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Abstract

We consider the N-vortex problem on the sphere assuming that all vortices have equal strength.
We develop a theoretical framework to analyse solutions of the equations of motion with pre-
scribed symmetries. Our construction relies on the discrete reduction of the system by twisted
subgroups of the full symmetry group that rotates and permutes the vortices. Our approach for-
malises and extends ideas outlined previously by Tokieda (C. R. Acad. Sci., Paris I 333 (2001))
and Soulière and Tokieda (J. Fluid Mech. 460 (2002)) and allows us to prove the existence of
several 1-parameter families of periodic orbits. These families either emanate from equilibria or
converge to collisions possessing a specific symmetry. Our results are applied to show existence
of families of small nonlinear oscillations emanating from the platonic solid equilibria.
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1 Introduction

In the last three decades, a growing number of publications have considered the N-vortex problem on
the sphere. A (necessarily incomplete) list of references is [40, 21, 8, 9, 32, 28, 43, 24, 41, 5, 11, 35,
45, 15, 46]. The first reference to the problem seems to go back to Zermelo [48] while the equations
of motion were presented by Gromeka [18] and Bogomolov [7]. The importance of the model is
usually associated with geophysical fluid dynamics since it describes the interaction of hurricanes on
the Earth. Interestingly, similar models of vortices are also relevant in the study of Bose-Einstein
condensates [20], while the steady solutions of the problem have applications in semiconductors [4]
and reaction-diffusion models [44]. We refer the reader to the papers by Aref et al [1], Aref [2]
and the book by Newton [38] for a general overview of the N-vortex problem and for an extensive
bibliography on the subject.

The investigation of the N-vortex problem on the sphere is interesting from a mathematical point
of view since the system is Hamiltonian and invariant under rotations by the group SO(3). Symplectic
reduction leads to the conclusion that the problem is integrable if N ≤ 3, and also for N = 4 if the
centre of vorticity (momentum map) vanishes [8, 21, 33]. A strong indication that the problem is
non-integrable for N = 4 for a general centre of vorticity is given by Bagrets & Bagrets [3], and hence
it is natural to expect that the system is fully chaotic for N > 4. The dynamics of the problem in the
integrable case N = 3 was considered in [8, 21, 22, 12].
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Much effort has been devoted to the investigation of particular solutions of the problem for N ≥ 4.
Following the pioneering work of Lim, Montaldi & Roberts [28], several publications have considered
the existence, stability and bifurcations of fixed equilibria and relative equilibria e.g. [24, 5, 27]. On
the other hand, relative periodic solutions have been found by Laurent-Polz [25] and Garcı́a-Azpeitia
[15]. Periodic solutions with prescribed symmetry are determined in Tokieda [43] and Soulière &
Tokieda [41]. Choreographies were found by Borisov, Mamaev & Kilin [11] for N = 4 and by Garcı́a-
Azpeitia [15] for general N. Some of these choreographies were computed numerically by Calleja,
Doedel & Garcı́a-Azpeitia [13].

In this paper we consider the case in which all vortices have equal strength for N ≥ 4. With the
appropriate normalisations, the governing equations for the motion of the vortices become

v̇ j =
N

∑
i=1(i≠ j)

vi×v j

∣v j −vi∣
2 , j = 1, . . . ,N, (1.1)

where v j(t) belongs to the unit sphere S2 in R3 and denotes the position of the jth vortex and ×

denotes the vector product. The derivation of the equations may be found in Newton’s book [38].
The assumption that the vortices have equal strength results in the invariance of the system under the
action of the permutation group SN on the vortices and this extra symmetry is essential in our analysis.
The Hamiltonian structure of Eqs. (1.1) is described in Section 2 below. An interesting Lagrangian
interpretation of the system is given in Vankerschaver & Leok [45].

The most fundamental solutions of Eqs. (1.1) are the equilibria, and in particular, the ground states
of the Hamiltonian, but their determination is difficult for large N. Actually, determining the ground
state of the Hamiltonian is a special case of one of Smale’s open problems, generalising the Thomson
problem from the Coulomb potential to more general ones. The ground states for different number of
vortices exhibit many symmetries that have been established rigorously only for N ≤ 5. On the other
hand, the five platonic solids are natural equilibrium solutions for N = 4,6,8,12,20. It was proved by
Kurakin [23] that the tetrahedron, octahedron and icosahedron are nonlinearly stable, while the cube
and the dodecahedron are unstable.

