solution (which are
satisfied in practical applications), and not relying on L> bounds (which are
impossible to ensure at the discrete level given the anisotropic diffusion tensors
and the general grids used in applications).

1. MODEL AND ASSUMPTIONS

We consider the following coupled system of partial differential equations, mod-
elling the miscible displacement of one fluid by another in a porous medium:

divu = ¢t — ¢~ on Q:=0Qx(0,7T)
1
ne -2 9 om0 (12)
p(c)
aC . _ +
¢@ + div(uec — D(x,u)Ve) + ¢ c=g¢q on Q (1b)

with unknowns p(z, t), u(ax,t), and ¢(x, t) which denote the pressure of the mixture,
the Darcy velocity, and the concentration of the injected solvent, respectively. The
functions ¢ and ¢~ represent the injection and production wells respectively, and
D(x,u) denotes the diffusion—dispersion tensor

D(x,u) = ¢(x) [dpnI + di|u| E(u) + dy|u| (I — E(u))] with E(u) = (“ﬂ;) .
i,
Here, d,, > 0 is the molecular diffusion coefficient, d; > 0 and d; > 0 are the
longitudinal and transverse dispersion coefficients respectively, and FE(u) is the
projection matrix along the direction of u. Also, K is the symmetric, bounded
uniformly coercive diffusion tensor, and u(c) = u(0)[(1 — ¢) + M**c]=* is the
viscosity of the fluid mixture, where M = p(0)/p(1) is the mobility ratio of the
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two fluids. As usually considered in numerical tests, we take no-flow boundary
conditions:

u-n=(DVe)-n=0o0n 00 x (0,T). (1c)

The concentration equation is completed by an initial condition, and the pressure
equation by an average condition:

c(x,0) = cip; for all ¢ € Q, / p(a,t)de =0 for all t € (0,T).
Q

Problem (1) is used in enhanced oil recovery. Exact solutions of this model are
usually inaccessible, especially with data as encountered in applications; thus the
design and convergence analysis of numerical schemes for (1) is therefore of par-
ticular importance. The main purpose of this work is to provide a GDM-ELLAM
(Gradient Discretisation Method—FEulerian Lagrangian Localised Adjoint Method)
framework for model (1) and to establish convergence of numerical schemes that
fall under this framework. Some of the schemes covered by this framework are the
Mixed Finite Element—-ELLAM and Hybrid Mimetic Mixed-ELLAM schemes. An
overview of studies and analysis involving ELLAM schemes is presented in [30].
Convergence analysis was performed for MFEM-ELLAM schemes (or similar) in
[5,31]. We note here that [5] only considers the concentration equation (1b) (assum-
ing that u is given), whereas [31] provides error estimates for the complete coupled
model (1). However, these analysis were carried out under restrictive regularity as-
sumptions on the porosity ¢ and on the solution (p, u, ¢) to the model; in particular,
the minimal assumptions in [31] are ¢ € H(0,T; H2(Q2)) N L>=(0,T; W27 (Q)) (for
r>2)and u e WH°(Q x (0,7)), and [5] supposes that ¢, DVc € C1(0,T; H(Q))
and ¢,u € Wh>(Q x (0,T)). However, in reservoir modeling, transitions between
different rock layers are usually discontinuous; thus, the permeability may vary
rapidly over several orders of magnitude, with local variations in the range of 1mD
to 10D, where D is the Darcy unit [28]. Due to this discontinuity of K, the solutions
to (1) cannot expect to satisfy the regularity conditions stated above. Actually, all
reported numerical tests [8,9,11,32] seem to have been on tests cases for which
such regularity of the data and/or the solutions do not hold.

More recent developments of ELLAM techniques involve Volume Corrected Char-
acteristic Mixed Methods (VCCMM), which are, in essence, ELLAM schemes with
volume adjustment to achieve local mass conservation. Convergence analysis, as
well as stability, monotonicity, maximum and minimum principles for these schemes
have been studied in [3,4]. However, these studies only consider a single pure advec-
tion model (that is, (1b) with D = 0), and assume the regularity u € C*(Qx (0, 7)),
which, as explained above, is not expected in applications. Without accounting for
diffusion, the maximum principle is accessible, and thus the analysis strongly ben-
efits from the resulting L°° bounds on the approximate solution. On the contrary,
in the presence of anisotropic heterogeneous diffusion K and D(u), and on grids
as encountered in applications, constructing schemes that satisfy the maximum
principle is extremely difficult — to this day, only nonlinear schemes are known to
preserve the maximum principle in general, and even these do not necessarily have
nice coercivity features [14].

As a matter of fact, the convergence analysis of numerical approximations of (1)
under weak regularity assumptions has recently received an increasing interest; see,
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e.g., [8,10] for finite volume methods and [25,29] for discontinuous Galerkin meth-
ods. It therefore seems natural to consider doing such an analysis for characteristic-
based discretisation of the advection term. This leaves open the choice of partic-
ular discretisations of the diffusion terms in the model. Instead of selecting one
particular discretisation of these terms, we work inside a framework that enables a
simultaneous analysis of various such discretisations.

The Gradient Discretisation Method is a generic framework to discretise diffusion
equations [16]. It consists in replacing, in the weak formulation of the equation, the
continuous space and functions/gradients by a discrete space and reconstructions
of functions/gradients. This space together with the reconstruction operators are
called a gradient discretisation (GD). The convergence of the resulting scheme is
ensured under a few properties (3 or 4, depending on the non-linearities in the
model) on the GDs. The efficiency of the GDM is found in its flexibility: various
choices of GDs lead to various classical methods (conforming and non-conforming
finite elements, finite volumes, etc.), which means that the analysis carried out in
the GDM directly applies to all these methods at once.

The main contributions of this work are

e Presentation of a GDM-ELLAM framework for the complete coupled model
(1), which covers a variety of discretisations of the diffusion terms.

e Convergence analysis that only relies on energy estimates based on coer-
civity but not maximum principle, and is therefore adapted to anisotropic
heterogeneous diffusion on generic grids as encountered in applications.

e Analysis carried out under weak regularity assumptions on the data, as
seen in previously reported numerical tests on various schemes for (1).

The paper is made up of two main components, a conclusion and an appen-
dix. The first main component (Sections 2 to 4) focuses on the presentation of
the GDM-ELLAM, the main convergence result, and numerical schemes that fall
into this framework; whereas the second component (Sections 5 to 7) establishes
properties on the flows, a priori estimates on the solution to the scheme, and prove
its convergence by using compactness techniques. The conclusion (Section 8) re-
calls the main elements of the paper, and the appendix (Section 9) contains a few
technical compactness results.

We start by presenting the weak formulation of the model (1). This is followed
by Section 2, which gives a short overview of the gradient discretisation method,
together with some standard properties which ensure the convergence of the gradi-
ent schemes. Section 3 then presents the GDM-ELLAM for the model (1), followed
by the main results: existence and uniqueness of the solution to the scheme, and its
convergence to the weak solution of (1) under weak regularity assumptions. Section
4 then gives some of the numerical schemes that are covered by the GDM-ELLAM
framework, together with proofs on why they satisfy the regularity assumptions.

Since ELLAM schemes are based on characteristic methods, we need to solve
characteristics along which the solution flows. The properties of the flow (described
by the characteristics), together with some estimates that come with it, are pre-
sented in Section 5. These properties are not trivial to establish due to the weak
regularity assumptions. A priori estimates are then obtained in Section 6, which
lead us to compactness arguments that will help establish the proof of convergence.
Finally, we prove our convergence result in Section 7. The ELLAM discretisation
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of the advection term makes the energy estimates and the convergence analysis
of the corresponding terms rather tricky. The fine results from Sections 5 and 6
are instrumental to obtain the major estimates and the proper convergence of the
advection term. We also note that, at the core of our convergence analysis lies
some generic compactness results of [16], which are flexible enough to be used even
outside a purely GDM framework (as in the GDM-ELLAM framework here).

Throughout the article we assume the following properties, satisfied by D, K
and p previously described.

cini € L(Q) and ¢T, ¢~ € L®(Q x (0,7)) with |¢7| < Mg+, |¢7| < M,-. (2a)

¢ is piecewise smooth on a mesh, and there exists ¢., ¢* > 0 such that
¢ << 9" on Q.

A =K/p is Carathéodory and there exists a4 and Ay s.t. for a.e. x € Q,

V(s,6) e Rx R 1 Az, s)¢ - € > axlé? and |A(z, s)| < Aa. (2¢)

D is Carathéodory and there exists ap and Ap s.t. for a.e. & € Q,
VE,C e R D(x, Q)¢ € > ap(1+[¢])€)? and |D(z,¢)| < Ap(1 +[¢]).

Here, “Carathéodory” means measurable with respect to & and continuous with
respect to the other variables. In (2b) as well as (A4) below, “mesh” is to be
understood in the simplest intuitive way: a partition of Q into polygonal (in 2D)
or polyhedral (in 3D) sets. Under these assumptions, we consider the following
standard notion of weak solution to (1) (see, e.g., [24]).

(2d)

Definition 1.1 (Weak solution to the miscible displacement model). A couple (p, c)
is a weak solution of (1) if

p € L>®(0,T; H'(Q)), /p(a},t)dm =0 for a.e. t € (0,T), and
Q

K@) G Vol e
/o /Q,U(C(.’B,t))vp( 1) - Vi (a, t)dedt -
T
:/0 /Q(qu(m,t)—qf(m,t)w(m,t)dmdt, W € C(Q x [0,T]),

and, setting u(x,t) = —%Vp(az,t),

ce L20,T; HX()), (1+|u))/2Ve e L2(Q x (0,T))?,
T 830
—/QQS(w)cini(m)(p(;c,O)dm—/o /Qqﬁ(a:)c(m,t)a(a:,t)dmdt
+/0 /QD(:B,u(w,t))Vc(w,t)~V<p(w,t)da:dt (4)
T T -
_/0 /Qc(a:,t)u(m,t)~V<p(:c,t)dmdt+A /Qq (2, )e(, ) (@, ) dadt

= /T/ g (z, t)p(z, t)dedt, Vo e CZ(Qx[0,T)).
o Ja



ANALYSIS OF A FAMILY OF ELLAM FOR MISCIBLE DISPLACEMENT 5

Remark 1.2 (Injection concentration and gravity). The model (1) assumes an
injection concentration of 1 and neglects the gravity effects. A generic injection
concentration ¢ could be considered upon the trivial modification g+ ~» ¢q™ in (1Db).
To include gravity effect, we would have to set u = —%(Vp — ple)g) (with p a
continuous function). The analysis we conduct thereafter can easily be adapted to
both changes.

2. BRIEF PRESENTATION OF THE GRADIENT DISCRETISATION METHOD

The gradient discretisation method (GDM) is a discretisation method for diffu-
sion equations which consists in replacing, in the weak formulation of the PDE, the
continuous space and time operators by discrete counterparts [16]. These discrete
elements are given by what is a called a gradient discretisation (GD). The conver-
gence of the resulting schemes (called gradient schemes (GS)) can be established
under a few assumptions on the gradient discretisations. We give here a brief pre-
sentation of GDs and the standard properties that ensure the convergence of the
corresponding GSs for standard elliptic and parabolic PDEs. In the rest of the
paper, the notations LP(X) and LP(0,T; L?(X)) are sometimes also used in lieu of
LP(X)? and LP(0,T; L(X))%.

Definition 2.1 (Space and space—time gradient discretisations). A space gradient
discretisation for no-flow boundary conditions is D = (Xp,lp,Vp), where
e the set of discrete unknowns Xp is a finite dimensional vector space on R
e the function reconstruction llp : Xp — L*°(R) is linear
e the gradient reconstruction Vp : Xp — L>(Q)? is linear.

2) 3
is a norm on Xp.
A space-time gradient discretisation is DT = (D, Ip, (t(”))n:07,__,N) such that D
is a space GD, 0 =t < ... <tWN) =T are time steps, and Ip : L= (Q) — Xp is
an operator used to interpolate initial conditions onto the unknowns.

