
Approximation algorithms for

the MAXSPACE advertisement problem

Mauro R. C. da Silva1, Lehilton L. C. Pedrosa1, and Rafael C. S. Schouery1

1Institute of Computing, University of Campinas
maurorcsc@gmail.com, {lehilton, rafael}@ic.unicamp.br

May 10, 2023

Abstract

In MAXSPACE, given a set of ads A, one wants to schedule a subset A′ ⊆ A into K slots B1, . . . , BK of size
L. Each ad Ai ∈ A has a size si and a frequency wi. A schedule is feasible if the total size of ads in any slot
is at most L, and each ad Ai ∈ A′ appears in exactly wi slots and at most once per slot. The goal is to find a
feasible schedule that maximizes the sum of the space occupied by all slots. We consider a generalization called
MAXSPACE-R for which an ad Ai also has a release date ri and may only appear in a slot Bj if j ≥ ri. For
this variant, we give a 1/9-approximation algorithm. Furthermore, we consider MAXSPACE-RDV for which an
ad Ai also has a deadline di (and may only appear in a slot Bj with ri ≤ j ≤ di), and a value vi that is the gain
of each assigned copy of Ai (which can be unrelated to si). We present a polynomial-time approximation scheme
for this problem when K is bounded by a constant. This is the best factor one can expect since MAXSPACE is
strongly NP-hard, even if K = 2.

keywords: Approximation Algorithm, PTAS, Scheduling of Advertisements, MAXSPACE.

1 Introduction

Many websites (such as Google, Yahoo!, Facebook, and others) offer free services while displaying advertisements
(or ads) to users. Each website often has a single strip of fixed height, which is reserved for scheduling ads,
and the set of displayed ads changes on a time basis. For such websites, advertisement is the primary source
of revenue. Thus, it is essential to find the best way to dispose the ads in the available time and space while
maximizing the revenue [15].

The revenue from web advertising grew considerably in the 21st century. In 2022, the total revenue
was US$209.7 billion, an increase of 10.8% from the previous year. It is estimated that web advertising com-
prised 52% of all advertising spending, overtaking television advertising. In 2022, banners and search engine ads
comprised 70.5% of internet advertising, representing a revenue of US$147.9 billion [10]. Web advertising has
created a multi-billionaire industry where algorithms for scheduling advertisements play an important role.

Websites like Facebook and Mercado Livre (a large Latin American marketplace) use banners to display
advertisements while users browse. Google displays ads sold through Google Ad Words in its search results
within a limited area, in which ads are in text format and have sizes that vary according to the price (see
Figure 1).

1

ar
X

iv
:2

00
6.

13
43

0v
4

 [
cs

.D
S]

 8
 M

ay
 2

02
3

Figure 1: Example of search engine homepage with ads with variable sizes displayed as results in a limited space,
represented by the dotted area.

We consider the class of Scheduling of Advertisements problems introduced by Adler et al. [1], where, given
a set A = {A1, A2, . . . , An} of advertisements, the goal is to schedule a subset A′ ⊆ A into a banner in K equal
time-intervals. The set of ads scheduled to a particular time interval j, 1 ≤ j ≤ K, is represented by a set of
ads Bj ⊆ A′, which is called a slot. Each ad Ai has a size si and a frequency wi associated with it. The size si
represents the amount of space Ai occupies in a slot, and the frequency wi ≤ K represents the number of slots
that should contain a copy of Ai. An ad Ai can be displayed at most once in a slot, and Ai is said to be scheduled
if wi copies of Ai appear in slots with at most one copy per slot [1, 5].

The main problems in this class are MINSPACE and MAXSPACE. In MINSPACE, all ads have to be
scheduled, and the goal is to minimize the fullness of the fullest slot. In MAXSPACE, an upper bound L is
specified, representing each slot’s size. A feasible solution for this problem is a schedule of a subset A′ ⊆ A into
slots B1, B2, . . . , BK , such that each Ai ∈ A′ is scheduled and the fullness of any slot does not exceed the upper
bound L, that is, for each slot Bj ,

∑
Ai∈Bj

si ≤ L. MAXSPACE aims to maximize the slots’ fullness, defined

by
∑

Ai∈A′ siwi. Both problems are strongly NP-hard [1, 5].
Even though these problems where introduced with advertisement in mind, since MAXSPACE and MINSPACE

are packing problems, they can be applied to pack several kinds of items into bins or slots. For example, a so-
lution for this problem can populate the columns of the social photo-sharing network Pinterest [16] and other
sites with the same kind of layout (called grid layout).

1.1 Previous Works

In the literature, there are works regarding approximation and exact algorithms for MINSPACE and MAXS-
PACE. Also, some special cases of these problems where defined by Dawande et al. [5]. In MAXw, every ad
has the same frequency w. In MAXK|w, every ad has the same frequency w, and the number of slots K is a
multiple of w. Moreover, in MAXs, every ad has the same size s. Analogously, they define three special cases of
MINSPACE: MINw, MINK|w and MINs.

Regarding approximation algorithms for MAXSPACE, Adler et al. [1] present a 1
2 -approximation when the

2

ad sizes form a sequence s1 > s2 > · · · > sn, such that for all i, si is a multiple of si+1. Dawande et al. [5] present
three approximation algorithms: a (1

4 + 1
4K)-approximation for MAXSPACE, a 1

3 -approximation for MAXw and
a 1

2 -approximation for MAXK|w. Freund and Naor [7] proposed a (1
3 − ε)-approximation for MAXSPACE and

a (1
2 − ε)-approximation for the special case in which the size of the ads are in the interval [L/2, L].
For MINSPACE, Adler et al. [1] present a 2-approximation called Largest-Size Least-Full (LSLF) which is

also a (4
3 −

w
3K)-approximation to MINK|w [5]. Dawande et al. [5] present a 2-approximation for MINSPACE

using LP Rounding, and Dean and Goemans [6] present a 4
3 -approximation for MINSPACE using Graham’s

algorithm for schedule [9].
From the exact-algorithm standpoint, Kaul et al. [12] present an integer programming model for placing

advertisements optimally in a two-dimensional banner. Kim and Moon [14] present a variant of MAXSPACE
with a new objective function that includes factors that influence advertising effectiveness in terms of click-
through rate. They provide an integer programming model and two meta-heuristics for this problem.

1.2 Our results

In practice, the time interval relative to each slot in scheduling advertising can represent minutes, seconds, or
long periods, such as days and weeks. One often considers the idea of release dates and deadlines. An ad’s
release date indicates the beginning of its advertising campaign. Analogously, the deadline of an ad indicates
the end of its advertising campaign. For example, ads for Christmas must be scheduled before December 25th.

With this in mind, we consider a MAXSPACE generalization called MAXSPACE-R in which each ad Ai has
one additional parameter, a release date ri ≥ 1. The release date of ad Ai represents the first slot where a copy
of Ai can be scheduled; that is, a copy of Ai cannot be scheduled in a slot Bj with j < ri. In MAXSPACE-R,
we assume that the frequency of each ad Ai is compatible with its release date, that is, K − ri + 1 ≥ wi.