Goals of the paper

The original motivation of this paper was to prove the existence of small nonlinear oscillations near
the platonic solid equilibria. This is a non-trivial task since the Liapunov Centre Theorem [29] and its
extensions obtained by Weinstein [47] and Moser [36] do not apply. The reason is that the equilibria in
question are not isolated, but rather form SO(3) orbits on the phase space. The symmetric extension
of these theorems by Montaldi, Roberts & Stewart [34] does not apply for the exact same reason.
Other extensions relying on topological methods developed by Ize & Vignoli [19] and Strzelecki [42]
also do not apply because they require the phase space to be a euclidean space and the action to be
linear.

Our results are summarised below. We succeeded in finding several (but not all) families of peri-
odic solutions emanating from the platonic solids by developing a general framework used to analyse
solutions of Eqs. (1.1) with prescribed symmetries. Apart from the nonlinear oscillations around the
platonic solids, our construction proves the existence of many other families of periodic solutions of
Eqs. (1.1) which either emanate from an equilibrium or converge to collisions possessing a specific
symmetry.
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Summary of results

Let P be one of the platonic solids and N be the number of its vertices. Our approach to prove
the existence of periodic solutions of (1.1) in which the vortices oscillate around the vertices of P
is to restrict our attention to the family of solutions that are K-symmetric, where K < SO(3) is a
discrete subgroup that leaves P invariant. The crucial point is to choose K in such a way that the
aforementioned family of solutions forms a 1-degree of freedom integrable Hamiltonian subsystem
of (1.1), and hence its generic orbits are periodic. The idea of the method goes back to Tokieda [43]
and Soulière & Tokieda [41]. A similar approach is applied by Fusco, Gronchi & Negrini [14] to the
N-body problem.

In this paper we proceed with a degree of generality beyond the case of the platonic solids de-
scribed above. Our main contribution is to develop a general framework, valid for arbitrary N ≥ 4, for
the analysis of the K-symmetric solutions of (1.1) that form a 1-degree of freedom integrable Hamil-
tonian subsystem of (1.1), where K < SO(3) is one of the following groups: the dihedral group Dn,
tetrahedral group T, octahedral group O or icosahedral group I. Our construction relies on the concept
of (K,F)-symmetric solutions, that are solutions of Eqs. (1.1) of the form

(v1(t), . . . ,vN(t)) = (u(t),g2u(t), . . . ,gmu(t), fm+1, . . . , fN), (1.2)

where Ko = (g1 = e,g2, . . . ,gm) is an ordering of K (e is the identity element in SO(3)) and Fo =

( fm+1, ..., fN) is an ordering of a certain set F ⊂ F[K], which is assumed to be K-invariant. Here
F[K] denotes the set of points in S2 having non-trivial K-isotropy.

In Theorem 3.5 we prove that (1.2) is a solution of Eqs. (1.1) if and only if u(t) is a solution of
the reduced system

u̇ = −
1
m

u×∇uh(K,F)(u),

h(K,F)(u) = −
m
4

m

∑
j=2

ln ∣u−g ju∣
2
−

m
2

N

∑
j=m+1

ln ∣u− f j∣
2
.

(1.3)

We call (1.3) the reduced system since it is obtained by the discrete reduction (see e.g. Marsden
[30]) of Eqs. (1.1) by an appropriate twisted subgroup K̂ < SN ×SO(3) which is isomorphic to K.
The smooth function h(K,F) ∶ S2 ∖F[K]→ R is the reduced Hamiltonian. In Theorem 3.5 we also
specify the symmetries of the reduced system in terms of the normaliser group N(K) of K in SO(3)
and the invariance properties of F . Furthermore, we show that the centre of vorticity of every (K,F)-
symmetric solution vanishes.