The operators Ilp and Vp must be chosen so that

2
[ollp = <|VD‘U|L2(Q) + ‘/QHDU(w)d-’E

Considering for example (3) and replacing the space H*() with Xp, the func-
tions by reconstructions using IIp and the gradients by reconstructions Vp, we
obtain the corresponding gradient scheme (6). The simplest example of a GD
can be described by considering P; finite elements on a simplicial mesh. A vec-
tor v € Xp is made of vertex values (Vs)s vertex of the meshs 11pv is the continuous,
piecewise linear reconstruction from these values, and Vpw is the standard gradient
of this reconstruction. Other examples of GDs are given in Section 4.

The accuracy of a GD and convergence properties of the resulting GS are mea-
sured through three parameters, that respectively correspond to a discrete Poincaré—
Wirtinger constant, an interpolation error, and a measure of defect of conformity
(error in a discrete Stokes formula):

; ()

HHDU||L2(Q)
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/ (Vou(@) - $(x) + lpo(@)dive(x)) da
o Havl), Wold) = iy, o -

Definition 2.2 (Properties of GDs). A sequence (Dp,)men of space gradient dis-
cretisations s

coercive if there exists C, € Ry such that Cp,, < C} for all m € N,
GD-consistent if, for all o € H(Q), Sp,, (¢) — 0 as m — oo,
limit-conforming if, for all ¢ € Haiv(Q), Wp, (¢p) — 0 as m — oo,
compact if for any sequence vy, € Xp,, such that (|[vm|lp, Jmen is bounded,
the sequence (Ilp,, Uy )men is relatively compact in L?(2).

A sequence of space-time gradient discretisations (DX),.en is coercive, limit-confor-
ming or compact if its underlying sequence of space gradient discretisations satisfy
the corresponding property. Finally, (DL )nen is GD-consistent if the underlying
sequence of spatial GDs is GD-consistent and if

1 il
o with &$+2) = tgffﬂ) — tgff), max,—0,...,N,,—1 5t$n+2) — 0 as m — oo,
o forall p € L=(0), (IIp,, Ip,, ©)men s bounded in L™ () and converges to

@ in L?(Q) as m — oo.

Remark 2.3. Actually, the limit-conformity or compactness of a sequence of space
GDs implies its coercivity. The latter is however explicitly mentioned as a bound
on Cp, 1is useful throughout the analysis.

In the GDM, the interpolant Ip is usually defined on L*(Y); in the context of
Problem (1), the initial condition is always assumed to be bounded and it is therefore
natural to only consider interpolants of initial conditions in L>(€).

If Dis aspace GD, 0 = ¢t < ... < t®V) = T are time steps and z =
(Z("))nzo,i..,zv IS Xg"’l, we define the space—time reconstructions IIpz € L () x
(0,7)), pz € L=(Q x (0,T)) and Vpz € L=(Q x (0,T)) by

Vn=0,...,.N—1, Vte (t("),t(”+1)], for a.e. €
pz(x, t) = Hpz"tY (z) | Mpz(x,t) = Mpz™ (z)
and Vpz(x,t) = Vpz (x).

3. GDM-ELLAM SCHEME AND MAIN RESULT

The diffusion terms in (1la) and (1b) are discretised by the gradient discretisa-
tion method. This enables us to carry out a unified convergence analysis for many
different numerical discretisations of these diffusion terms. There are grounds for
considering possibly different GDs for each equation in (1) (see e.g. Section 4.1.1).
We therefore take a space gradient discretisation P = (Xp,Ilp, Vp) for the pres-
sure, and a space-time gradient discretisation CT = (C,Zp, (t(”))n:07,,,,N) for the
concentration.

From here onwards, the variables  and ¢ may be dropped in the integrals when
there are no risks of confusion.

Definition 3.1 (GDM-ELLAM scheme). The gradient scheme for (1) reads as:
find (p("))n:17.__7N € Xf;.v and (c("))nzop.”N € Xéw'l such that ¢ = Tecin; and,
forallm=0,..., N —1,
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i) pth solves
/ pr(”ﬂ) =0 and
Q

(6)
/ Az, Hcc("))Vpp(”+1) -Vpz = / (¢f — g, )lpz, Vz e Xp
Q

Q
(n+1 >
where ¢F(-) = &(H S f:(n) s)ds (or, alternatively, ¢F = ¢=(t™) if
g are continuous in time).
( +1)

1) A Darcy velocity u is reconstructed from p™™*tY and, to account for
the advection term m the concentration equation, the following advection
equation is considered; it defines space-time test functions from chosen final
values:

POv + u(n+1 Vo=0 on (t™ t"FD) with v(-,t ") given. (7)
iit) Setting UgH_l) = Az, ™) Vpp™tD) and using a weighted trapezoid rule

with weight w € [0,1] for the time-integration of the source term, cnth)
satisfies

For all z € X¢, setting v the solution to (7) with v(-,t™ V) = Tl¢z,
/ e ez — / Pllec™u(t™)
Q Q
+ o +s) / D(z, U™ Vet . vez .
0 (3)
+ w2 / Hec™o(t™) g, + (1 —w)&"*?) / Hec™ DTl 2qy
Q Q
- wat<“+%>/ gv(™) + (1 —w)&“’*%)/ g4 ez,
Q Q

where qﬁ = qﬁ_l if these quantities are defined by averages on time inter-
vals (there is no time interval (t(N) t(N+1) ),

Remark 3.2. Using a weighted trapezoid rule for the time discretisation of the
reaction/source terms is essential to obtain an accurate numerical scheme [2,11].

Defining the flow F; such that, for a.e. & € Q,

dFy(x) _ up " (Fy(x)
= for t € [-T,T], Fy(z) ==z, 9
the solution to (7) is understood in the sense: for t € (¢t ¢t(+1))] and a.e. & €
Q, v(x,t) = v(Fymsn_4(x), t™TD). Hence, in (8), v(-,t™) = Hez(Fymii/2 ().
Under Assumptions (2b) and (A4) below, the existence and uniqueness of the flow
(nt+1) , but this

is discussed in Lemma 5.1. We note that F} depends on n through uy
dependency is not explicitly indicated when there is no risk of confusmn.

The convergence theorem is established under the following assumptions. We
show in Section 4 that various finite element and finite volume methods are given
by GDs that satisfy these assumptions.
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(A1) (Pr)men and (CL)men are coercive, GD-consistent and limit-conforming
sequences of space-time GDs, and (CL ),,en is moreover compact. Denoting
by 0 = t£2> < e < t%v’") = T the time steps of C,,, it is assumed that
there exists M; > 0 such that, for all m € Nand n = 1,...,N — 1,
& t1/2) < ppsn=1/2)

(A2) There exists M > 0 such that, forallm e N, z € X¢_,alln=0,..., N, —
1, and all s € [-T,T],

e, 2(Fs) — e, 2| 11q) < Mpls| Hugjl)’

L2(Q) ||chz||L2(Q) .

(A3) For all m € N there is an interpolant Jc,, : C>(Q) — Xc,, such that, for all
p € C®(Q), as m — oo, Ve, Je,.p — Ve in LA(Q)? and e, Je, ¢ — ¢
in L>(Q).

(A4) There exists Mg;y > 0 such that, for all m € Nand n = 0,..., N, — 1,
ug:rl) € Haiy () is piecewise polynomial on a mesh, ugfmﬂ) -n = 0 on 99,
and |divug:r1)| < Myg;y on Q.

(A5) If (pm, cm) € XN;:‘ xXé\i;"H is a solution to the GDM-ELLAM scheme with

(P,CT) = (Pm,CL) and up = Q x (0,7) — R? is defined by up (-,t) =
™ for all £ € (657,45 Y) and n = 0,..., Ny, — 1, then, when (A1)~

(A4) hold:
(a) Hqu HLoo(QT;Lz(Q)) <Cn ||V73mpm||L00(o,T;L2(Q)) with (Cpn)men boun-
ded.

(b) if p € L2(0,T; HY(Q)) and ¢ € L?(2x(0,T)) are such that, as m — oo,
Up, pm — b, e, ¢m — ¢ and Vp, pm — Vp in L2(Q x (0,T)), then
up, > u= f%Vp weakly in L2(Q x (0,7))4.

Theorem 3.3 (Convergence of the GDM-ELLAM scheme). Under Assumptions
(2) and (A1)-(A5), for any m € N there is a unique (Dm,cm) € Xg: X XéY:"H
solution of the GDM-ELLAM scheme with (P,CT) = (P,,,CL). Moreover, up to a
subsequence as m — 0o,

e lp, pm — p and Vp, pm — Vp weakly-+ in L°°(0,T; L*(Q)) and strongly
in L"(0,T; L*(Q)) for all r < oo,

o Il¢, ¢y — ¢ weakly-* in L>(0,T; L*(Q)) and strongly in L"(0,T; L*(Q))
for all r < o0,

e Ve, ¢m — Ve weakly in L2(Q x (0,T))4,

where (p,c) is a weak solution of (1).

Remark 3.4 (About the assumptions). Assumption (A1) is standard in analysis
of gradient schemes, except for the assumption on the time steps, which is not very
restrictive in practice (it is for example satisfied by uniform time steps, used in most
numerical tests on (1), see e.g. [8,32]). Assumption (A2) is probably the most
technical to check for specific methods; we however provide two results (Lemmas
5.3 and 5.5) which show that it is satisfied for a wide range of conforming or
non-conforming methods. Assumption (A3) is satisfied by all standard interpolants
associated with numerical methods for diffusion equations. Assumption (A4) is
natural given the pressure equation (1a) and the boundedness assumption (2a) on g+
and g~ . Finally, Assumption (A5) is also rather natural since it is expected that the
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reconstructed Darcy velocity up is closely related to the reconstructed concentration
Iec and pressure gradient Vpp.

Remark 3.5 (One GD per time step). In some particular cases, most notably the
discretisation via mized finite elements (see Section 4.1.1), the gradient discretisa-
tion P changes with each time step. Each equation (6) is written with a specific
gradient discretisation P("tV) . Hence, the choice P of a gradient discretisation for
the pressure actually amounts to choosing a family P = (P(i))i:17___7N. Theorem
3.8 remains valid provided that the coercivity, GD-consistency and limit-conformity
of a sequence (Pp)men = ((’P#L))izl’.,,,Nm)meN of such families of GDs are defined
as in Definition 2.2 with

Cp,, = ,_max, CP,(T’L) , Sp, = ,_max, 57,7(71) and Wp, = ,_max, WPfﬁ')'

4. SAMPLE METHODS COVERED BY THE ANALYSIS

The ELLAM is a way to deal with the advection term in the concentration
equation. Various numerical methods can be chosen to discretise the diffusion terms
in this equation, as well as in the pressure equation. These methods correspond
to selecting specific gradient discretisations C and P. Here, we detail some of
the GDs corresponding to methods used in the literature in conjunction with the
ELLAM, and we show that they all satisfy the assumptions of Theorem 3.3. As a
consequence, our convergence result applies to all these methods.

In the following, for simplicity of notations, we drop the index m in the gradient
discretisations and we consider Assumptions (A1)—(A5) ‘as the mesh size and time
step go to zero’ (as opposed to ‘as m — 00’).

4.1. Conforming/mixed finite-element methods. When discretising the model
(1) using finite element methods for the diffusion terms and the ELLAM for the
advection term, it is natural to use a mixed method for the pressure equation
and a conforming method for the concentration equation. The mixed method pro-
vides an appropriate Darcy velocity that can be used to build the ELLAM char-
acteristics. This approach was considered in [31,32]. We show here that such a
mixed/conforming FE-ELLAM scheme fits into our GDM-ELLAM framework, so
that the convergence result of Theorem 3.3 applies to the schemes in the afore-
mentioned references. Notice that, contrary to the convergence analysis done for
example in [31], our convergence result relies on very weak regularity assumptions
on the data and solution, that are usually satisfied in practical applications.