Notice that in the original MAXSPACE and in MAXSPACE-R, the value of an ad corresponds to the space
it occupies multiplied by the number of times it appears. In practice, the value of an ad can be influenced by
other factors, such as the expected number of clicks it generates for the advertiser [2]. The number of times the
ad appears can also be influenced by other factors, such as the budget provided by the advertiser.

In order to consider that the value of the ad is not necessarily related to its size and to consider deadlines,
we also consider a MAXSPACE-R generalization called MAXSPACE-RDV in which each ad Ai has a dead-
line di ≤ K and a value vi. Similarly to the release date, the deadline of an ad Ai represents the last slot where
we can schedule a copy of Ai; thus ai cannot be scheduled in a slot Bj with j > di. We assume that the frequency
of each ad Ai is compatible with its release date and deadline, that is, wi ≤ di − ri + 1. In MAXSPACE-RDV,
each assigned copy of an ad Ai also has a value vi, and the value of a solution is the sum of viwi for each
scheduled ad Ai. Note that vi can be unrelated to the size si of Ai.

Let Π be a maximization problem. A family of algorithms {Hε} is a Polynomial-Time Approximation
Scheme (PTAS) for Π if, for every constant ε > 0, Hε is a (1− ε)-approximation for Π [17]. A Fully Polynomial-
Time Approximation Scheme (FPTAS) is a PTAS whose running time is also polynomial in 1/ε. Notice that
MAXSPACE does not admit an FPTAS even for K = 2, since it generalizes the Multiple Subset Sum Problem
with identical capacities (MSSP-I), which does not admit an FPTAS even for K = 2 [13].

In a previously published conference paper [4], we proposed a PTAS for MAXSPACE-RD with bounded K,
which is the particular case of MAXSPACE-RDV where vi = si for every ad Ai. We improve this result,
using a different technique, by presenting a PTAS for MAXSPACE-RDV. We also present a 1/9-approximation
algorithm for MAXSPACE-R (where K is not necessarily bounded by a constant).

In the 1/9-approximation to MAXSPACE-R, we divide the ads into large, medium, and small. We create an
optimal and polynomial dynamic programming algorithm for large ads based on the classic dynamic programming
for the Knapsack Problem [13], and we use algorithms based on the best-fit heuristic to allocate medium and
small ads. We also execute a step based on a local search for small ads to relocate them between slots when
possible. As our problem has release dates, we cannot use the area bounds as in previous works for MAXSPACE
since an optimal solution does not necessarily have a good slot fullness. Thus, it is necessary to compare the
algorithm solution with the ads’ allocation in an optimal solution to show the approximation factors.

In the PTAS for MAXSPACE-RDV, since the number of slots is bounded by a constant, we enumerate the
most valuable ads on the solution and all possible solutions involving these ads in polynomial time. To schedule
the other ads, we use a linear program algorithm to obtain a relaxed allocation of ads to slots. We give an
algorithm that rounds off the fractional assignment, showing that the losses are small. This algorithm is inspired
by the approximation scheme presented by Frieze et al. [8] for the m-dimensional knapsack problem. However,

3

in MAXSPACE, the ads have copies; thus, assigning and rounding the less valuable advertisements requires
different and more elaborate techniques. We hope these strategies can be adapted to similar packing problems,
specifically with release dates and/or deadlines.

In Section 2, we present a 1/9-approximation algorithm for MAXSPACE-R, and in Section 3, we present a
PTAS for MAXSPACE-RDV with a constant number of slots. In Section 4, we discuss the results and future
works.

2 A 1/9-approximation for MAXSPACE-R

This section presents a 1/9-approximation algorithm for MAXSPACE-R. For this problem, we assume that K
is polynomially bounded, as otherwise, the size of the solution is not polynomially bounded. We also assume
that L = 1 and 0 < si ≤ 1 for each Ai ∈ A. We partition the ads into three sets: the set G = {Ai ∈ A | si > 1/2}
of large ads, the set M = {Ai ∈ A | 1/4 < si ≤ 1/2} of medium ads, and the set P = {Ai ∈ A | si ≤ 1/4} of small
ads.

Let S denote a feasible solution A′ ⊆ A scheduled into slots B1, B2, . . . , BK . Then the fullness of a slot Bj

is defined as f(Bj) =
∑

Ai∈Bj
si. Also, the fullness of solution S is f(S) =

∑K
j=1 f(Bj).

In Section 2.1, we present an exact algorithm for large ads; in Section 2.2, we present a 1/4-approximation
for medium ads; and, in Section 2.3, we present a 1/4-approximation for small ads. Moreover, in Section 2.4,
we combine these algorithms to obtain a 1/9-approximation for the whole set of ads A.

2.1 An exact algorithm for large ads

We present an exact polynomial-time algorithm for large ads based on the dynamic programming algorithm for
the Binary Knapsack Problem [13].

An instance of the Binary Knapsack Problem consists of a container with capacity W and a set I of items.
Each item i ∈ I has a profit vi and a weight pi. The goal is to find a subset I ′ ⊆ I that maximizes the total
profit and such that the sum of the weights does not exceed the container’s capacity, that is,

∑
i∈I′ pi ≤W .

We say that an ad Ai appears sequentially in a schedule S if, for each pair of slots Bj and Bk that have
copies of Ai in S, there is a copy of Ai in each slot B` of S, with j ≤ ` ≤ k. Notice that an ad that has only one
copy is always sequentially scheduled.

Lemma 1. Let S be a feasible schedule with ads of G in K slots and let A′ ⊆ G be the set of ads scheduled in S.
There is a feasible schedule S′ in which all ads of A′ appear sequentially and in non-decreasing order of release
dates, that is, if some ad Ai appears before an ad Aj then ri ≤ rj.

Proof. Note that it is not possible to add more than one copy of any ad per slot since si > 1/2 for all Ai ∈ G.
Let S′ be a schedule of A′ in which the number of ads that appear sequentially is maximum. Assume by
contradiction that there is an ad Ai in S′ that does not appear sequentially. Let X be the set of ads with at
least one copy between the first and last copies of Ai in S′. Figure 2 shows the schedule of S′.

Ai X Ai X Ai

Figure 2: Schedule of ads of S′. In blue is the ad Ai and in red the ads of set X. The rest of colors represent
the other ads in this schedule.

Exchange the last copies of Ai with copies of ads in X such that Ai appears sequentially in the solution
maintaining the order of X. Since the scheduling of copies of ads in X is delayed, their release dates are
respected. Moreover, each copy of Ai is moved to some slot after the first copy of Ai. Thus, the release date
of Ai is also respected. Therefore, the modified schedule is feasible, as seen in Figure 3. However, the number
of ads sequentially scheduled increases, which contradicts the assertion that S′ has a maximum number of ads
sequentially scheduled.