After proving Theorem 3.5, we systematically analyse the properties of the reduced system (1.3)
and determine the implications about the corresponding (K,F)-symmetric solutions of (1.1). We first
work with general K and F . The reduced system (1.3) is a smooth, 1-degree of freedom, integrable
Hamiltonian system on S2 ∖F[K]. We show that points in F[K] are in one-to-one correspondence
with (K,F)-symmetric collisions of Eqs. (1.1) and we propose a smooth regularisation of the reduced
system to all of S2. This is done in terms of the regularised Hamiltonian h̃(K,F) that is the smooth
function on S2 given by

h̃(K,F)(u) = exp(−2h(K,F)(u)).

The resulting regularised system is a 1-degree of freedom, integrable Hamiltonian system on the
compact manifold S2 whose dynamics consists of equilibrium points, periodic solutions and hetero-
clinic/homoclinic orbits. In particular, we conclude that all regular level sets of h̃(K,F) (and hence
also of h(K,F)) are periodic solutions. This allows us to prove the existence of 1-parameter families
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of periodic solutions near the extrema of h(K,F) and the (K,F)-symmetric collisions of Eqs. (1.1)
(Corollary 3.17).

We then proceed to analyse the reduced system (1.3) in detail for specific choices of K and F .
Our choices include all possibilities for which the corresponding (K,F)-symmetric solutions contain
the platonic solids as equilibria. In Theorems 4.1 and 5.1 we classify all the equilibria and collisions
for K =Dn for the cases in which the set F is, respectively, empty and consists of the north and south
poles. The corresponding (K,F)-symmetric equilibria and collisions of Eqs. (1.1) are respectively
illustrated in Figures 4.1 and 5.1. The equilibria are equatorial polygons, prisms and anti-prisms (with
and without a pair of perpendicular antipodal vortices) for which we give the explicit dimensions for
arbitrary even N. The collisions are polygonal (a binary collision occurring at each vertex) and a polar
collision in which half of the vortices occupy the north and south poles. Using this classification, and
applying our theoretical framework, we establish the existence of the 1-parameter families of periodic
orbits emanating from the stable equilibria of the reduced system and the collisions (Corollaries 4.2
and 5.2). These periodic solutions are respectively illustrated in Figures 4.2 and 5.2. For particular
values of n, the periodic solutions emanating from the stable equilibria of the reduced system prove
the existence of the following 1-parameter families of periodic solutions of (1.1) near the platonic
solid equilibria:

(i) a D2-symmetric family of 4 vortices emanating from the tetrahedron;

(ii) a D2-symmetric family of 6 vortices emanating from the octahedron in which two antipodal
vortices remain fixed;

(iii) a D3-symmetric family of 6 vortices emanating from the octahedron;

(iv) a D3-symmetric family of 8 vortices emanating from the cube in which two antipodal vortices
remain fixed;

(v) a D5-symmetric family of 12 vortices emanating from the icosahedron in which two antipodal
vortices remain fixed.

Next we consider the case K = T. Theorems 6.1 and 7.1 respectively classify the equilibria and
collisions of the reduced system for F empty and F consisting of two antipodal tetrahedra that make
up a cube. These equilibria and collisions are respectively illustrated in Figures 6.1 and 7.1. Our
theoretical framework applied to this classification proves the existence of the 1-parameter families of
periodic solutions described in Corollaries 6.4 and 7.3 and respectively illustrated in Figures 6.2 and
7.2. In particular we determine the existence of:

(vi) a T-symmetric family of periodic solutions of 12 vortices emanating from the icosahedron;

(vii) a T-symmetric family of periodic solutions of 20 vortices emanating from the dodecahedron in
which eight vortices remain fixed at the vertices of a cube.

We also present the phase portrait of the reduced system (1.3) obtained numerically for all choices of
K and F described above that have a platonic solid as a (K,F)-symmetric equilibria. These are given
in Figures 4.3, 5.3, 6.3 and 7.3.
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Future work

A natural continuation of this work is to apply the theoretical framework of Section 3 to different
choices of the group K and the K-invariant set F ⊂ F[K]. The cases treated in Sections 4 through 7
are only a few possibilities that we chose to work with because they allowed us to prove the existence
of nonlinear small oscillations around the platonic solids. It turns out that for the subgroups K =

Dn,T,O,I, the setF[K] is finite and has been classified in [28, Table 1]. Based upon this classification
one concludes that for each dihedral group Dn and for the tetrahedral group T there are 6 distinct
choices of F , whereas for O and icosahedral group I there are 8 such possibilities. Some interesting
cases are:

(i) 24 vortices with octahedral symmetry O (this case contains a truncated octahedron as equilib-
rium).