4.1.1. Description of the conforming and mized FE GDs. Any conforming Galerkin
approximation, which include conforming finite element methods (such as P, FE
on simplices, or Q; FE on Cartesian grids), fits into the GDM framework. A
finite-dimensional subspace V}, of H'(Q) being chosen, we define (X¢,Il¢, Ve) by
Xe =V, and, for v € Vj, IIev = v and Vev = Vu. The interpolant Ze can be
either chosen as the orthogonal projection on V},, in the case of an abstract space,
or as the standard nodal interpolant for specific FE spaces.

We now describe a gradient discretisation P corresponding to the RTy mixed
finite element method. The following construction can be extended to higher order
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RT) finite elements [23]. A conforming simplicial or Cartesian mesh M being
chosen, define

Vio =1{v € Haiv(Q) : v|x € RTy(K), VK € M, v-n =0 on 0Q}, (10a)
Wy, = {z € L*(Q) : 2 constant, VK € M}, (10b)

where RTj is the lowest order Raviart—-Thomas space on the cell K (the description
of RTy depends if this cell is a simplex or Cartesian cell). After choosing a diffusion
tensor A — that is, a symmetric, uniformly bounded and coercive matrix-valued
function Q@ — My(R) — a gradient discretisation P = (Xp,Ilp, Vp) is constructed
by setting Xp = W}, and, for z € W}, lIpz = 2. The reconstructed gradient Vpz
is defined as the solution to

AVpz € Vi, ¢ and, for all w € Vi, g,

/Qw(a:) -Vpz(x)de = — /Q z(x)divw(x)dx.

The existence and uniqueness of Vpz follows by applying the Riesz representation
theorem in Vo with the inner product (w,v) — [, w - A vda.

: _ K(zx)
Taking A(x) = M(Hcc<f>(w))’
ment discretisation of the pressure equation at the n-th time step. We notice here
that A, and thus the gradient discretisation P built above, changes with each time

step; we are therefore in the context of Remark 3.5.

the scheme (6) is exactly an RTy mixed finite ele-

4.1.2. Assumptions (A1)—(A5). We show here that all required assumptions for
Theorem 3.3 are satisfied by sequences of GDs as in Section 4.1.1.

Under usual mesh regularity properties, Assumption (A1) follows from [16,
Chapters 8 and 9] (note that Wy = 0 and C¢ < Cp, where Cp is the Poincaré—
Wirtinger constant in H(Q)). For the GD P built on the RTy mixed FE, although
the matrix A changes with each time step, it always remains uniformly bounded
and coercive; the analysis in [23] thus shows that the notions of coercivity, GD-
consistency and limit-conformity as in Remark 3.5 are verified.

Thanks to (2a), the standard Darcy velocity ugf D —ﬁVpp("H) re-
sulting from the RT( discretisation of the pressure equation already satisfies As-
sumption (A4), and is therefore naturally used as tracking velocity. Assump-
tion (Ab5)a) is trivially satisfied since |up| < A4|Vpp|. Moreover, under (Al),
if e — ¢ in L2(Q x (0,T)) as the mesh size and time step go to 0, then Ilcc also
converges to ¢ in the same space (see, e.g., end of Section 7.1); thus, if Vpp — Vp
in L?(2 x (0,7)), the assumption (2c) on K/p ensures that up = —ﬁvpp

strongly converges in L2(Q2 x (0,T)) to u = f%Vp, which proves (A5)b).
For C coming from a conforming finite element method, the standard nodal in-
terpolation J¢ clearly satisfies (A3) (see [6, Theorem 4.4.20]). Finally, Assumption

(A2) follows from Lemma 5.3 applied to f =Ilcz € HY(Q), a =1 and r = 2.

4.2. Finite-volume based. A number of finite volume numerical schemes can
be embedded in the gradient discretisation method [16]. Here, we focus on one
particular method, the Hybrid Mimetic Mixed method (HMM) [17], which covers in
particular the hybrid finite volume schemes [22], the mixed /hybrid Mimetic Finite
Differences presented for example in [7], and the mixed finite volume method [15].
The HMM method was used in [11,12] to discretise the diffusion terms in both the
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pressure and concentration equations, together with the ELLAM for the advection
term. The analysis carried out here applies to many other numerical schemes based
on piecewise-constant reconstructions, such as the VAG scheme, the MPFA-O FV
method, mass-lumped FE methods or nodal Mimetic Finite Differences [16].

4.2.1. Description of the HMM gradient discretisation. Let us first introduce a few
mesh-related notations. We consider a polytopal mesh T = (M, &, P) of Q C R? as
in [16, Definition 7.2]. M is the set of polytopal cells (polygons in 2D, polyhedra
in 3D), £ the set of faces (edges in 2D) and P a set of one point x i inside each cell
K € M. No conformity is assumed on the mesh, which can therefore have hanging
nodes, be locally refined, have non-convex cells, etc. For K € M, £k denotes the
set of faces of K and, if 0 € £x, Dk s is the convex hull of ¢ and x g, di - is the
orthogonal distance between xx and o, ng, is the outer unit normal to o and
T, is the center of mass of o (see Figure 1). It is assumed that each K € M is
star-shaped with respect to x k.

FIGURE 1. Notations inside a cell.

A spatial gradient discretisation D = (Xp,p, Vp) and interpolant Zp are then
constructed by setting

Xp ={v=((vk)kem, (vo)oce) 1 vk €R, v, €R}
(that is, there is one unknown per cell and one unknown per face),

Vv e Xp, VK e M : llpv =vg on K,

Vi € L*(Q) : Ipp = ((¢x)kem (Po)oeex) € Xp

1
where g = m/ o(x)dxr and p, =0
K

(note that only IIpZp is of interest — see Definition 2.2 — so the value of the edge
unknowns is irrelevant for Zp) and

Yve Xp, VK e M, Vo € Ek,

Vpv=Vgv+

[vo — Vg — Vv (To — Tk )0k, o0 Dic o,

(11)

dK,o

— 1
where Vgv = — Z lo|venk o
‘K| oc€lK
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Remark 4.1. In (11), Vv represents a consistent discretisation of the gradi-
ent, in the sense that if (Vs)seg, interpolate an affine mapping A at the points
(To)oecey, then Vv = VA. The second part of Vpv, akin to the remainder of a
discrete first order Taylor expansion, is a stabilisation term. More general forms
of stabilisation can be chosen [18], but we do not describe them to simplify the
presentation.

An HMM scheme for (1a) is obtained by writting (6) with P = D constructed
above. Such a scheme can be formulated as a finite volume scheme. Define, for
p € Xp and K € M, the fluxes (Fi (p))secs, by

Vo€ Xp, Y Frolp)(vk — vo) /A Wop(x) - Vou(z)de  (12)

o€k

with A a diffusion matrix. Then p solves (6) with P = D and A = A(-,Icc™)
if and only if fQ IIpp = 0 and the corresponding fluxes satisfy the balance and
conservativity relations, constitutive equations of finite volume schemes [14]:

VK e M. 3 Fiolo) = [ (0"~ )@z,

0'68}(
Vo face between two cells K and L, Fg »(p) + Fro(p) =0,

Vo face contained in 092, Fg »(p) = 0.

(13)

4.2.2. Assumptions (A1)—(A3). Let us define the mesh regularity parameter

diam(Dg
o5 = max Card(€k) + max max mrad((DI;U)) (14)
where inrad(Dg ) is the radius of the largest ball included in Dk . Under a
boundedness assumption on p<, the basic properties (A1) (with both C and P
given by an HMM GD as in Section 4.2.1) follow from the results in [16, Chapter
12]. The appendix of [1] describes an interpolant Jp and shows that it satisfies
Assumption (A3).

Denoting by Yus the space of piecewise constant functions on M, we have
IIp(Xp) C Yo Recalling the definition (32) of the discrete H'-semi norm on
Y, [16, Lemma 12.9 and Remark 7.6] show that [IIp-| < Bp [Vp-|[12(q) with
Bp depending only on an upper bound of p¢ (this estimate is not specific to the
HMM; it holds for all currently known GDs such that IIp(Xp) C Yaq). Assump-
tion (A2) is therefore a consequence of Lemma 5.5, provided that the reconstructed
Darcy velocity is piecewise polynomial (which is usually the case — see next section).

4.2.3. Reconstructed Darcy velocity and Assumptions (A4)—(AS5). For methods like
the HMM that produce piecewise-constant gradients Vpp(?+1) and/or piecewise-
constant concentration ITec(™ | the natural Darcy velocity — vap( "+1) does

not belong to Haiy (). It is therefore not suitable to define the characteristics used
in the ELLAM, and another velocity must be reconstructed to be used in (7).
Finite-volume methods naturally produce numerical fluxes on the mesh faces, that
satisfy the balance and conservativity relations (12)—(13). Such fluxes can be used
to reconstruct a Darcy velocity in a Raviart—-Thomas space on a sub-mesh of M.
In [11,12], this idea is applied to the HMM method on the sub-mesh of pyramids

(Dk.o)Kem, oecr- A velocity u(n+1) € Hgiv(Q) is constructed from the pressure
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unknowns such that its restriction to each diamond Dg , belongs to RTy and that,
for each cell K € M,

For a.e. x € K, dlvu("H)(m) |K| Z Fr,o( (n+1))

7€EK (15)
Vo ek, Vyeo, |0“ug7‘+1)(y) Mg, = ]:Kﬂg(p(n—kl)).
Given the flux balance equation in (13), this reconstruction of ugf +1) gatisfies As-

sumption (A4) with Mg, = Mg+ + M- (see (2a)).

Let us now establish the estimate on up stated in (A5). In the following es-
timates, A < B means that A < C'B with C depending only on an upper bound
of gz, and of g and Ay in (2¢). Fix K € M. The relations (15) boil down to
a linear system for internal fluxes in K — that is, fluxes F; on (0Dk » \ 0)seex
— in which the right-hand side is (Fx ,(p"*9)),ce,. Augmenting this system
with a consistency relation or fixing the solution to be of minimal ¢? norm (see
[12,27]) leads to a linear system Mg (Fy)r = (Fir.o(p™™))pece, with Mg de-
pending only on the number of faces of K, not on the geometry of this cell. Hence,
S FP S e, [ Fro (p"*+1)|2. Due to the shape regularity assumption (which
implies |7|~! < diam(K)/|K]| for any face T of any pyramid D ) and by construc-
tion of RTy functions, we infer that

(n+1) diam(K) .
L, 3
dlam S S | Fro )P, (16)

c€lK

Fix 0 € £k and take, in (12), v, = 1 and vg = v,» = 0 if 0 # o’. The defini-
tion (11) of Vp easily shows that |[Vpov| < diam(K)™! and (12) therefore yields
diam(K) Y e [Fro(@™ ™) S [ [Vop" Y (z)|dz. Hence, by the Cauchy—
Schwarz inequality,

diam(K)?

|K‘ Z |-FK,J( (n+1) |2 < Hv p(nJrl)‘

c€EK

Combined with (16) this proves (A5)a).

Because of this bound, the weak convergence in (A5)b) follows if we can show
that up converges to u against any ¢ € C°(Q x (O,T))d. To establish this con-
vergence, we first evaluate up — Up, where Up = ——=—Vpp. Fix § € R?

L2(K)

M(H c)
and apply the divergence theorem between u(nJr ) ¢ Hgaiv(K) and the affine map
x> & (x— xK) to write

/Kug‘“)(w)-édw— / ur D (z) V(€ (@ — xk))de
= / 2 (y) - nol€ - (y - 2x)]ds(y)

c€EK

- / divugfﬂ)(a:)[ﬁ (x— xK)|de.
K



14 HANZ MARTIN CHENG, JEROME DRONIOU, AND KIM-NGAN LE

Using then (15) and 1‘ [, yds(y) = T, leads to

[ ui (@) gda Z Ficol0" e @, — )
K cEEk (17)
- / divalt ™ (@) [€ - (x -z )] da.
K
Apply (12) with v € Xp the interpolant of the linear mapping x — £ - @, that is,

vg =€ -xx and v, = € - T,. The Py-exactness property of Vp [16, Lemma 12.8]
shows that Vpv = € and (12) thus gives

Z Fro(p" e - Ty — xx) /U(nJrl -&dex.
c€fK

Combining with (17) and using the generality of € then yields

/ ugﬂ'l / U(nH) / divugfﬂ)(w)(:c —xi)dx.
K K

Denoting by Pras : L2(Q)? — L2(Q2)9 the orthogonal prOJectlon on the piecewise
constant functions on M (that is, (Pumf)jx = ‘K‘ Ji f(x)dax for all K € M), the
above relation gives

’ Pru(u gz+1) U(n+1))’

P
where hyy = maxgen diam(K) is the mesh size. Owing to the boundedness of
dival?™) | this shows that Pry(up — Up) — 0 in L(0,T; L1(Q)) as hag — 0.