Now, assume there are copies of ads in S′, which are not ordered by release dates. Then, let Ai be an ad
whose copies are scheduled immediately after the copies of an ad Aj with rj > ri. Let Bk be the slot in which
the first copy of Aj appears in S′, then rj ≤ k, and thus ri ≤ k. We exchange the order of the ads Ai and Aj ,
that is, we move each copy of Ai scheduled in a slot Bz to a slot Bz−wj , and each copy of Aj scheduled in a

4

Ai X

Figure 3: Schedule of ads of S′ after move copies of Ai to appears sequentially.

slot Bz to a slot Bz+wi . Since the first copy of Ai is scheduled in slot Bk, and copies of Aj are only delayed,
the modified schedule is feasible. By repeating this process, we obtain a schedule in which all ads appear in
non-decreasing order of release dates.

In Lemma 1, we show that, given a feasible schedule S, it is possible to construct a feasible schedule S′ with
the same set of ads in S, but so that all ads appear sequentially in slots and ordered by release dates. Thus,
given an instance for MAXSPACE-R with large ads G, we built an instance of the Knapsack Problem, in which
each ad Ai of G is an item j with weight pj = wi and profit vj = siwi. Since it is not possible to add more
than one ad of G per slot, we can ignore the height dimension of slots, given by L, and use only the width
dimension, given by the number of slots K. We define the knapsack capacity as W = K. In Algorithm 1, we
present a dynamic programming algorithm for the binary knapsack problem with release date restrictions. In
this algorithm, m[i, j] corresponds to the optimal value of scheduling a set of i ads with the smallest release
dates to the first j slots.

Algorithm 1 Dynamic programming algorithm for large ads.
1: procedure DP(G)
2: creates a matrix m[0 . . . |G|][0 . . . K]
3: for j ← 1, . . . , K do
4: m[0, j]← 0

5: for i← 1, . . . , |G| do
6: m[i, 0]← 0

7: for each Ai ∈ G in non-decreasing order of ri do
8: x← ri + wi − 1
9: for j ← 1, 2, . . . , x− 1 do
10: m[i, j]← m[i− 1, j]

11: for j ← x, x + 1, . . . , K do
12: m[i, j]← max{m[i− 1, j],m[i− 1, j − wi] + siwi}
13: backtrack in matrix m and return the solution
14: end procedure

Lemma 2. Algorithm 1 runs in polynomial time in the instance size, returns a feasible solution, and is optimal
for G.

Proof. The time complexity of the algorithm is O(|G|K+ |G| lg |G|), which is polynomial since K is polynomially
bounded.

For each ad Ai, the algorithm considers only feasible sequential schedules. If Ai is in the computed solution,
it has exactly wi copies in distinct compatible slots. Thus, the algorithm always returns a feasible solution.

By Lemma 1, any feasible schedule for G can be modified to obtain a new schedule in which the same ads
appear sequentially in the slots. Then, let Opt be an optimal schedule for G. There is a schedule Opt′ in which
all ads of Opt appears sequentially and f(Opt) = f(Opt′). The schedule Opt′ induces a feasible solution for the
knapsack problem defined since every ad appears sequentially as an item of the knapsack problem with weight wi

and the capacity of the knapsack is not violated since the algorithm adds at most a copy per slot and W = K.
A similar argument to the one used by Kellerer et al. [13] to prove the optimality of the dynamic programming

algorithm for the binary knapsack problem can be used to prove that Algorithm 1 finds an optimal solution for
the knapsack problem with release dates and, thus, for MAXSPACE-R with large ads.

2.2 A 1/4-approximation algorithm for medium ads

In this section, we present an algorithm for ads with medium size. We show this algorithm is a 1/4-approximation
for ads of M (Lemma 7).

5

Algorithm 2 Algorithm for medium ads.
1: procedure Alg Medium(M)
2: for j ← 1, . . . , K do
3: Bj ← ∅
4: for each Ai ∈M in non-decreasing order of ri do
5: X ← ∅
6: for k ← 1, . . . , wi do
7: if there exists j 6∈ X with j ≥ ri and Bj is empty then
8: j ← min{j′ | j′ 6∈ X, j′ ≥ ri and Bj′ is empty}
9: X ← X ∪ {j}
10: else if there exists j 6∈ X with j ≥ ri and f(Bj) ≤ 1− si then
11: j ← arg min{f(Bj′) | j

′ 6∈ X, j′ ≥ ri}
12: X ← X ∪ {j}
13: else
14: discard Ai and continue at Line 4

15: add a copy of Ai to Bj for each j ∈ X

16: return {B1, B2, . . . , BK}
17: end procedure

The idea behind Algorithm 2 is to try to add the ads to the least full compatible slots. It receives as input a
set of medium ads M and iterates over them in order of release date (from smallest to highest). For each copy
of an ad Ai, the algorithm finds the first empty slot compatible with ri. If such a slot exists, the algorithm
adds a copy of Ai to it. Otherwise, the algorithm finds the least full slot compatible with ri. A set X is used
to maintain the slots to which Ai was assigned. If it is possible to assign all wi copies of Ai, the slots in X are
updated. Otherwise, the ad Ai is discarded, and the algorithm goes to the next ad. The algorithm returns a
schedule of ads to the slots.

Consider the output of Algorithm 2 and let Opt = {B∗1 , B∗2 , . . . , B∗K} be an optimal schedule. Also, let H
be the set of ads not scheduled by the algorithm and let H∗ be the subset of ads in H that are in Opt. In
Lemma 3, we show that Algorithm 2 runs in polynomial time in the instance size and returns a feasible solution.
In Lemma 4, we show that if there is an ad Ai in an optimal schedule that was not scheduled by the algorithm,
that is, Ai ∈ H∗, then each slot Bj such that j ≥ ri has fullness f(Bj) ≥ 1/4 in the solution returned by the
algorithm. The Lemma 4 is used to prove that this algorithm is a 1/4-approximation for medium ads (Lemma 7).

Lemma 3. Algorithm 2 runs in polynomial time in the instance size and returns a feasible solution.

Proof. Sorting the ads by release date in the loop of Line 4 can be done in polynomial time. Finding the slots
to assign the ads takes time O(K). Therefore, the complexity of this algorithm is O(K

∑
Ai∈M wi + |M | lg |M |),

which is polynomial since wi ≤ K.
The algorithm adds a copy of an ad Ai only to compatible slots. Moreover, Ai is added only if exactly wi

copies of Ai can be added to compatible slots. Therefore, the algorithm returns a feasible solution.

Lemma 4. Let Ai ∈ H∗ and let Z be the set of slot indices j such that j ≥ ri. For each j ∈ Z, f(Bj) ≥ 1/4.