(ii) 60 vortices with icosahedral symmetry I (this case contains a truncated icosahedron or Fullerene
as equilibrium).

It is also of interest to investigate the persistence of the periodic, equilibrium and heteroclinic/homoclinic
solutions that we found, and of the invariant sets M(Ko,Fo), under perturbations. Such perturbations will
in general destroy the SN ×SO(3) equivariance of the system and the fate of these objects is unclear.
Possible sources of this perturbation may be:

(i) a variation of the strength of some of the vortices. The “twisters” of Soulière & Tokieda [41]
are an indication that persistence may indeed be expected in some cases.

(ii) a variation of the underlying Riemannian metric on S2 as considered by Boatto & Koiller [6]. It
was recently found by Wang [46] that the system has infinitely many periodic orbits.

Another interesting extension of this work is to generalise Theorem 3.5 considering larger values
of N such that the reduced system is no longer integrable for a subgroup K < SO(3). For instance, one
could look for (K,F)-symmetric solutions generated by two vortices replacing the ansatz (1.2) with

(v1(t), . . . ,vN(t)) = (u(t),g2u(t), . . . ,gmu(t),w(t),g2w(t), . . . ,gmw(t), f2m+1, . . . , fN),

where, as usual, Ko = {g1 = e,g2, . . .gm} and Fo = { f2m+1, . . . , fN} are orderings of K and F . The
corresponding reduced system for (u(t),w(t)) is a 2-degree of freedom Hamiltonian system on (an
open dense set of) S2×S2. Although we expect the reduced dynamics to be non-integrable, one may
apply the Lyapunov Centre Theorem or KAM techniques to prove the existence of periodic and quasi-
periodic solutions of the system. We plan to pursue this research direction in a future publication.
Some interesting cases of the above setup which contain platonic solids as equilibria are:

(i) 12 vortices with symmetry K =D3 (the icosahedron is an equilibrium).

(ii) 20 vortices with symmetry K =D5 (the dodecahedron is an equilibrium).

One could also apply the techniques followed by Garcı́a-Azpeitia [15] to prove the existence
of relative periodic solutions near the SO(3)-orbit of a platonic solid. In such approach one looks
for periodic solutions in a rotating frame of reference and performs a stereographic projection. The
solutions in question then correspond to critical points of an SO(2)×S1 equivariant gradient map on
R2N , where the SO(2) action is linear. Given that SO(2) is abelian, one may apply the equivariant
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degree theory of Ize & Vignoli [19] to prove the existence of a global family of such periodic solutions
in the rotating frame which are the sought relative periodic solutions of the system. Alternatively, the
local existence of the family of relative periodic solutions may be established using equivariant Conley
index as in [42] or Poincaré maps as in [37]. It is important to notice that these solutions have a non-
vanishing centre of vorticity and, therefore, in contrast to the solutions found in this paper, do not
remain close to a platonic solid configuration but only to its SO(3)-orbit. Finally, we mention that
the approach of introducing a rotating frame of reference is of interest because the resulting equations
coincide with those describing the motion of N-vortices on a rotating sphere which is a problem with a
natural physical relevance. Existence of relative equilibria and quasi-periodic solutions for this system
has been respectively considered by Laurent-Polz [26] and Newton & Shokraneh [39].

Structure of the paper

We begin by introducing some preliminary material in Section 2. All of this material is known ex-
cept perhaps for Proposition 2.1 that states that, under our hypothesis that all vortices have equal
strength, the system cannot evolve into collision. Our theoretical framework for the analysis of
(K,F)-symmetric solutions is developed in Section 3. We begin by giving some basic definitions
in Subsection 3.1 and then formulate and prove our main Theorem 3.5 on the reduction of the dy-
namics in Subsection 3.2. The regularisation of the collisions is treated in Subsection 3.3 and the
qualitative properties of (K,F)-symmetric solutions is described in Subsection 3.4. In Sections 4
through 7 we apply the results of Section 3 to analyse (K,F)-symmetric solutions for specific choices
of K and F as described above. Section 4 deals with K = Dn and F = ∅. Section 5 with K = Dn and
F consisting of the north and south poles. In Section 6 we take K = T and F =∅ and in Section 7 we
consider K =T and F consisting of two antipodal tetrahedra that make up a cube.