Take now ¢ € C°(Q x (0,7))%. Using the orthogonality property of Pry,

‘ / (up —Up)- <P’
Qx(0,T)

<[ tup-Up) o Prae)| 4| [ (up - Up)-Prae
Qx(0,T) ax(0,7

dlvup

<hM’

+1)‘

L1(Q) L)’

< lup = Ul hat 1Dl + | [ Prutup ~ Up) -]
Qx(0,T)
< lup = Uplly hm [Pl o + [[Prad(up — Up)ll; el - (18)
where |||, = || .- (x (0,7)) @nd we used [l — Prayepll oo < hat [ D[ The strong

convergence of II¢cc ensures the strong convergence of Hee (see end of Section 7.1);
hence, the strong convergences assumed in (A5) show that Up — u = —%Vp
in L2(Q x (0,7))?. Since the right-hand side of (18) tends to 0 as haq — 0, this
concludes the proof that u, — u weakly in L*(Q x (0,7))% as the mesh size and
time step tend to O.

5. PROPERTIES OF THE FLoOw

A few properties on the solution of the characteristic equation (9) are established

here. To simplify the notations, we set u (nH) = V. Hence, for € Q, t — Fi(x)

solves
dFy(xz)  V(F(x)) or _ T)==2
dt  ¢(Fi(z)) for t € [T, Fy(x) . (19)
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Associated with the flow equation (19) is the advection equation
POw +V - Vw = 0. (20)

A function w is a solution to such an equation if it satisfies, for all s,¢ € [T, T]
such that s —t € [-T,T] and for a.e. € Q, w(x,t) = w(Fs_¢(x), s).

These flow and advection equations will be studied under the assumptions (2b) on
¢ and (A4) on V. Upon considering a common sub-mesh of the meshes considered
in these assumptions there is no loss in generality in assuming that the meshes for
¢ and V are the same. In other words, our leading assumption here is: there is a
mesh M (that is, a partition of  into polygonal/polyhedral cells) such that

¢ is piecewise smooth on M and ¢, < ¢ < ¢*,
V € Hg;iy () is piecewise polynomial on M, (21)
|[divV| < T4y and V -n = 0 on 0.

Lemma 5.1 (The flow is well-defined). Under Assumption (21), there exists a
closed set C C Q) with zero Lebesgue measure such that, for any x € Q\C, there is
a unique Lipschitz-continuous map t € [T, T] — F,(x) € Q\C that satisfies (19)
(except at an at most countable number of times for the ODE). Moreover, Fy has
classical flows properties: for allt € [-T,T], F : Q\C — Q\C is a locally Lipschitz-
continuous homeomorphism (which can thus be used for changes of variables in
integrals), and Fyys = F; o Fy for all s,t € [=T,T) such that s +t € [-T,T].

Proof. By smoothness of V and ¢ in each cell, the flow ¢ — F;(x) of V/¢ can
clearly be defined until it reaches a cell boundary. Assume that it reaches at a time
t = t, a cell boundary at a point y that is not a vertex or on an edge of the cell
(we use here the 3D nomenclature), that is, y is in the relative interior of a face
o. Denote by H; and Hs the two half-spaces on each side of o, and by n, the
normal to o from Hy to Hy. Since V € Hy;y (), V -1, is continuous across o. The
function ¢ being positive, it means that the sign, if not the value, of (V/¢) - n,
is continuous across . Assuming for example that (V/¢)m, (y) - n, > 0, then
the flow arrives at y from H; and, (V/®)|m,(y) - n, being also strictly positive,
t = Fy(x) can be restarted from (¢,,y) by considering (V/¢) g, (which drives the
flow into Hs). Note that the Hgjy-property of V is essential here to ensure that
the flow can indeed be continued into Hs, and that the values of V/¢ at y from
H; and Hy do not simultaneously drive the flow in the other domain, thus freezing
it at y.

Following this process, the flow can be continued as long as it does not cross (or
starts from) a vertex/edge or, for a face o, the set Z, = {y €0 : V(y) -n, = 0}.
Let C be the set consisting of all €  whose flow arrive (or starts from) at a
vertex/edge, or one of the sets Z,. The set C can be obtained by tracing back on
[-T,T)], following the process above, the vertices, edges or sets Z, (until the flow
can no longer be constructed, that is, the tracing-back process arrives on a vertex,
edge or a set Z,/). Since each such set is closed, C is closed. Moreover, vertices
and edges have dimension d — 2 or less, and are therefore traced-back by the flow
into sets of zero d-dimensional measure. Consider now a set Z,. Since V - n, is a
polynomial, either Z, = ¢ or Z, has dimension d — 2 or less. In the latter case, as
for vertices/edges, its traced-back set has zero d-dimensional measure. If Z, = o,
then V is parallel to o (whatever the side we consider for the values of V) and the
traced-back region of Z, is contained in &, which has zero d-dimensional measure.
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Hence, C has zero d-dimensional measure. This reasoning also shows that the flow
never crosses the boundary of €2, since V- n = 0 on 0.

This construction ensures that, for all ¢ C, the flow t — F;(x) € Q\C is
well-defined on [—T, T, satisfies the ODEs except at a countable number of points
(where it intersects faces), is Lipschitz-continuous (since it is globally continuous
and Lipschitz inside each cell, with a Lipschitz constant bounded by || V| .« () /®+),
and satisfies the flow property Fyi s = F; o Fs. To see that it is locally Lipschitz
on Q\C with respect to its base point @, we simply have to notice that for @ ¢ C,
by construction of C, there is a ball B(x,0) centered at « such that, for any y €
B(x, 0), the flow t — Fi(y) travels into the same cells and crosses the same faces as
t — Fy(x). Since, in each cell, the flow is Lipschitz-continuous w.r.t. its base point
with a uniform Lipschitz constant (because V and ¢ are smooth in each cell, with
bounded derivatives), gluing the Lipschitz estimate thanks to the flow property we
can check that y — Fi(y) is Lipschitz continuous on B(x, §). Note that because the
open set Q\C can be disconnected, this does not prove a global Lipschitz property
of the flow.

The homoeomorphism property follows from the flow property which shows that,
on NC, FioF_; = Fy=1d. n

Let us now establish some relations and estimates on this flow.

Lemma 5.2 (Estimates on the flow). Under Assumptions (21), for a.e. ¢ € Q and
all s € [-T,T), denoting by JF; the Jacobian determinant of Fy,

[ VE@I@V) e @ - sE @R o) (2
and o r
= —€X div S .
IF@) < Cao) = exp (£ ) (29

Moreover, let w > 0 be a solution of (20). Then, for all s,t € [-T,T] such that
s—te[-T,T],

LaivC1(T)
/ng(w)w(m,t —s)dx < <1 + ¢*|s|> /ng(m)w(a;,t)dm (24)
and
Ci(T)
/Qw(w,t— s)dx < T/qu(a:)w(:c,t)dac. (25)
Proof.

Step 1: we establish the following generalised Liouville formula: for any mea-
surable set A C €,
d .
G ewdy= [ vV, (26)
dt JF,(a) F.(A)

d
where the time derivative — is taken in the sense of distributions (this also shows

that the function t — [5, ) ¢(y)dy belongs to W (-T,T)).
Let vg € C°(Q2) and set v(x,t) = vo(F_¢(x)). Then v is Lipschitz-continuous
with respect to t and, by the flow property, v(x,t) = v(Fs_¢(x), s). Hence,

d V(stt(w))

Ow(@,t) = VolFu(@),9) - G (Fail(@)) = =VolFar(@).5) - p =00y
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Given the piecewise regularity assumptions on V and ¢, for a.e. €  we can
let s — t in the above relation to find d;v(x,t) = —Vu(x,t) - Z((;”))
V € Hgiy () with V-n =0 on 99,

d

5 [ o@uta.tiz = [ s@oie de

= —/ Vou(z,t) - V(xz)de = / v(x, t)divV (x)de.
Q Q

Hence, since

Let us now take a sequence (v(()n))neN in C2°(Q) that converges a.e. on Q to the
characteristic function 14 of A, and such that 0 < v(()") < 1. The relation above

yields
% /Q (@)™ (F_ (x))dz = /Q o (. (2))divV (@) da. (27)
As n — oo, the right-hand side converges (by dominated convergence) to
/ 14(F_¢(x))divV(x)dx :/ divV(z)de.
Q Fy(A)

The sequence of mappings t — [, ¢(93)v(()n)(F_t(ac))dw converge pointwise to

fos / (@) La(Fi())de = /F @

while remaining bounded. Hence, they converge weakly-* in L>(—T,T). We can
therefore pass to the distributional limit in (27) to see that (26) holds.

Step 2: estimates on JF;.

Set A = B(x,r) a ball of center x and radius r contained in Q. Integrating (26)
with respect to time from 0 to s and using a change of variables y = F_;(x), we
obtain

/ S(Fu(y)) | Fs ()| dy — / o(y)dy
B(x,r)

B(x,r)
— [ [ WR@I) o Ry,
0 JB(x,r)

Dividing by the measure of B(x,r) and taking the limit as » — 0, we obtain (22)
for a.e. € €2, due to the piecewise smoothness of V and ¢.

Assume to simplify the writing that s > 0 and use the assumption on divV to
deduce from (22) that ¢(Fs(x))|JFs(x)| — ¢(x) < Laiv [, |JFi(z)|dt, and thus that

* F iy S
|JEy ()] < — + -2 /\JFt(a:)|dt.
o« O Jo

Use then Gronwall’s inequality to obtain (23).

Step 3: Estimates on w.
We recall that w(x,t — s) = w(Fs(x),t). Hence, a change of variables and (22)
yield

/qﬁ(fﬂ)w(%t—é’)dw: /¢($)w(Fs(fv),t)dw=/W(y,t)¢(F—s(y))|JF—s(y)|dy
Q Q Q

~ [ v (¢><y> + [ R F,,<y>dp) dy.
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Estimate (24) follows by writing, thanks to (23), for a.e. y € Q,
LaivC1(T)
b
To establish (25), we simply write, still using a change of variables,

/Qw(nt—s)dw:/Qw(Fs(w),t)da::/Qw(y,t)|JF,S(y)\dy

and we use (23) and ¢ > ¢, to conclude. ]

[slo(y).

/ VB ()] (divV) o Fp<y>dp\ < DOy (T)]s] <

The following lemma is used to prove that conforming discretisations satisfy
Assumption (A2) (see Section 4.1.2), and to establish convergence properties, as
the time step tends to 0, of functions transported by the flow (see Lemma 5.7).

Lemma 5.3 (Translation estimate for Sobolev functions). Under Assumption (21),
let F; be the flow defined by (19), and let r,a € [1,00] be such that é = % + %
Then, for any f € WtT(Q) and s € [-T,T),

Cl (T)l/a

1f(Es) = fllpeq) < T\S\ IVl L2 IV fll e »

where C1(T) = i—iexp(rg—fp) as in (23).

Proof. By density it suffices to prove the estimate for f € C'(Q) (in the case
r = oo, we first establish it for r < co and corresponding «,., using the density of
smooth functions in W, and then let » — 00). For a.e. z € €,

F(E(@)) - f() = /O & F(Fua)t = /O ViR ) - T g

’ V(Fi(z))

= Vfi(F(x)) ———=
;e Gy
Take the absolute value, the power « (using Jensen’s inequality) and integrate over

Q. Using ¢ > ¢, and applying a change of variables y = F;(x) along with (23),
this leads to

sl . .
/Q F(Pu(w) — fl@)de < / /H V£ (Fy () [V (Fy ()| dtds

dt

|3|o¢71

o /[o,s] </sz |vf(Ft($c))|aV(Ft(mmadﬂ?) dt
COEE [ 1viwe vl

The proof is complete by applying Holder’s estimate with exponents r/« and 2/a,
and by taking the power 1/« of the resulting inequality. [

IN

IA

We now want to establish a similar result but for piecewise-constant functions.
This will be useful to establish that discretisations based on piecewise-constant ap-
proximations, such as most FV methods, satisfy Assumption (A2). Before stating
this lemma, we need a preliminary result.