Proof. Consider B1, . . . , BK at the moment in which the algorithm tries to add an ad Ai ∈ H∗. As Ai was not
added, there exists at least a slot Bj of Z whose fullness is greater than 1/2, since si ≤ 1/2. Then, it follows
that Bj has at least 2 ads. Let Ai′ be the last ad assigned to Bj until this moment. Then, at the moment
that Ai′ was assigned, the fullness of Bj was at least 1/4 since it had at least one medium ad. Thus, the copy
of Ai′ assigned to Bj corresponds to the case of Line 10 of the algorithm. Note that ri′ ≤ ri, by the order in
which the algorithm considered the ads. Therefore, it follows that all slots Bj′ , with j′ ≥ ri, were considered in
the case of Line 7 to assign Ai′ , and no such a slot satisfied this case’s criteria, so each of these slots had fullness
at least 1/4.

2.3 A 1/4-approximation algorithm for small ads

In this section, we present an algorithm which, later on, we prove that it is a 1/4-approximation for small ads
(Lemma 7).

6

Algorithm 3 Algorithm for small ads.
1: procedure Alg Small(P)
2: for j ← 1, . . . , K do
3: Bj ← ∅
4: for each Ai ∈ P in non-decreasing order of ri do
5: X ← ∅
6: for k ← 1, . . . , wi do
7: if there exists j 6∈ X with j ≥ ri and f(Bj) < 1/4 then
8: j ← min{j′ | j′ 6∈ X, j′ ≥ ri and f(Bj′) < 1/4}
9: X ← X ∪ {j}
10: else if there exists j1 ∈ X, j2 6∈ X with j1, j2 ≥ ri, f(Bj1

) < 1/4, and f(Bj2
) ≥ 3/4 then

11: j1 ← min{j′ | j′ ∈ X, j′ ≥ ri and f(Bj′) < 1/4}
12: j2 ← min{j′ | j′ 6∈ X, j′ ≥ ri and f(Bj′) ≥ 3/4}
13: find T ⊂ Bj2

such that 1/4 ≤ f(T) ≤ 1/2 and T ∩ Bj1
= ∅

14: move T to Bj1
15: X ← X ∪ {j2}
16: else if there exists j 6∈ X with j ≥ ri and f(Bj) ≤ 1− si then
17: j ← arg min{f(Bj′) | j

′ 6∈ X, j′ ≥ ri}
18: X ← X ∪ {j}
19: else
20: discard Ai and continue at Line 4

21: add a copy of Ai to Bj for each j ∈ X

22: return {B1, B2, . . . , BK}
23: end procedure

The idea behind Algorithm 3 is to try to add the ads to the least full compatible slots and, when it is not
possible, try to move ads from a slot with high fullness to a slot with low fullness. It receives as input a set of
small ads P and iterates over it in order of release dates, from the smallest to the highest release date.

For each copy of an ad Ai, the algorithm looks up for the first slot with fullness smaller than 1/4 compatible
with the release date ri of Ai. If such a slot exists, the algorithm adds a copy to it. Otherwise, it tries to find
two slots Bj1 and Bj2 which are compatible with Ai and such that Bj1 has a copy of Ai and fullness smaller
than 1/4, and Bj2 has no copy of Ai and has fullness at least 3/4. If such slots Bj1 and Bj2 are found, the
algorithm moves a subset of ads T from Bj2 to Bj1 . The set T must have no intersection with Bj1 (that is, the
ads of T do not appear in Bj1) and have fullness of at least 1/4 and at most 1/2. Note that it is always possible
to find such a subset of Bj2 . To see this, observe that at least 1/2 of the fullness of Bj2 is composed by ads
that are not in Bj1 since the fullness of Bj1 is at most 1/4. From this subset with fullness at least 1/2, it is
possible to find a subset of fullness of at least 1/4 and at most 1/2, since the ads are small. The algorithm then
moves T from Bj2 to Bj1 and add a copy of Ai to Bj2 . Note that this movement does not violate any restriction
of release dates since the ads of T have release dates at most ri. When no such a pair Bj1 and Bj2 is found, the
algorithm tries to add a copy of Ai to the first slot where it fits.

A set X is used to maintain the slots to which Ai was assigned. If it is possible to assign all wi copies of Ai,
the slots in X are updated. Otherwise, X is ignored, and the algorithm goes to the next ad. The algorithm
returns a schedule of ads to the slots.

Consider the output of Algorithm 3 and let Opt = {B∗1 , B∗2 , . . . , B∗K} be an optimal schedule. Also, let H
be the set of ads not scheduled by the algorithm and let H∗ be the subset of ads in H that are in Opt. In
Lemma 5, we show that Algorithm 3 runs in polynomial time in the instance size and returns a feasible solution.
In Lemma 6, we show that if there exists some ad Ai that is in an optimal schedule but was not scheduled
by the algorithm, that is, Ai ∈ H∗, then each slot Bj such that j ≥ ri has fullness f(Bj) ≥ 1/4 in the solution
returned by the algorithm. The Lemma 6 is used to prove that this algorithm is a 1/4-approximation for small
ads (Lemma 7).

Lemma 5. Algorithm 3 runs in polynomial time in the instance size and returns a feasible solution.

Proof. Sorting the ads by release date in the loop of Line 4 can be done in polynomial time. Finding the slots to
assign the ads takes time O(K), and changing the ads from slots takes time O(K|P |). Therefore, the complexity
of this algorithm is O(K|P |

∑
Ai∈P wi + |P | lg |P |), which is polynomial since

∑
Ai∈P wi ∈ O(K|P |).

The algorithm adds a copy of an add Ai only to compatible slots. Besides that, Ai is scheduled only if
exactly wi copies of Ai can be added to compatible slots. When the algorithm moves a set of ads from a slot Bj2

to a slot Bj1 , it does not violate any restriction of release dates since the ads in T have release dates smaller than
or equal to the release date of the ad considered by the iteration, by the order in which the ads are considered.
Also, the algorithm does not violate the fullness of any slot since f(Bj1) < 1/4 and f(T) ≤ 1/2. The set of
ads T ⊂ Bj2 is not in Bj1 , then the restriction of each ad has at most a copy per slot is also not violated when
the algorithm moves T from Bj2 to Bj1 . Therefore, the algorithm returns a feasible solution.

7

Lemma 6. Let Ai ∈ H∗ and let Z be the set of indices j such that j ≥ ri. For each j ∈ Z, f(Bj) ≥ 1/4.

Proof. Consider the slots B1, . . . , BK at the moment the algorithm tries to assign Ai. Consider the moment in
which ad Ai was discarded. Since the case of Line 7 fails, all slots Z \X have fullness at least 1/4. And, as
the case of Line 16 fails, there exists at least one j ∈ Z \X with f(Bj) > 3/4 (since si < 1/4). Finally, since
the case of Line 10 fails, all slots in X, at this moment, had fullness at least 1/4. Note that the fullness of
j1 remains at least 1/4 after the ads of T are removed from Bj1 . We conclude that, at this moment, all slots
in (Z \X) ∪X = Z had fullness at least 1/4. Therefore, the result follows.

2.4 A 1/9-approximation algorithm for the general case

Now, we present an algorithm for the general case, showing that it is a 1/9-approximation. First, we show on
Lemma 7 that Algorithms 2 and 3 are 1/4-approximations for, respectively, medium and small ads. Then, in
Algorithm 4, we present a pseudocode for the whole set of ads A.