2 Preliminaries: the equations of motion and their symmetries

Let M = S2 × ⋅ ⋅ ⋅ ×S2, the product of N copies of the unit sphere S2 on R3. The motion of N vortices
on the sphere is described by the Hamiltonian system on M where the Hamilton function H and
symplectic form Ω are given by

H(v) = −
ΓiΓ j

4π
∑
i< j

ln(∣v j −vi∣
2
) , Ω =

N

∑
i=1

Γ jπ
∗
i ωS2 .

Here v = (v1, . . . ,vN) ∈ M and v j is the position of the jth vortex whose vorticity is assumed to be Γ j,
and πi is the Cartesian projection on to the ith factor with ωS2 denoting the usual area form on S2.

In this work we assume that all vortices have the same vorticity. After suitable re-scalings, the
system is described by the Hamiltonian system on M with

H(v) = −
1
2
∑
i< j

ln(∣v j −vi∣
2
) , Ω =

N

∑
i=1

π
∗
i ωS2 . (2.1)

The corresponding equations of motion take the form

v̇ j = −v j ×∇v j H(v) =
N

∑
i=1(i≠ j)

vi×v j

∣v j −vi∣
2 , j = 1, . . . ,N, (2.2)
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where here, and throughout ‘×’ denotes the vector product in R3. One may check that the above
equations indeed define a vector field X on M as follows: consider them as a system on (R3)N and
notice that ∣v j∣

2 is a first integral for j = 1, . . . ,N. Then the equations may be restricted to the level set
M where all these integrals take the value 1. The vector field X satisfies Ω(X , ⋅) = dH.

Collisions Both H and the equations of motion are undefined at the collision set ∆ ⊂ M where at
least two vortices occupy the same position, i.e.

∆ = {(v1, . . . ,vn) ∈M ∶ vi = v j for some i ≠ j}.

It is usual to remove these points from the phase space to work with smooth objects. In our approach
we will often find it convenient not to do this (in fact we work with a regularisation of the equations
of motion ahead). In any case, it is convenient to have in mind that any collision-free configuration
v ∈M∖∆ cannot evolve into a collision as we show in the following proposition.

Proposition 2.1. The flow of (2.2) on M∖∆ is complete. Namely, if v0 ∈ M∖∆ and t ↦ v(t) denotes
the solution of (2.2) with initial condition v0, then v(t) is defined for all time t. (In particular v(t) ∉ ∆

for all t ∈R.)

Proof. Since the sphere S2 is a bounded set, for any i, j we have ∣vi−v j∣≤ 2 , so − ln ∣vi−v j∣
2 is bounded

from below. As a consequence, if {v(k)}k∈N is a sequence in M ∖∆ with v(k) → ∆ as k →∞, then
necessarily H(v(k))→∞. Considering that H(v(t)) = H(v0) <∞ we conclude that v(t) stays away
from ∆ at all time at which it is defined. However, since M∖∆ is a bounded set, standard theorems
on extensibility of of solutions of differential equations imply that v(t) can only cease to exist if it
approaches the boundary of M∖∆. But this boundary is precisely ∆. Therefore v(t) is defined for all
time t ∈R.

Remark 2.2. Note that if the vortex strengths are not identical and have different signs, collisions may
indeed occur in finite time [21, 22]. On the other hand, the above property of the N vortex problem on
the sphere is a fundamental difference with the N-body problem on the sphere [10] where collisions
may indeed take place. This is due to dependence of the Hamiltonian on the velocities in the latter
problem. When going to collision, the kinetic energy approaches infinity and the potential energy
approaches minus infinity while their sum remains constant.