Lemma 5.4 (Volume covered by a face transported by the flow). Under Assump-
tion (21), let Fy be the flow defined by (19). Let o be a face of the mesh over which
V and ¢ are piecewise smooth. Let Vi = |Fjo4(0)| be the volume of the region
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covered by o when transported over [0,t] by the flow, that is, V; = |{Fs(y) : s €
[0,t], y € o}|. Then

Vte [-T,T], Vi <

Cf) [ V(@) nalasty), (28)

where C1(T) is given by (23) and n, is a normal to o.

Proof. Notice first that since V € Hgiy (2), the normal components of V across
the faces of the mesh are continuous, and thus |V(y) - n,| is independent of the
side of o chosen to compute V. Without loss of generality, we assume t > 0.

If the face o is such that Z, :== {y € ¢ : V(y)-n, = 0} = o, then even
though o C C (see Lemma 5.1 and its proof), we clearly have V; = 0 since each
point on the face is transported inside the face to one of its vertex/edge, which
are (d — 2)-dimensional objects then transported by the flow onto null sets in 2
(whatever side of o chosen to compute V and ¢). Hence, (28) holds for such faces.

Let us now assume that Z, # o. Then, since V - n, is polynomial, Z, is a
negligible set in o for the (d — 1)-dimensional measure and F}(y) is defined for all
Y € 0\Z,. Since Fig¢4n)(0) = Fjo,4(0) U F(¢ 441 (), the flow property, a change of
variables and (23) yield

Vien = Vi = [Fqn)(0)| = [Fe(Fo,n ()]

- / TE @)y < (D) Fom@).
Fo,n(0)

Choose an orthonormal basis of R? such that o C {0} x R?~! and n, = (1,0,...,0),
and define G : Rxo — R% by G(t,y) = F;(y). Using the area formula [20, Theorem
1] we have

Fan(@)| = [ Le@usay (@i < [ Card[((0.1]x 0) NG ()] (z)de

- /(O,h]XU|JG<t,y>|dtds(y>= / ' ( G )t 0

where JG is the Jacobian determinant of G. Given the choice of basis in the range
of G,

JG(ty) = det| F(ty) SE(y) - i) |
=det| Gy) @) - B ]
_ V(Fi(y) OF: OF,
—det[ SEw)  ou Y aydfl(y)}-

For a fixed y € 0\Z, and for small ¢ the flow Fi(y) occurs in a region where V
and ¢ (and thus F}) are smooth — namely, the side of o determined by the sign of
V(y) - n,. Hence, since Fy = Id, denoting by (V7y,..., V) the components of V
in the chosen basis and recalling that n, = (1,0,...,0),

. . V(y) 9F AF,
lim JG(t,y) = det | Fi 52 (y) - aydfl(y)}
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r Vi(y) b
W 0 --- --- 0
: 1 0 0 Vily) Vi)
— det : e | =2y VY e 31
L0 T T T ey GV
L ¢(Ey) 0 0 1_

Here, the value of ¢ is of course considered on the side of o into which Fy(y) flows
for small ¢t > 0 (as already noticed, the value of V(y) - n, does not depend on the
considered side). Recalling that (31) holds for y € o\Z, and that Z, has zero
(d — 1)-dimensional measure, the dominated convergence theorem thus shows that

/ |JG(t,y)|ds(y) — / st(y) ast — 0.

Dividing (30) by h, letting h — 0, and plugging the result in (29) we infer that

= [ V) nolasty).

The mapping t — V; is a non-decreasing function, so its derivative in the sense
of distributions always exists as a positive measure; the relation above shows that
this derivative is actually a bounded function, and thus that ¢t — V; is Lipschitz-
continuous. Integrating this relation and using Vo = 0 leads to (28). L]

We can now state a result that mimics Lemma 5.3 but for piecewise-constant
functions. This result is used in Section 4.2.2 to prove that HMM schemes, among
others, satisfy (A2).

Lemma 5.5 (Translation estimate for piecewise-constant functions). Let T be a
polytopal mesh and Ypq be the set of piecewise-constant functions on M. Define
the discrete H'-semi norm on Y by

o\ 1/2

) ; (32)

where fg is the constant value of f on K € M, &yt is the set of internal faces
(that is, o € € such that o C Q), K and L are the two cells on each side of o, and
de =dg,s +dr (see Figure 1). Assume that (¢, V) satisfy (21) on the sub-mesh
made of (Dk,o)kem,oecex and let k be the mazimal polynomial degree of V.

Then, if 0 > oz (defined by (14)), there exists R depending only on k, d and o
such that, for all s € [-T,T],

fx —fr

Vf € Yo, Ifls = ( > lolds [H

0€Eint

Ci(T
91 € Yar. 1) = Tlisiay < R sl Vil 11

where C1(T) = i— exp(Ff;—:T) as in (23).

Proof. We start by writing f(Fs(x))— f(x) as the sum of the jumps of f along the
curve (Fy(x))icio,s] =: Flo,s)(€). For o € &y, letting xo(x) = 1 if o N Flg () # 0
and x,(x) = 0 otherwise, this leads to

[F(Fa(@) = f@)| < D Xo(@)|fx — frl. (33)

0€E&int
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Notice that o N Fjg q(x) # 0 if and only if Fi_; o/(c) N {x} # 0, that is,  belongs
to the region covered by o transported by the flow over [—s,0]. Lemma 5.4 gives

[ xet@ite < S84l [ V) nlisty)

(1)

where n, is a unit normal to . Hence, letting C' = C# and using the Cauchy—

Schwarz inequality (on the combined sum and integral terms),

/Q F(Fa()) - f(x)|dz
<Cls| > /|V(y)-na\|fK—fL|dS(y)

0€Em V7
= Cls| ; / VoIV (y) 1] %djw ~ folds(y)
1/2 . 1/2
<l ( 3 / dg|V<y>-na|2ds<y>> ( 3 / Tk —fLPds(y))
0€EEm V7 0€Em Y 7

1/2
=Cls| < > da/ IV(y)-nal2dS(y)> [fl - (34)
o€Eint 7

Since V is polynomial on each Dk ,, we can use the discrete trace inequality of
[13, Lemma 1.46] to find R depending only on k, d and g such that

VK e M, Vo €&k, diam(DKﬂ)/ IV(y) - ng|%ds(y) < RQ/ |V (x)|>dz.
o D

K,o

Noticing that dg » < diam(Dg ), we infer

&y [ V) noPasty) < B [ V(@) 2da.

K,oUDL &

The proof of the lemma is completed by plugging this estimate into (34). ]

Remark 5.6 (Estimate in L* norm?). A natural question would be the extension
of Lemma 5.5 to estimate the L™ norm of f(Fs) — f, as in Lemma 5.3, by using
the discrete W -semi norm \f|¢7r of [ obtained by replacing 2 with r in (32).
Considering for example the simple case of a constant unit velocity V.= Vg (and
forgetting about boundary conditions for simplification), this would amount to esti-
mating || f(- +sVo) = fllpaq) in terms of [s||f|s .. For meshes admissible for the
TPFA finite volume scheme, such an estimate is known with o = r = 2 and |s|
replaced by +/|s|(]s| + maxxep diam(K)) [21, Lemma 3.3]. For general meshes,
however, no similar estimate seems to be attainable if o > 1.

The next lemma is instrumental in passing to the limit in the reaction and ad-
vection terms of the GDM-ELLAM scheme. Let us first introduce some notations.
Given time steps 0 = £ < ¢tV < ... < (V) = T and velocities V = (V"),=1._n
that satisfy (21), we identify V with the global velocity 2 x (0,7) — R? given
by V(-,t) = V*D for all ¢t € (¢, ¢t*V] and all n = 0,..., N — 1. Define T/
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and Ty as the linear mappings L2(Q x (0,T)) — L2(Q x (0,T)) such that, for
b€ L*(Q x (0, 7)),

for a.e. x € Q, for all t € (¢, ¢t Dy and n =0,...,N — 1,

T, t) = v (FOD)_ o @)t)  and  Tvu(e,t) = (FILD)_ (@)t

where F{" ™) is defined by (19) for the velocity V("*+1)_ The difference between Ty,
and 7+ is the time at which this flow is considered.

(35)
)

Lemma 5.7 (Convergence of functions transported by the flow). Let ¢ satisfy
(2b) and, for each m € N, take 0 = t(mo) < t%) < ... < t%v’") =T time steps and
Vi = (V2 )n=1,...N,, that satisfy (21) with Tqiy not depending on m. Assume that
Oy = maxnzo’,___’Nm,l(tng) —t,(ﬁ)) — 0 asm — 0o and that (V) men is bounded
in L?(Q x (0,T)). Then Tv,, and 7A—Vm satisfy the following properties.

(1) There is C not depending on m such that, for ¢ € L*(Q x (0,T)),

1TV ¥l L2 @x 0, + HTVmw‘ L@ (0.T) < Cl¥ll L2 oxo,r)) - (36)

(2) The dual operators Ty, — and 7A'{}im of Tv,, and Ty, are given by: for ¢ €
L*(Q % (0,7)),

Te b =¢T v, (w) R T vt
. A j; o (37)
To =T v, (¢) R T vt

where Rm,ém € L= x (0,T)) and, over each interval [t t("+1)]
Ry, Ry are bounded by &) 71T a1, Oy (T).
(3) If fmu — f strongly (resp. weakly) in L*(Q x (0,T)) as m — oo, then
Tv,, fm — [ and %mem — f strongly (resp. weakly) in L*(Q x (0,7)).
Proof.
We only prove the results for 7y, , as the proof for 7A‘Vm follows by simply
replacing Ft((z'ill))_t(n) (y) by Ft((ZLl))_t(y). In the first two steps, we drop the index
m in V,, and N,, for simplicity of notation.

Step 1: bound on the norms of 7y and 7\'\/.

By a change of variables and invoking (23), there is C' not depending on m,
s € [-T,T)orn € {0,..., N—1} such that, for all h € L?(Q), Hh(Fs(n+1)('))||L2(Q) <
C||h||z2(q)- Estimate (36) easily follows from this.

Step 2: description of the dual operator.
A change of variables yields, for any ¢, € L*(Q x (0,T)),

[ veette i
Qx(0,T)

N—1 #(n+1)
/t

n—0 (n)

N—1 t("+1)
1 1

- /t() /Q o BED e () DITE, ) ()| dydz. (38)

n=0

/Q G(FCTD (@), by, ) dacdt
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Relation (22) and Estimate (23) shows that

n o(y) (n)
JTESTY () = —— + R(y, t™) (39)
! ! QS(Ft((nj__l,z(nH) (v))

with |R(y,t™)| < &("Jr%)qS;leivCl (T). Since t — Ft(fttill)(y) is the flow corre-
sponding to —V, Relations (38) and (39) then yield (37) for 7.

Step 3: proof of the strong convergence.