Lemma 7. Algorithms 2 and 3 are 1/4-approximations for medium and small ads, respectively.

Proof. Consider the execution of one of these algorithms. Let W be the set of copies of ads (considering wi

copies of each ad Ai) scheduled by the algorithm. Let W ∗ be the ads scheduled in an optimal solution Opt (also
considering wi copies of each ad Ai), such that f(Opt) = f(W ∗). Also, let B∗j ⊆W ∗ be the ads scheduled in a
slot Bj in Opt. We partition W ∗ into E∗ = W ∗ ∩W and N∗ = W ∗ \W . The set E∗ corresponds to the ads
in W ∗ scheduled by the algorithm, and the set N∗ to those not scheduled. Let ` be smallest index of slot such
that B∗` ∩N∗ 6= ∅. Let m be the smallest index of slot such that f(Bj) ≥ 1/4 for all j ≥ m. Note that m ≤ `,
since each slot Bj with j ≥ ` has fullness f(Bj) ≥ 1/4, by Lemmas 4 and 6. This implies that each ad Ai ∈ B∗j
with j ≤ m is in E∗ by the minimality of `.

Let Z = {1, 2, . . . ,m − 1} and Z = {m,m + 1, . . . ,K}. Let H =
⋃

j∈Z B∗j . Let w̃i be the number of copies
of an ad Ai scheduled by the algorithm in slots with index in Z, and let w̃∗i be the number of copies of Ai

scheduled in slots with index in Z in the optimal solution. Let F be the set of ads which have been scheduled
by the algorithm in slots of Z at least as many times as the optimal solution does, and let R be the set of
ads that have been scheduled by the algorithm in slots of Z fewer times than the optimal solution does, that
is, F = {Ai | w̃i ≥ w̃∗i } and R = H \ F . Let Q be the set of indices j of Z with f(Bj) ≥ 1/4 in the solution
computed by the algorithm.

Let Ai ∈ R and j ∈ Z \Q with j ≥ ri. We will prove that Ai ∈ Bj in the solution computed by the algorithm.
Since Ai ∈ R, there is a copy of Ai in Z. Assume that Ai 6∈ Bj , then the algorithm did not add a copy of Ai

to Bj because f(Bj) ≥ 1/4, then j ∈ Q, which is a contradiction. We conclude that Ai ∈ Bj in the algorithm’s
solution.

We are going to prove that f(R) < 1/4. First, note that m− 1 /∈ Q by the minimality of m. Now, observe
that R ⊆ Bm−1. In fact, if Ai ∈ R, then ri ≤ m− 1 and by the previous paragraph we know that Ai ∈ Bm−1.
It follows that R ⊆ Bm−1, and then f(R) ≤ f(Bm−1) < 1/4.

To derive the lemma, it suffices to show that
∑

j∈Z f(Bj) ≥ 1/4
∑

j∈Z f(B∗j). We can rewrite these sums as
follows: ∑

j∈Z
f(B∗j) =

∑
Ai∈R

siw̃
∗
i +

∑
Ai∈F

siw̃
∗
i and

∑
j∈Z

f(Bj) ≥
∑
Ai∈R

siw̃i +
∑
Ai∈F

siw̃i.

The equality follows because the ads scheduled by the optimal solution in slots of Z correspond to H, partitioned
by R,F . The inequality follows from the definition of wi.

Note that
∑

Ai∈F siw̃i ≥
∑

Ai∈F siw̃
∗
i . Thus, if

∑
Ai∈F siw̃

∗
i ≥ 1/4

∑
j∈Z f(B∗j), the statement follows.

Then, in the following we assume that
∑

Ai∈F siw̃
∗
i < 1/4

∑
j∈Z f(B∗j), which implies that

∑
Ai∈R siw̃

∗
i ≥

3/4
∑

j∈Z f(B∗j).

8

The fullness of slots in Z in the solution found by the algorithm can be rewritten as:∑
j∈Z

f(Bj) =
∑
j∈Q

f(Bj) +
∑

j∈Z\Q

f(Bj)

≥
∑
j∈Q

1

4
+

∑
j∈Z\Q

f(Bj)

>
∑
j∈Q

f(R) +
∑

j∈Z\Q

f(Bj ∩R)

≥
∑
Ai∈R

(m− ri)si

≥
∑
Ai∈R

w̃∗i si ≥
3

4

∑
j∈Z

f(B∗j).

The first inequality holds by the definition of Q. The second inequality holds because f(R) < 1/4. For the third
one, consider the sums on the left side of the inequality and notice that each ad Ai ∈ R appears in all terms of
the first sum and in all terms of the second sum of indices j with j ≥ ri; thus, Ai appears in at least (m − ri)
terms. The penultimate inequality holds because an ad cannot be displayed before the release date. Thus, also
in this case we conclude that

∑
j∈Z f(Bj) ≥ 1/4

∑
j∈Z f(B∗j).

Finally, we bound the value of the solution W :

f(W) =
∑
j

f(Bj) =
∑
j∈Z

f(Bj) +
∑
j∈Z

f(Bj)

≥
∑
j∈Z

1

4
f(B∗j) +

∑
j∈Z

1

4

≥
∑
j∈Z

1

4
f(B∗j) +

∑
j∈Z

1

4
f(B∗j)

=
1

4

∑
j∈Z

f(B∗j) +
∑
j∈Z

f(B∗j)


=

1

4
f(Opt).

The first inequality holds by the definition of m and the statement of the previous paragraph. The second
inequality holds by the fact that

∑
j∈Z f(B∗j) ≤ 1.

Algorithm 4 Algorithm for general case
1: procedure Alg General(A)
2: G = {Ai ∈ A | si > 1/2}
3: M = {Ai ∈ A | 1/4 < si ≤ 1/2}
4: P = {Ai ∈ A | si ≤ 1/4}
5: S1 ← DP(G)
6: S2 ← Alg Medium(M)
7: S3 ← Alg Small(P)
8: return max{S1, S2, S3}
9: end procedure

The Algorithm 4 divides the ads into large G, medium M and small P and executes the Algorithms 1, 2
and 3, respectively, for G, M and P . Finally, the algorithm returns the best of the solutions of the executed
algorithms. In Theorem 1, we show that this algorithm is a 1/9-approximation for MAXSPACE-R.

Theorem 1. Algorithm 4 is a 1/9-approximation for MAXSPACE-R problem.

Proof. Algorithm 4 only partitions the ads and executes Algorithms 1, 2 and 3. By Lemmas 2, 3 and 5, these
algorithms run in polynomial time in the instance size and return feasible solutions. Then, Algorithm 4 runs in
polynomial time in the instance size and returns a feasible solution.

9

Let W ∗ be the copies of ads scheduled in an optimal solution (considering wi copies of each ad Ai) and
let f(Opt) = f(W ∗). If f(W ∗ ∩G) ≥ 1

9f(Opt), it is possible to obtain a solution with fullness at least 1
9f(Opt),

since Algorithm 1 is exact for large ads (Lemma 2). Otherwise, we know that f(W ∗ ∩M) ≥ 4
9f(Opt) or

f(W ∗ ∩ P) ≥ 4
9f(Opt). If f(W ∗ ∩M) ≥ 4

9f(Opt), then a solution for ads of M has fullness at least 1
4 (4

9f(W ∗)) =
1
9f(Opt), since Algorithm 2 is a 1/4-approximation for medium ads (by Lemma 7). If f(W ∗ ∩ P) ≥ 4

9f(Opt),
then a solution for ads of P has fullness at least 1

4 (4
9f(W ∗)) = 1

9f(Opt), since Algorithm 3 is a 1/4-approximation
for small ads (by Lemma 7).

3 A PTAS for MAXSPACE-RDV with a constant number of slots

In what follows, assume that the number of slots K is a constant, L = 1, and 0 < si ≤ 1 for each Ai ∈ A. In
MAXSPACE-RDV, we define f(Bj) =

∑
Ai∈Bj

vi as the value of a slot Bj and f(S) =
∑

Bj∈S f(Bj) as the
value of a solution S.

Let S denote a feasible solution A′ ⊆ A scheduled into slots B1, B2, . . . , BK . The type t of an ad Ai ∈ A′
with respect to S is the subset of slots to which Ai is assigned, that is, Ai ∈ Bj if and only if j ∈ t. Let T be a
set of all the subsets of slots, then T contains every possible type and |T | = 2K . Observe that two ads with the
same type have the same frequency, and thus one can think of all ads in A′ with the same type as a single ad.

Let ε > 0 be a constant such that 1/ε is an integer, and let q = min{|A|, 22K

2K/ε}. Our algorithm guesses a
set V with at most q ads with the largest values in an optimal solution. For each V ⊆ A such that |V | ≤ q, we
define U as the set of every ad Ai ∈ A \ V such that viwi ≤ vmin, where vmin = min{viwi : Ai ∈ V }. Then, for
each feasible scheduling of V ⊆ A, we fill the remaining spaces in the slots with ads in U using a linear program.

A configuration for a subset of ads A′ ⊆ A is a feasible solution which schedules every ad in A′. Lemma 8
states that if K is constant, then the number of possible configurations containing only ads in V is polynomial
in the number of ads in V and can be enumerated by a brute-force algorithm.

Lemma 8. If K is constant, then the configurations for all subsets of V can be listed in polynomial time.

Proof. There are O(q|A|q) possible choices for V , and there exist O(q2K

) possible solutions for each set since

the number of types is 2K . Thus, we can enumerate V and all of its configurations in time O(q2K+1|A|q), which
is polynomial since K and q are constants.

Since all candidate configurations can be listed in polynomial time by Lemma 8, we may assume that we
guessed the configuration SV of the most valuable ads induced by OptV . We are left with the residual problem
of placing ads of U . For each slot j in SV , 1 ≤ j ≤ K, the space which is unused by the most valuable ads V is

uj = 1−
∑

Ai∈Bj

si.

We define RESIDUAL-MAXSPACE-RDV as the problem of, given a set of ads U , where viwi ≤ vmin for
all Ai ∈ U , finding a subset A′t ⊆ U for each t ∈ T such that the occupation of each slot j is at most uj ,
and which maximizes the value ∑

t∈T

∑
Ai∈A′

t

|t|vi.

Let T (Ai) be the subset of types compatible with an ad Ai, i.e., the set of types t ∈ T with |t| = wi, and such
that the slots in t are compatible with the release date ri and the deadline di. We solve the linear program (P)
to assign ads of U to types.

(P) Maximize
∑
Ai∈U

∑
t∈T (Ai)

viwiXAi,t (1)

Subject to:
∑

t∈T (Ai)

XAi,t ≤ 1 ∀Ai ∈ U (2)

∑
t∈T :
j∈t

∑
Ai∈U

siXAi,t ≤ uj j = 1, 2, . . . ,K (3)

XAi,t ≥ 0 ∀Ai ∈ U,∀t ∈ T (Ai) (4)

10

Algorithm 5 Algorithm for reassigning fractional solution.
1: procedure Reassign(W,UW)
2: for each Ai ∈ UW and t ∈ W do
3: X′

Ai,t
← 0

4: for each t ∈ W do
5: zt ←

∑
Ai∈UW

siXAi,t

6: U ′
W ← ∅

7: zW ←
∑

t∈W zt . Total area of items with support W

8: for each Ai ∈ UW in non-increasing order of vi/si do
9: if

∑
Aj∈U′

W
sj < zW then . The last ad may not fit entirely

10: U ′
W ← U ′

W ∪ {Ai}
11: Let {t1, t2, . . . , t|W |} be the types in W
12: k ← 1
13: for each Ai ∈ U ′

W do
14: s′i ← si
15: while s′i > 0 do
16: m← min{s′i, ztk − s′i}
17: X′

Ai,tk
← m/si

18: s′i ← s′i −m
19: ztk ← ztk −m
20: if ztk = 0 then
21: k ← k + 1

22: return X′, U ′
W

23: end procedure

The variables XAi,t indicate if ad Ai is assigned to type t, constraints (2) ensure that an ad cannot be
assigned more than once, and constraints (3) guarantee that the capacity of any slot will not be violated.

Consider a solution X for (P), which can be obtained in polynomial time [11], and notice that X induces
an assignment of ads to types. In this assignment, if the solution is such that XAi,t < 1 units from ad Ai are
assigned to type t, then we say that ad Ai is fractionally assigned to t by an amount of XAi,t. The set of all
types t for which XAi,t > 0 is called the support of Ai and is denoted by Sup(Ai).

To eliminate fractional assignments, we group ads with the same support. Let W be a subset of types, and UW

be the set of ads Ai with Sup(Ai) = W . In particular, each ad Ai ∈ UW is compatible with any type t ∈W .
For each type t ∈W , we define the total fullness received by t from UW as

zt =
∑

Ai∈UW

siXAi,t.

By the fact that each ad in UW is fractionally assigned to types in W , we know that∑
Ai∈UW

si ≥
∑

Ai∈UW

∑
t∈W

siXAi,t =
∑
t∈W

zt.

In other words, the total size of UW given by
∑

Ai∈UW
si is not smaller than the size received by types W

from UW . Therefore, we remove the fractional assignment of all ads in UW and integrally reassign each ad
in UW to types in W , discarding any remaining ad.

The process of rounding the fractional assignment is summarized in Algorithm 6, which receives as input a
fractional assignment X of ads to types W and returns an integer assignment X ′.