For simplicity of notation, denote |||l = ||| 2(qx (0,r))- Assume that fn, — f

strongly in L2(2 x (0,7T)), and let f¢ be a smooth approximation of f such that
Ilf — fll, < e. The triangle inequality and (36) yield

1TV fn = Flly < 1TV (i = O)lla + 1Tv,, (F = F)la + [1Tv,, 7 = Fol,
+ 115 = fll
SCONfm = fla + (C+ De+ 1 Tv,. f7 = -
Invoking Lemma 5.3 with a = 2, r = oo and f€(-,t) instead of f gives gives C’ not
depending on m or € such that, if F,(,erl) is the flow for the velocity V%Hl),

Np—1 .+

1T fo— 2= 3 /
n=0

(n)

< C'&2 R
cow, Y |

o Jtm
2 2
= C/&?n ||Vm||2 ||vf€||L°°(Q><(O,T)) :

2

dt

5 (n+1) €
’ f (Fm,t<n+1>_t<n>(')’t) —f ("t)’ L2()

t(”+1)

HV(W)‘

2
2
e VG D)oo ) dt

Hence,
1TV, fm = flly S Cllfm = flly + (1 + C)e + VC & [[Vinllo VNl oo (x0,1)) -

Taking the superior limit as m — oo and using the boundedness of (V,;,)men in
L?*(Q x (0,7)) thus yields limsup,, , | Tv,. fm — flls < (1 + C)e. Letting e — 0
concludes the proof that T/, f, — f strongly in L?(Q x (0,T)).

m

Step 4: proof of the weak convergence.
Assume that f,,, — f weakly in L?(2 x (0,T)). Then, for all ¢» € L2(2 x (0,7)),

/ (T fon — F10 = Tou (fn — P00+ / (Ton f — £
Qx(0,T)

Qx(0,T) Qx(0,7)
- / e — FY TG0+ / (T f — f). (40)
Qx(0,T) x(0,T)

Since ¢/¢ € L?(Q x (0,T)), the formula (37), the fact that R,, — 0 in L>(Q x
(0,7)), the estimate (36) and the result of Step 3 applied to —V,, instead of V,,
show that 7y 1 — 1 strongly in L?(Q x (0,T)) as m — oc. Hence, the first term
in the right-hand side of (40) tends to 0 since f,, — f — 0 weakly L?(Q x (0,7)).
The second term in the right-hand side of (40) also converges to 0 since, by Step
3 (applied to f, = f for all m), Ty, f — f — 0 in L?(Q x (0,7)). The proof that
Tv,, fm — f weakly in L?(Q x (0,T)) is therefore complete. "
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6. A PRIORI ESTIMATES

Throughout this section, A < B means that A < CB, where C is a constant
depending only on the quantities ||, T, ¢., ¢*, aa, ap, Aa, Ap, My—, Mg+, My,
Mp, Maiv, sup,,ey Cp,,, Sup,,en Ce,, appearing in Assumptions (2) and (A1)
(A5) (Cp, and C¢,, are given by (5)). Likewise, in the proofs, C' denotes a generic
constant that can change from one line to the other, but only depends on the
aforementioned parameters.

We also consider that (pp,, ¢y) is a solution to the GDM-ELLAM scheme with
(P,CT) = (P, CL) and we drop the index m for legibility. Let Up = —ﬁvpp.
Lemma 6.1 (Estimates on the pressure). The following estimate holds:

2Pl Loo 0,1 0202)) T IV PPl oo 0,7522 () + 1UPI oo 0,702 S 1

Proof. Setting z = p("*1) in the gradient scheme (6), we get:
/ Az, Tec™)Vpp ) Vpplnth) = / (g — g, )Tpp™ ™.
Q Q
Using (2c¢) for the left hand side, followed by Cauchy—Schwarz’ inequality

vap(nJrl)‘ (41)

(n+1)‘

: 5 vap(nJrl)‘

2
L2(Q) < quJLr - Q;HL2(Q) HHPP

L2(Q L2(Q)

where we used

(42)

<[, = e
(@) P

L2 L2(Q)

since fQ Ipp™tD) = 0. Equation (41) proves the estimate on Vpp which gives the
bound on Up (owing to (2¢)) and, using (42) once more, provides the estimate on
IIpp. [

Lemma 6.2 (Estimates on the concentration). The following estimate holds:

IMeell oo 0,7522(02)) + H(l + |UPD1/2VCC’

<1+ ||MeZecins .
pro iy ~ T Tz

As a consequence, |Vecll 2 r.r20) S 1+ [HeZeCinillp2(q) -

Proof. Denote Y,, = ||Hcc(”)\/$HL2(Q). The gradient scheme (8) with z = c(**+1)
yields

Y2, - / STlecMp(E™) + &+ D) / D(, UL D)W+ . geelrt)
Q Q

+ w2 / Tec™v(t™) g, + (1 —w)&(nJr%)/(HCC(nH))Qq;H
o Q

— w3 [ ghe®) + (- wa D [ g e = A,
Q Q

Now, by Cauchy-Schwarz, recalling that 0 < w < 1 and that |g, /v/@| < M- //¢x,
and using the coercivity property of the diffusion tensor D,

A2 V2 Yo o)V, o+ and ™R |+ (U Vet OP|

My~ ia
My gy, o)
Vou )

LY(©)

L2(©)
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Consider the term Y, [|o(t(™)/3|| L2( 0 the right hand side of the inequality.

Estimate (24) with w(z,t) = v(x,t)? and s = &nt3) (so that v(t("+D) — ) =
v(t™)), followed by Young’s inequality, give, for any & > 0,

VYoV 14+ 08D <V, Y, (1 +0at?)

ool

L2(Q)

(43)
1 1 o2& +3) st
< Y24 Y2 Y? Y?
Using (25),
c? .,
Y, Hv(t(n))Hm@ < CYaYar < 5 Y7 + Y. (44)

Using (43) together with (44), we then have

1 2§ mt3) st
A>Y2, — <2Yn2 + Yn+1 + - Y72+ Y2

(1+‘U("+1)|>|v C(n+1)| ’

_ q’&(n+*) gy2 §y2
Ve (2e Ty

LY(Q)

which implies that

2
Yn+1 -

(14 [UE ) Ve

2 L1(Q)

(n+%)

<A+

~

V2 +ea™ V2, (45)

Now, using the boundedness of ¢*, Young’s inequality, the fact that w € [0,1] and
(25) with w(e,t) = v(z,t)? and s = &3 |
L2(9)>

s(nt32)

A < &0+ (Hv(tm))’

e+

L2(Q)

< gt E +e Hv(t("))‘ ’ + a0ty

L2(Q)

+eY? +1] <
Combining with (45), we find

2

(1 + |U§;l+1) D|vcc(n+l) ‘2‘

LY(Q)
(n+%) (n+%)
< A N &

V2 + et ntg Y2,

~

3
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which, upon taking a telescoping sum, yields

1 1 . 1
Zy2 o —y?2 s k+3) ’ 1+ gt (n+1) 2‘
5 n+1 ~ 570 Tap kE:O (1 + U DIVee | L@
1 - 1 1 " 1 ntl 1
5 g g &(k+§) + g E &(k+§)yk2 T E &(k_i)YkQ
k=0 k=0 k=1
1 1 1 -
S L G (E +5) S 4 g0 3)yR,

k=1
Denoting by C' the hidden multiplicative constant in the last < above, choose
e = 1/(4CT) to absorb the term 5&("+%)Yn2+1 in the left-hand side. Since € depends
only on fixed quantities, we no longer make it explicit and it disappears into the
< symbols. Setting &%) = 0 the term 615(%)3/02 can be integrated in the last sum
and we find

= k+1 k—1
Yn2+1+H<1 + |U73|)|VCC|2HLl(QX(o,t(nﬂ)) < 1+Y02+Z(&( +2)—1—(515( 2))Y,€2. (46)
k=0
Dropping for a moment the second term in the left-hand side, and letting C
denote the hidden multiplicative constant in <, a discrete Gronwall’s inequality

~)

[26, Section 5] yields, for any n =0,...,N — 1,

2, <O+ Y exp (Do C@td) +at D)) < o1+ ¥ exp(20T).
k=0
By noticing that Yy < v/@* ||Hcc(0)||L2(Q) = V" [MeZecinill 12 (g this proves the
estimate on [[Ilcc|| 1o (o 7, 12(0))- Plugging this estimate in (46) with n = N—1 yields
the estimate on /(1 + |U7>\)UQVCCHLQ(O)T;LQ(Q))
a bound on [|Veclp2(g 1.12(0))- n

which, in turn, trivially provides

Remark 6.3 (Estimate of the advection—reaction terms). A formal integration-by-
parts shows that, if u satisfies (1a),

1
/div(cu)c—i—/ g 2= —/(q++q_)02 > 0.
Q Q 2 Ja

When using ¢ as a test function in the continuous equation, the advection and
reaction terms thus combine to create a mon-negative quantity that can simply be
discarded from the estimates (which thus hold under very weak assumptions on
q*). This can be reproduced at the discrete level for upwind discretisations [8,10].
However, the structure of the ELLAM discretisation does not seem to lend itself
to such an easy estimate of the advection—reaction terms, which is why the proof
of Lemma 6.2 is a bit technical, and requires the boundedness of ¢ (to bound the
Jacobian of the changes of variables — note that we do not require a bound on u
itself, though).

A crucial step in the convergence proof is to establish the strong compactness of
II¢e. This is done by using a discrete version of the Aubin—Simon theorem. The
gradient estimates in Lemma 6.2 provides the compactness in space, which must
be complemented by some sort of boundedness (in a dual norm) of the discrete
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time-derivative of c¢. Establishing this boundedness is the purpose of the following
lemma. A dual norm ||-[[, , . is defined on Il¢(Xc¢) the following way:

Yw € Hc(Xc)

[wll, 4c = sup {/Q pwllev : v € Xe, [[Vev| i) + et o) = 1} .

It can easily be checked that this is indeed a norm (if w # 0, write w = ¢z, take

v = z/N where N = ||Vcz|| 14y + [[Hez[ 1o (q) > 0, and notice that |lwl[, ;. =
_ 2

IQ pw(x)ev(z)de = N ! ||\/$w||Lz(Q))

Lemma 6.4. Defining the discrete time derivative of ¢ by

Le-c(m D) — e
See(t) = £ ce

PEr=y for all t € (t™),t+D) and alln =0,...,N — 1,
nT3
we have

/OT 6cell? o dt S 1+ [MeZecinill7o (g -
Proof. Take z € X arbitrary in (8). Subtract and add fQ Alec™Tez to get
/ (™D — Tee™) ez
/ Pllec™ (Tez — v(t™)) — & +2) / D(@, UG ) Ve . ez
_w&(n+§)/gncc(n)v(t(n))q; (1= w)a ) /QHCC("Jrl)chq;_H

Q Q

The terms on the right hand side of the equation are referred to as 13,75, ..., Ts,
respectively. For the term T, recall that v(z,t(™)) = Mez(Fgmi1/2)(x)). Ifn =0,

recalling that ¢(®) = Zeciy; and applying (A2) shows that
71| < [MeZecinill oo ) 1Tez — HCZ(F&U/Q))”LI(Q)
1)‘ (47)

1
S 5t(2) HHCICCiniHLoo CZHLQ(Q) .

() H L2(9)

If n # 0, a change of variables yields
Ty = / Pllec™ ez
Q
— / ¢(F7&(n+1/2) (:B)) Hcc(n)(Ff&erl/z) (CB)) ch |JF &(n+1/2) | d:l:
Q
Applying (22) with s = —&"*2), we can thus write —T} = Ty; — T2 with
Ty = / o™ ez — / P(x)ec™ (F_gmire () Hez(z)d
Q Q
T12 = / [Hcc(n) ( &(n+1/2)( )) ch(sc)
Q

_gnt )
X / |JF,(a)|(divas™™) o Fy (@) dt | dao.
0



28 HANZ MARTIN CHENG, JEROME DRONIOU, AND KIM-NGAN LE
Using (A2) leads to

|T1:1] < / ‘fbHcZ (Hcc(") - Hcc(n)(F—&mH/?)))’
Q

(n)

S A ez g g [up |||V

L2(Q) H L2(Q)

The boundedness of divugLH) in (A4) and of |JF}| (see (23)) yield, by a change
of variables,

Tyo| < snt32)

‘Hcc(n)(F_&("Jrl/?))HL2 HHCZ||L2(Q)

()

< &(n-i-%)

’HCc(n)

Lo Mzl 12 q) -

For the term T, the property (2d) of the diffusion tensor D and Hélder’s in-
equality with exponents 4, 2 and 4 give

ml £ &y [ e ot (% 14 UG |vcc<”+1>|) ez

1
2

L2()