As part of the rounding, we use a procedure called Reassign, which takes a support W and the ads scheduled
to that support UW and returns a new allocation of these ads in W . This procedure removes all ads from UW

from the fractional solution and greedily fills their space with ads from UW in order of efficiency (vi/si). Note
that this new schedule does not have a worse value since all the space is filled, the advertisements are chosen in
order of efficiency, and this new solution is fractional. Let U ′W ⊆ UW be the newly scheduled ads; note that all
U ′W ads, except perhaps the last one, are fully scheduled to W types. The Reassign pseudocode is presented
in Algorithm 5.

In Lemma 9, we observe that Algorithm 5 is polynomial in the instance size. Lemma 10 shows that Reassign
does not worsen the solution.

Lemma 9. Algorithm 5 runs in polynomial time.

Proof. The size of UW is O(n) and the size of W is O(2K); thus, Algorithm 5 running time is O(n2K), which is
polynomial since K is constant.

11

Lemma 10. Algorithm 5 returns a solution with the same value of linear programming (P) assignment.

Proof. The algorithm fills the space for the UW items in the W types with the best efficiency items in UW .
This way, the algorithm obtains an optimal value for the fractional allocation of the UW items in the considered
space. The linear programming algorithm (P) also obtains a fractional optimal solution for the same items and
considers the same space. Therefore, both solutions have the same value.

Algorithm 6 Algorithm for rounding ad assignment.
1: procedure Rounding(X)
2: for each Ai ∈ U and t ∈ T do
3: X′

Ai,t
← 0

4: for each W ⊆ T do
5: UW ← all ads Ai with Sup(Ai) = W
6: X′, U ′

W ← Reassign(W,UW)
7: discard from U ′

W any ad that is not integrally assigned to the same type in W

8: return X′

9: end procedure

Lemma 11 shows that Algorithm 6 is polynomial in the instance size. Corollary 1 is obtained from Lemma 12,
and bounds the total value of ads discarded by Algorithm 6 in each execution of Line 7. And Corollary 2 is
obtained from Lemma 12 and Corollary 1.

Lemma 11. Algorithm 6 runs in polynomial time in the instance size.

Proof. The loop of Line 4 executes a constant number of iterations, since |T | = 2K and the number of subsets

of T is 22K

. The Reassign algorithm is also polynomial, by Lemma 9. Then, the algorithm runs in polynomial
time.

Lemma 12. Let W ⊆ T and let U ′W be the set of ads with support W after the reassign algorithm. The number
of discarded ads from U ′W in Line 7 of the Rounding is at most |W |.

Proof. The Reassign algorithm adds an advertisement fractionally to a type in two ways: starting at a type t
and continuing at a type t+ 1, and completing the fullness in the last type of W . In the first case, the algorithm
can add a maximum of |W | − 1 fractional ads, and in the second case, it is possible to add at most one ad
fractionally to a type. Thus, at most |W | advertisements are added fractionally to types of W , and the result
follows.

Corollary 1. Let W ⊆ T and let U ′W be the set of ads scheduled to W after reassigning the algorithm. Then
the total value of selected ads in U ′W after the execution of rounding is∑

Ai∈U ′
W

∑
t∈W

viwiX
′
Ai,t ≥

∑
Ai∈U ′

W

∑
t∈W

viwiXAi,t − |W |vmin.

Proof. Let U ′′W be the set of discarded advertisements of U ′W ,∑
Ai∈U ′

W

∑
t∈W

viwiX
′
Ai,t ≥

∑
Ai∈U ′

W

∑
t∈W

viwiXAi,t −
∑

Ai∈U ′′
W

viwi

≥
∑

Ai∈U ′
W

∑
t∈W

viwiXAi,t − |W |vmin.

The second inequality holds because the number of ads discarded in UW is at most |W | in Line 7 (Lemma 12),
and all advertisements Ai ∈ U ′W has value viwi ≤ vmin, by the definition of U .

Corollary 2. The difference between the maximum fractional and modified solution values is not larger than

22K

2Kvmin. That is, ∑
Ai∈A

∑
t∈T

viwiX
′
Ai,t ≥

∑
Ai∈A

∑
t∈T

viwiXAi,t − 22K

2Kvmin.

12

Proof. Consider the value of variables W and U ′W of Algorithm 6. Using Corollary 1, we have that∑
Ai∈A

∑
t∈T

viwiX
′
Ai,t =

∑
W⊆T

∑
Ai∈U ′

W

∑
t∈W

viwiX
′
Ai,t

≥
∑
W⊆T

 ∑
Ai∈U ′

W

∑
t∈W

viwiXAi,t − |W |vmin


≥

∑
Ai∈A

∑
t∈T

viwiXAi,t −
∑
W⊆T

2Kvmin

=
∑
Ai∈A

∑
t∈T

viwiXAi,t − 22K

2Kvmin,

where the last inequality holds because |W | ≤ 2K , and the last equality holds because there are 2|T | = 22K

distinct choices for W .

The complete algorithm for MAXSPACE-RDV is presented in Algorithm 7. Given parameter ε > 0, this
algorithm receives a set of ads A as input. The algorithm tries to guess which q ads are most valuable for an
optimal solution. It explores all possible combinations of subsets V ⊆ A with at most q ads, and for each feasible
scheduling for V , it tries to fill the remaining spaces with ads less valuable than the ones in V , called U . In
this step, the algorithm associates ads of U to types using the linear program (P). The Algorithm Rounding
transforms the fractional assignment X into an integer assignment X ′. Note that this assignment can be easily
converted into a schedule of ads U into solution S′. The algorithm returns the solution of maximum value among
those considered.

Algorithm 7 Algorithm for MAXSPACE-RDV with K constant.
1: procedure AlgRDVε(A)

2: q ← min{|A|, 22K 2K/ε}
3: S ← ∅
4: for each V ⊆ A such that |V | ≤ q do
5: for each feasible assignment SV of V do
6: vmin ← min{viwi : Ai ∈ V }
7: U ← {Ai ∈ A \ V | viwi ≤ vmin}
8: X ← solve LP (P) with ads in U
9: X′ ← Rouding(X)
10: Add ads of U to SU according to integral assignment X′

11: S′ ← SV ∪ SU

12: if f(S′) ≥ f(S) then
13: f(S)← f(S′)

14: return S
15: end procedure

In Lemma 13 and 14, we prove that Algorithm 7 is polynomial in the instance size and returns a feasible
solution. In Theorem 2, we prove that Algorithm 7 is a PTAS for MAXSPACE-RDV.

Lemma 13. Algorithm 7 executes in polynomial time.

Proof. The linear program is solved in polynomial time in the size of the model [11], and the model is polynomial

in the size of the instance since it has O(|U |+K) restrictions and O(|U |22K

) variables. The Rouding algorithm
is also polynomial, by Lemma 11. The loops on Lines 4 and 5 are polynomial, by Lemma 8. Then, Algorithm 7
is polynomial in the instance size.

Lemma 14. Algorithm 7 returns a feasible solution.

Proof. Since each ad configuration in V is feasible, SV respects release date and deadline restrictions. Solution
SU also respects the release date and deadline restrictions, and constraints (3) guarantee that this solution
respects the slots’ capacities. Thus, the algorithm returns a feasible solution.

Theorem 2. Algorithm 7 is a PTAS for MAXSPACE-RDV.

13

Proof. We try every schedule for V with |V | ≤ q. Thus, consider the moment when the schedule of V is the
same as the |V | most valuable ads in an optimal solution Opt. Let SV be the schedule of ads of V in the returned
solution S. Thus, f(SV) = f(OptV), where OptV is the schedule of V in Opt. Note that, if q = |A| or |Opt| ≤ q,

then f(S) = f(SV) = f(OptV) = f(Opt) and the result follows. Now, consider that q = 22K

2K/ε < |A| and
|Opt| > q.

Let X be the linear program solution and X ′ be the output of Rounding. Define

f(X) =
∑
Ai∈A

∑
t∈T

viwiXAi,t and f(X ′) =
∑
Ai∈A

∑
t∈T

viwiX
′
Ai,t.

Let OptU be an optimal solution for ads in U in the remaining spaces of OptV . Observe that OptU induces a
feasible solution with value f(OptU). This implies that f(X) ≥ f(OptU), as X is an optimal fractionally solution
in the remaining spaces of SV , which has the same fullness of OptV . Also, note that f(S) = f(X ′) + f(SV),
then using Corollary 2 we have

f(S) = f(X ′) + f(SV)

= f(X ′) + f(OptV)

≥ f(X)− 22K

2Kvmin + f(OptV)

≥ f(OptU)− 22K

2K
f(SV)

q
+ f(OptV)

= f(OptU)− 22K

2K
f(SV)

22K 2K

ε

+ f(OptV)

= f(OptU)− εf(SV) + f(OptV)

≥ f(Opt)− εf(Opt).

Where the first inequality holds by Corollary 2, the second inequality holds since vmin ≤ f(SV)/q and the last
inequality holds since f(Opt) ≥ f(SV).

Since the algorithm returns the best solution and considers solution S, the result follows.

4 Final remarks

This paper consider two generalizations for the MAXSPACE problem, called MAXSPACE-R and MAXSPACE-
RDV. We present a 1/9-approximation algorithm for MAXSPACE-R and a PTAS for MAXSPACE-RDV for
the case that the number of slots is bounded by a constant. These are the first approximation algorithm and
approximation schemes to these MAXSPACE variants.

A PTAS is the best approximation ratio for MAXSPACE-RDV one can expect since it does not admit an
FPTAS even for K = 2 [13]. This variant is a generalization of the Multiple Knapsack Problem [3].

In future works, we will also consider MAXSPACE-RDV with the number of slots given in the instance, for
which the ideas used in this work are not sufficient.

Funding This project was supported by São Paulo Research Foundation (FAPESP) grants #2015/11937-9,
#2016/23552-7, #2017/21297-2, and #2020/13162-2, and National Council for Scientific and Technological
Development (CNPq) grants #425340/2016-3, #312186/2020-7, and #311039/2020-0.

References

[1] Micah Adler, Phillip B. Gibbons, and Yossi Matias. Scheduling space-sharing for internet advertising. J.
Sched., 5(2):103–119, 2002. ISSN 1094-6136, 1099-1425. doi: 10.1002/jos.74.

[2] Rex Briggs and Nigel Hollis. Advertising on the web: Is there response before click-through? Journal of
Advertising research, 37(2):33–46, 1997.

[3] Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the multiple knapsack
problem. SIAM J. Comput., 35(3):713–728, January 2005. ISSN 0097-5397, 1095-7111. doi: 10.1137/
s0097539700382820.

14

[4] Mauro RC Da Silva, Rafael CS Schouery, and Lehilton LC Pedrosa. A polynomial-time approximation
scheme for the maxspace advertisement problem. Electronic Notes in Theoretical Computer Science, 346:
699–710, 2019.

[5] Milind Dawande, Subodha Kumar, and Chelliah Sriskandarajah. Performance bounds of algorithms for
scheduling advertisements on a web page. Journal of Scheduling, 6(4):373–394, 2003.

[6] Brian C Dean and Michel X Goemans. Improved approximation algorithms for minimum-space advertise-
ment scheduling. In In Proceedings of International Colloquium on Automata, Languages, and Programming,
pages 1138–1152, 2003.

[7] Ari Freund and Joseph Seffi Naor. Approximating the advertisement placement problem. In Proceedings of
International Conference on Integer Programming and Combinatorial Optimization, pages 415–424, 2002.

[8] Alan M Frieze, Michael RB Clarke, et al. Approximation algorithms for the m-dimensional 0-1 knapsack
problem: worst-case and probabilistic analyses. European Journal of Operational Research, 15(1):100–109,
1984.

[9] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: A survey. In Annals of Discrete Mathematics,
pages 287–326. Elsevier, 1979.

[10] IAB. Internet advertising revenue report: Full year 2022, 2022. URL https://www.iab.com/wp-content/

uploads/2023/04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf. [Online; Accessed on:
2023-05-03].

[11] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings of the
sixteenth annual ACM symposium on Theory of computing, pages 302–311, 1984.

[12] Arshia Kaul, Sugandha Aggarwal, Anshu Gupta, Niraj Dayama, Mohan Krishnamoorthy, and PC Jha. Op-
timal advertising on a two-dimensional web banner. International Journal of System Assurance Engineering
and Management, 9(1):306–311, 2018.

[13] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Introduction to NP-Completeness of knapsack prob-
lems, chapter Introduction to NP-Completeness of Knapsack Problems, pages 483–493. Springer Berlin
Heidelberg, 2004. ISBN 9783642073113, 9783540247777. doi: 10.1007/978-3-540-24777-7 16.

[14] Gwang Kim and Ilkyeong Moon. Online banner advertisement scheduling for advertising effectiveness.
Computers & Industrial Engineering, 140:106226, 2020.

[15] Subodha Kumar. Optimization Issues in Web and Mobile Advertising. Springer International Publishing,
2016. ISBN 9783319186443, 9783319186450. doi: 10.1007/978-3-319-18645-0.

[16] Pinterest. Pinterest’s homepage. https://www.pinterest.com, 2021. Accessed: 2021-03-17.

[17] Vijay V. Vazirani. Approximation Algorithms. Springer Berlin Heidelberg, 2003. ISBN 9783642084690,
9783662045657. doi: 10.1007/978-3-662-04565-7.

15

https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf
https://www.iab.com/wp-content/uploads/2023/04/IAB_PwC_Internet_Advertising_Revenue_Report_2022.pdf
https://www.pinterest.com

	1 Introduction
	1.1 Previous Works
	1.2 Our results

	2 A 1/9-approximation for MAXSPACE-R
	2.1 An exact algorithm for large ads
	2.2 A 1/4-approximation algorithm for medium ads
	2.3 A 1/4-approximation algorithm for small ads
	2.4 A 1/9-approximation algorithm for the general case

	3 A PTAS for MAXSPACE-RDV with a constant number of slots
	4 Final remarks