< snt3)

|+ U E et

o) IVezllpaq) -
The terms T3 to Ty are estimated by using the Cauchy—Schwarz inequality:

e

Ty < &2

‘Hccw

L2(Q) )’

ITy| < s(nt32)

‘Hcc(n-&-l)

e ezl 20 ;

ITs + To S &) + a2 ez o) S &™) [ Tezll g

)

L3 ()
(we used (25) with w = v? and s = &%) to obtain ||v(t(”))”L2(Q) S ezl 2 (q))-

For n # 0, combining the estimates from 77 to Tg leads to

/ (b(HCC(n—H) — Hcc(”))ch
Q

SE R e P L S 1222 .
+ gntD) ‘Hcc(") L) ||HC«ZHL2(Q)
e s ;(Q) |1+ OGO weet )| paay 1V e
+ o te) ’HCC(HUHLZ(Q) 1Mez oy + &3 [[Hez] g -

Divide both sides by &) and take the supremum over all z € X¢ with IVezllpa)+
||ch||Loo(Q) =1 to obtain, for alln = 1,..., N — 1 and t € (™) ¢(*+1)

Soclt <H (n+1)’ Hv (n) HH (n) HH (n+1)‘
H CC( )H*,(z),C ~ [|Up L2(9) ce L2(Q) + ce L2(Q) T ce L2(Q)
1
14 ue+D ‘ 2 H 1+ uethpiy <n+1>‘ 1. (49
+H +10% L2(Q) 0T D Vee LQ(Q)Jr )
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Square this, integrate for t € (¢, ¢(*+1)) and sum over n = 1,...,N — 1. The
assumption on the time steps in (A1) ensures that

2

2
L2(@)

N-1
3 ) HVDC(n)
n=1 L2()

N-1
DI Al HVDCW
=1

2

2
< IVeellzzx o,y

N-2
= X 40 wpe)
=0 L2()

(and similarly for the terms involving Iec(™), so that

T
2 2 2 2
/t(l) [6cc®)l5,4.c dt < Napllze (o1 r20) IVeellzz@x o) + Mecllzzax 0.1y

2

1
11+ Ul o 2y | 1+ 10D Vee] (50)

L2(2x(0,T))

®

To estimate fot H5Cc(t)Hz,¢,c dt, we come back to (48) with n = 0. The first term
in the right-hand side of this inequality must be replaced by the right-hand side
of (47), and thus the first term in (49) is replaced by [[TleZccini 1 (q) ||u§31) lz2()-
Hence,

+(1)

2 2 1

/0 8ce(®) g0 dt S &Y MeTeinll} o [0

2
L3(Q)

2 2
+ YD | TeZeemill72 ) + ITeell 720 0.1
2
1
1L+ Ul oz [ (1 + [URDE V]

51
L2(Q2x(0,T)) (51)

The reason for separating the case n # 0 from the case n = 0 is that, for n = 0,
(48) involves Vcc(o) = V¢Zecing on which no bound has been imposed. The proof
is completed by adding together (50) and (51), and by invoking Assumption (A5)
and Lemmas 6.1 and 6.2. ]

7. PROOF OF THE MAIN THEOREM

At each time step, (6) and (8) are square linear equations on p*1) and (1,
The estimates of Lemma 6.1 and 6.2, together with the definition of the norms
in Xp and X¢, show that any solutions to these linear systems remains bounded.
Hence, the matrices associated with these systems do not have any kernel, which
ensures the existence and uniqueness of (p, ¢) solution to the GDM-ELLAM scheme.

We now establish the compactness of (Il¢,, ¢ )men, which is essential to proving
the convergence of the pressure. Once this latter is establish, we conclude the proof
by dealing with the convergence of the concentration.

7.1. Compactness and initial convergence of Ilp  cp,.

Theorem 7.1. Under the assumptions and notations of Theorem 3.3, the sequence
(e, ¢m)men is relatively compact in L2(0,T; L*(Q)).

Proof. The idea is to apply Theorem 9.3 with X,, = II¢  (X¢,,) equipped with
the norm ||ul|x ~=min{[jw[l, :w € Xc, s.t. ¢, w=u} and V,, = X,, with the

m

norm [|-lly, = |Ill, 4 c,.-
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Let us show that (X,,, Y., )men is compactly—continuously embedded in L?(£2)
(Definition 9.2). Item 1 follows by the compactness of (Cp,)men, see Definition 2.2.
Take now (t,)men as prescribed in Item 2 and let u be the limit in L?() of this
sequence. Let ¢ € C°(Q) and consider the interpolant Je, given by Assumption
(A3). Then [He,, Jec,. el 1) + 1Ven Tl sy < Cp for some Cp > 0 not

depending on m, and thus, by definition of ||-[ly. = ||-[l, 4.¢,.»
e, Je.,
/ P, C 90‘ < HuWHYm :
Q ¢

Taking the limit as m — oo, we get [, pup = 0. Since this is true for all p € C°(9Q),
we deduce that v = 0 as required.

We are left to show that the sequence f,,, = (Il¢,, ¢m)men satisfies the properties
in Theorem 9.3. The first property is trivially satisfied by the definition f,,, whereas
the second and third one follow from Lemma 6.2 and the definition of the norm
[lle,, (Definition 2.1). The last property holds due to Lemma 6.4.

Thus, we may use Theorem 9.3 to conclude that the sequence (Il¢, ¢p)men is
relatively compact in L2(0,T; L?(£2)). n

Theorem 7.1 together with Lemma 9.1 give ¢ € L*(0,T; H'(£2)) such that, up to a
subsequence as m — oo, ¢, ¢, — ¢ strongly in L?((0,T) x Q) and Ve, ¢, — Ve

weakly in L2((0,T) x 2)¢. From here on we always consider subsequences that
satisfy these convergences. Let a,, : [0,7] — R be the piecewise affine map that

maps each interval (tﬂf),tgfﬂ)) onto (ts,?_l),t%b)), forn=1,...,N,, — 1. That is,
n—1/2)

am(t) = t—(1—%)(t—t<n>)—(t<n>—t<“*1>) for t € (¢, ¢t(*+1)). Recalling the

definition of Il¢, ¢,, at the start of Section 6, we have ¢, cp = e, (-, m(-))
on Q x (W, T) and I¢, ¢ = e, Ze,, cini on € x (0,t1)). We have apn,(t) — ¢
uniformly as m — oo and, due to (A1), the derivative of the inverse function a;,!
is uniformly bounded. Hence, a triangle inequality, a change of variables using «..},
and the strong convergence of (I¢,, ¢ )men show that Ie, ¢, — ¢ in L2(Q2x (0,T))
as m — 00.

7.2. Convergence of the pressure.
Step 1: weak convergences of Ilp, pm and Vp, pm. We use Lemmas 6.1 and 9.1 to
obtain p € L>(0,T; H*(2)) such that, up to a subsequence

HPum — P Weakly—* in LOO(O’ T; LZ(Q))
Vp, pm — Vp weakly-* in L>°(0, T} LQ(Q)d).

The zero-average condition in (6) shows that [, IIp pm(-,t) = 0 for all ¢ €
(0,T). Hence, the weak-+ convergence of Ilp_ p,, ensures that fQ p(+,t) =0 for a.e.
t € (0,T) (test the zero-average condition on IIp_ p,, with functions p € L*°(0,T)
and pass to the limit).

Consider ¢(x,t) = Z(t)n(x) with = € C*([0,7]) and n € C>®(Q2). Define
Es,, (1) = 2T on (¢t (1) for each n and note that (g, )men converges
to = uniformly.

By consistency of (Pp,)men, there exists z,, € Py, such that Ilp 2z, — n and
Vp, 2m — Vn strongly in L?(Q). Recalling that A = K/u satisfies (2c), [16,
Lemma C.4] shows that A(z,Ic, ¢m)Vp, z2m — A(z,c)Vn strongly in L2(Q x
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1
(0, 7). Apply the second equation of (6) to z = Z(t("*1))z,,, multiply by &$+2),
and take the sum over n =0, ..., N, — 1. denoting by qéitm the piecewise-constant-
in-time functions equal to ¢ on (¢t ¢t("*+1)) we obtain

T
/ / A, Tie, cm)Vp, - (Es, Vi, 2n)
0 Q

/ / — 4y Vs, p, zm. (52)

By symmetry of A, strong convergence of ﬁcm ¢m and of Vp, 2, together with
the weak convergence of Vp, p.,, a weak—strong convergence result (see, e.g., [16,
Lemma C.3]) shows that the left-hand side of (52) converges to fOT Jo Az, c)Vp-
EVn. Moreover, qéitm — ¢T in LY(0,T; L?(Q2)) and thus the right-hand side of (52)

converges to fOT Jo(a™ — ¢ )Zn. This shows that p satisfies the second equation
in (3) when ¢ = En. By linear combination, this equation is also satisfied for all
tensorial functions and, by a density argument, for all smooth functions. Hence, p
satisfies (3).

Step 2: strong convergence of Vp, pm and Up, . Let 2 =p
bt

D) i (6), multiply by

and take the sum over n =0,...,N,, — 1. By weak convergence of Ilp  py,
and since p satisfies (3) (which also holds, by density, for ¢ € L1(0,T; H(Q))),

T
lim / / A(CE, Hcmcm)vapm . vapm
Q

m—r o0 0

T T T
= Jlim / /(q;@m—qgm)ﬂpmme/ /(q+_q—)p:/ /A(w,c)vp~vp.
m—oo Jq Q 0 Q 0 o

This convergence, the weak convergence of Vp, p,, and the strong convergence of
A(z,Il¢,, ¢m)Vp show that

T
/ / A, Tie,, en) (VoD — VD) - (Vo D — V)
0

/ / . Te,,cm)Vp, Pm - Vo, Pm — / / . 1e, Cm)Vp, Pm - Vp

- / / A(@, e, en)Vp - (Y, b — V) — 0.
0 Q

By coercivity of A (Assumption (2c)), we infer that Vp_ p, — Vp strongly in
L2(2 x (0,T))% . Moreover, since Vp, p,, is bounded in L>(0,T; L?()) (Lemma
6.1), this implies that Vp, p,, — Vpstrongly in L"(0, T; L?(2)) for any 7 € (1, 00).

Up to a subsequence Il¢ ¢p — ¢ ae. on Q2 x (0,T). The properties (2¢) of A and

the above convergence of Vp_ p,, show that Up = fﬁme Pm — U =
Cm Cm :
— 55 Vp strongly in L7(0, T3 L*(2))%.

Step 3: strong convergence of Ilp, p,,. Since p € L*(0,T; H*(2)), by [16, Lemma
4.9] we can find P, € Xg:“ such that IIp, P, — p and Vp_ P, — Vp strongly
in L2(0,T; L*(Q)). Then, for each ¢ € (0,T), by definition of the coercivity constant
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Cp,.

1p,, (P Pm)”p(n) <|V79 (P = Pm ||Lz(Q '/ Ip, (Py — pm)

)

2

Integrating from 0 to T' and using [, p = [, IIp,, pm = 0 yields
p,, (P pm)”L? (2x(0,T))

T
< C3, VP, (Po = Pl 72 (xomyye + Ch, /0 /Q(HPum —p)

The first term on the right hand side converges to 0 since both Vp P, and Vp_ pp,
converge strongly to Vp (and (Cp,, )men is bounded by coercivity of (Pp,)men)-
The second term converges to 0 since Ilp_ P,, converges to p strongly. This shows
that IIp,_ p,, also converges strongly to p in this space, and the convergence in
L"(0,T; L?(Q)) follows due to the bound on Ilp, p,, in Lemma 6.1.

7.3. Convergence of the concentration. The proof of Theorem 3.3 is con-
cluded by showing that c¢ satisfies (4). It has already been established that ¢ €
L?*(0,T; H(Q)). Lemma 6.2 shows that (1 + [Up, |)'/?V¢, ¢, is bounded in
L2(2 x (0,7))¢ and therefore weakly converges, up to a subsequence, in this space
to some W. Since Up,, converges strongly in L2(2 x (0,7))¢ and V¢, ¢ — Ve con-
verges weakly in this space, (1+|Up, [)'/2Ve, ¢ — (14 |U|)1/2Ve in the sense of
distributions. Hence, (1 + |U[)Y/?Ve =W € L*(Q x (0,7))¢. Tt remains to prove
that the equation in (4) is satisfied.

Take a test function p(x,t) = O(t)w(z) with © € C*°([0,7)) and w € C>(1Q).
For m € N let @& : (0,7) — R be such that Og,, = O(t ("‘H ) on (™) ¢(n+1)]
for all n = 0,..., N, — 1 (for legibility, we drop the index m in the time steps

tgn)). Using Assurnptlon (A3), define the interpolant z,, = J¢, w of w. Now,
consider z = O(t"*1)z,, € X¢, in (8), so that v = o) is given by vl (x,tM)) =
@(t("“))ﬂcmzm(Ft((ﬁill)) o (x)) (here, we make explicit the dependency on the

flow Ft("H) with respect to the time step n, but not with respect to m). Sum the
resulting equations over n = 0,..., N,, — 1 and recall the definition (35) of Ty, .

Letting cjéitm be the function equal to q,ﬁ_l on (t™), tr ) foralln = 0,..., Ny, — 1,
we obtain

[ Z / $lle,, cin VO e, 2 — Z / ¢, v (¢ (”))]
+//D<CL‘,U7Jm chcm @&m( )chzm
0JQ
T ~
[ [ [olle, cnTan, (O, (Ole, nlgi, + (1 = w)lle, s, (OMe, 2ndy, |
0JQ

T
— [ [0Tun, (O3, (00, 20l + (1= 0, O, (OMTe, 2]
0JQ

Let us write T™ + 7™ + 7{™ = T{™ this relation.
The limits of the last two terms are the easiest to establish. By the strong
convergences of Il¢, ¢, e, ¢y and Og, I, 2y, in L?(Q x (0,7)), Lemma 5.7
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T T
T3m) —>/ /cgoq_ and T4(m) —>/ /q+<p. (53)
0o Ja 0o Ja

Let us turn to TQ(m). Since Up,, — U strongly in L2(2 x (0,7))¢, the growth
assumption (2d) on D ensures that (see, e.g., [19, Lemma A.1])

D(-,Up )2 = D(-, U)Y2 strongly in L*(Q x (0, 7)), (54)

By Lemma 6.2 the sequence D(-, Up, )'/?Ve, ¢, is bounded in L2(2 x (0,7))<.
The weak convergence of Ve, ¢, in L2(Q x (0,7))¢ and [19, Lemma A.3] thus show
that D(-, Up,,)'/?Ve, cm — D(-, U)Y/2Ve weakly in L2(Q x (0,T))% Using (54)
and the fact that ©y, — © uniformly, the strong convergence V¢, 2z, — Vw in
L4(Q)4 (see (A3)) shows that, as m — oo,

shows that

T
T ™ = / / D(z, UPm)l/vamcm : D(m7UPnl)1/2@6t7n (t)Ve,, 2m
Q

—>/OT/QD(%U)lﬂVoD(:B,U)l/2ch:/OT/QD(:B,U)VC~V<,0. (55)

We now consider T1 . Since ©(tVm)) = 0, a change of index in the first sum
of Tl(m and recalling the definition of ol (t"™) yield

Ny, —1

N,,—1
n n n+1
_ Z /¢HC C )@(t( +1))HC Zm(ng;;:rl)/Z)(m))
n=0

N ,—1
D oM.l (O) = O+ Mg, — [ ot e O e, 2n
Q

_ i /Q Olle,, O D) (T, 2 (FUEL ) (@)) = Tie, 2 )
n=0

=7y -1 - T,
©0) _

Since ¢’ = Zg,, Cini, the consistency of (Cp,)men (see Definition 2.2) ensures that
_>/¢Cm1 W_/¢Cm1%0 (56)
. 1 t(n+1)
Since O(tM) — Oty = — [~ O’ the strong convergences of Il¢,, 2, and
II¢,, ¢ show that

T _ T ago
Tl(r) = 7/ / Ple, cm©'Te,, 2 — —/ / oc—. (57)
0 Q 0 Q ot

It remains to analyse Tl(;n ). Let Cm = e, 2m —w and write

n+1 n+1 n+1
HC,,LZm<F5(t<n+1)/2)> le,, 2m = ( (Fg(t(n+1)/2>) ) + Gl 5t<"+1)/2>) Cm-
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Letting I be the identity map and k(t) be the piecewise-constant function equal to
1

a2 on () (1)) this yields

Np—1

1" [ oo (o(£450.) -

2§ B
* /t(l) /Q K(t) e, cm (Tap,, —1) [Oa,, (t)Gn]
+orW) | o, 0 (cm( F) - gm) _

‘We note that, in the last two terms, the case n > 0 is separated from the case n = 0,
as we do not have any information regarding the boundedness of chc;g) (which

would arise in the estimates after invoking (A2)). For a.e. ¢ € Q, t — Ft("H)(w)
is Lipschitz-continuous and the chain rule therefore yields

£(nt1)
n+1 na1
W(Fy ) (@) — w(w) = — /t LA e (@)
(n+1) n+1 n+1
= o F(”+1) ugpm )(Ft((n+1))7t<w)>
- VLU( t(n+1)_t(w)) . (nt1) . (5 )
B ¢((Ft(n+1)_t(m)))

The operator Ty, ~does not directly act on the time component in L?(€2 x (0,7)).
Hence, the representation (37) of its dual is also valid in L*(Q x (¢, T)), and
space-independent functions can be taken out of these operators. Using this repre-
sentation, (58) and recalling the definition (35) of ﬁpm, we obtain

T
T / / OTlc, emTap, [eatm(t)vw.ugm}
/ / wn. —1) (e, €) O, (D)o
) (59)

+ @(t(l))/ qf)Hcmcgg) (C ( (1)) Cm) = ngi) + Tl(gzl)‘
Q

By weak convergence of Og,, (t)Vw - up /¢ (owing to (b) in (A5)) and strong

convergence of Il¢,, ¢,,, Lemma 5.7 shows that 7757 — fOT Jocu-0Vw = fOT Jo cu-
V. Using (A2) we have, forn=1,...,N,, — 1,

e, 52 (FE, o)) = The, )

&1/ L@ . < Mp H (n+1’ H ) .
& t1/2) L2(Q) " L2(Q)
Hence, invoking (A1),
T35 | < ¢* Mp ||<m||Lw(Q 101 1 0.7
[
x Z L2(Q) CmCm L2(Q)
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< ¢"Mp ||Cm||Loo(Q 191l < (0,7 [up,, ||L°°(O,T;L2(Q))

x M; Z & || Ve, it

< ¢"Mp ||Cm||L°°(Q) ||®||L°°(O,T) Hqu
Using the bounds on up and Ve, ¢, given by (a) in (A5) and Lemmas 6.1 and 6.2,
and the convergence ¢, = ¢, Je,,w —w — 0 in L>®(Q) from (A3), we infer that

Tl(gzb) — 0. The term T(33 also converges to 0, due to the bound on R,, in Lemma
5.7 (which cancels out the term 1/x(t)), the bound (36) and the convergence of ¢,
to 0 in L>(Q).

Finally, let us study Tl(gjl) Since 1l¢, cﬁS) = ¢, Zc, cini is bounded in L>°(Q)

m m

(see Definition 2.2), there is C' not depending on m such that |©(t())I¢, C(o)‘ <C
a.e. on Q. Split ¢, = Il¢, 2, — w and write, using (A2) on z,, and Lemma 5.3 on

w?
o)
||w||Lz<m)

The bounds on u%) (from (a) in (A5) and Lemma 6.1) and on Ve, z,, (from (A3))
then show that T1(34 — 0.
Hence, T4 — fo Jocu- V. Together with (56) and (57), this shows that

) / / 2 — [ oo / [ eu-ve.

Gathering this with (53) and (55), we infer that ¢ satisfies the equation in (4) when-
ever ¢ = Ow. By linear combination, this equation is also satisfied for all tensorial
functions and, by density argument, for all smooth functions. This concludes the
proof that ¢ satisfies (4).

L2 ()

Lo0(0,T;L2(Q)) ||ch Cm || L'(0,T;L2(2)) *

e -
Cy ( )

1501 < € (| te.on(F ) -

o],

N (MF chmzm||L2<Q> et

8. CONCLUSION

We analysed the convergence of numerical schemes for a coupled elliptic—parabolic
system modelling the miscible displacement of a flow by another in a porous
medium. The advective terms were discretised by the Eulerian—Lagragian Localised
Adjoint Method (ELLAM), and the diffusive terms by the generic framework of the
Gradient Discretisation Method (GDM). As a consequence, our analysis applies to
a wide range of schemes, given the variety of numerical methods for diffusion prob-
lems that fit into the GDM. In particular, our results apply to MFEM-ELLAM of
[32] and to the HMM-ELLAM of [12]. The GDM-ELLAM framework also gives an
easy way to construct further ELLAM-based schemes, by discretising the diffusion
terms using any of the method known to fit into the GDM.

Contrary to previous convergence analysis of schemes involving the ELLAM,
the analysis here relies neither on L> bounds on the concentration (which, given
the anisotropic diffusive terms and generic meshes used in reservoir engineering,
would not hold at the discrete level), nor on the smoothness of the data or the
solutions (which cannot be established in practical situations, with discontinuous



36 HANZ MARTIN CHENG, JEROME DRONIOU, AND KIM-NGAN LE

data such as the permeability, porosity, etc.). The convergence is established under
minimal regularity assumptions on the data, using energy estimates and discrete
compactness techniques.

To carry out this analysis, fine properties of the flow of possibly discontinu-
ous Darcy velocities have been established. These properties, as well as some
other techniques we develop for the analysis, could certainly prove useful for other
characteristic-based discretisations (such as the Modified Method Of Characteris-
tics).

9. APPENDIX: GENERIC COMPACTNESS RESULTS

The following results are particular cases of more general theorems on GDM that
can be found in [16].

Lemma 9.1 (Regularity of the limit, space-time problems [16, Lemma 4.7]).

Let p € (1,00), and ((DT)m)men be a coercive and limit-conforming sequence of
space-time GDs. For each m € N, take u,, € Xg::“ (identified with a piecewise-
constant function [0,T] — Xp, ) and assume that (”um”LP(O,T;XDm))mEN is bounded.
Then there exists u € LP(0,T; H*(Q)) such that, up to a subsequence as m — oo,
Up, um — u and Vop, uy, — Vu weakly in LP(0,T; L?(Q2)). The same property
holds with p = 400, provided that the weak convergences are replaced by weak-x
convergences.

Definition 9.2 (Compactly-continuously embedded sequence). Let (Xm, [|'||x, Jmen
be a sequence of Banach spaces included in L*(Q), and (Yo, |||y, Jmen be a se-
quence of Banach spaces. The sequence (X, Yim)men s compactly—continuously
embedded in L*(Q) if:
(1) If uy, € Xy, for allm € N and (HumHXm)meN is bounded, then (Um)men 8
relatively compact in L*(Q).
(2) X, C Yy, for allm € N and for any sequence (U )men such that
(a) um € Xy for allm € N and (||um||x )men is bounded,
(b) ||um||ym — 0 as m — oo,
(¢) (Um)men converges in L*(Q),
it holds that u, — 0 in L?(€).

Theorem 9.3 (Discrete Aubin-Simon compactness [16, Theorem 4.17]).
Let (X, Yin)men be compactly—continuously embedded in L2(2), T > 0 and (fm)men
be a sequence in L*(0,T; L*(Q)) such that
e For all m € N, there exists N € N*, 0 = t(0 < ... < t\N) = T and
(™m0 N € XN*Y such that f,(t) = vV for allmn =0,...,N — 1
and a.e. t € () tFV) f (1) = v, We then set

L+ _ ()

o The sequence (fm)men is bounded in L?(0,T; L*(Q)).
e The sequence (|| fmllr2(07.x,,))men is bounded.
e The sequence (|[0m fmll12(0.1.v,,))men is bounded.

Then (fm)men is relatively compact in L*(0,T; L?(£2)).
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