2.1 Symmetries

Rotational symmetries. The group SO(3) acts diagonally on M = S2× ⋅ ⋅ ⋅×S2 and is easy to check
that the action is symplectic and the Hamiltonian H is invariant. As a consequence, the equations of
motion (2.1) are SO(3)-equivariant. Moreover, Noether’s theorem applies and we have a conservation
law: the quantity

J ∶M→R3, J(v1, . . . ,vN) =
N

∑
i=1

vi,

is constant along the motion. This statement may be verified directly from the equations of motion
(2.2). In geometric terms, J is the momentum map of the SO(3) action on M, with the usual iden-
tification of so(3)∗ with R3. We will refer to J(v) as the centre of vorticity of the configuration
v = (v1, . . . ,vN).
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Vortex relabelling symmetry. Since all the vortices have the same strength, the system is also
invariant under relabelling of the vortices. This may be represented by the action of the permutation
group SN on M,

σ ∶ (v1, . . . ,vN)↦ (vσ−1(1), . . . ,vσ−1(N)), for σ ∈ SN .

One may check that this action is symplectic, that the Hamiltonian H is invariant and the equations of
motion (2.1) are SN-equivariant.

Remark 2.3. In our convention, the product of two permutations σ1,σ2 ∈ SN is σ1σ2 ∶= σ1 ○σ2. The
action above is defined with σ

−1 in order to have a left action with respect to this product. Other
papers on the subject (e.g. [15] and references therein) consider instead the action σ ∶ (v1, . . . ,vN)↦

(vσ(1), . . . ,vσ(N)) which is a left action only if the product on SN is defined according to the opposite
convention, σ1σ2 ∶= σ2 ○σ1.

Full symmetries. The two symmetries described above may be combined into a symplectic action
of the direct product group Ĝ ∶= SN ×SO(3) on M. Throughout the paper this action will be denoted
by a centre dot ‘⋅’ as follows:

(σ ,g) ⋅(v1, . . . ,vN) = (gvσ−1(1), . . . ,gvσ−1(N)), (σ ,g) ∈ Ĝ, (v1, . . . ,vN) ∈M.

Apart from the simplecticity of this action, the Hamiltonian H is invariant and the equations of motion
(2.2) are Ĝ-equivariant. A key feature of this action is that it is not free and this will allow us to extract
valuable information about the dynamics of (2.2).

Twisted subgroups. Suppose that K < SO(3) is a discrete subgroup and τ ∶ K → SN is a group
morphism. Then

K̂τ ∶= {(τ(g),g) ∶ g ∈K} (2.3)

is a discrete subgroup of Ĝ = SN ×SO(3) which is often called a twisted subgroup. In this work a
special role is played by the twisted subgroups of Ĝ corresponding to one-to-one group morphisms τ .

3 Symmetric solutions of the N-vortex problem on the sphere

3.1 Symmetric configurations: definitions

Let K < SO(3) be any subgroup. Then K acts on S2 as usual. The set of points in S2 having non-trivial
K-isotropy will be denoted as

F[K] = {u ∈ S2
∶Ku ≠ {e}} .

Here, and in what follows, e denotes the identity element in K and Ku is the isotropy group of u ∈ S2,
namely, Ku = {g ∈K ∶ gu = u}.

Remark 3.1. For the (finite) subgroups K = Zn,Dn,T,O,I the set F[K] is finite. Actually, the sets
F[K] are completely classified in Table 1 and the appendix of [28] (that also gives a brief description
of these groups).

The following definitions are essential in our work.
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Definition 3.2. Let K < SO(3) be a discrete subgroup of order m ≤ N and F ⊂F[K] be a K-invariant
subset of order N −m. Let Ko = (g1 = e,g2, . . . ,gm) be an ordering of K and Fo = ( fm+1, ..., fN) an
ordering of F . We define M(Ko,Fo) ⊂M as the set of configurations (v1, . . . ,vN) ∈M that satisfy

v j = g jv1, j = 1, . . . ,m,

v j = f j, j =m+1, . . . ,N.

Definition 3.3. Let K and F be as in Definition 3.2, we will say that a configuration v ∈ M is (K,F)-
symmetric if v ∈ M(Ko,Fo) for certain orderings Ko and Fo. If F is empty and m = N we will simply say
that the corresponding configuration is K-symmetric.

Remark 3.4. The above definitions require that the first m entries of a (K,F)-symmetric configuration
to be described in terms of the elements of K and the remaining N −m in terms of the elements of F .
This constraint in the ordering is artificial and could be removed in view of the relabelling symmetry,
but we keep it for clarity of the presentation. The same observation holds for our requirement that
g1 = e.

For the rest of the section, the symbol K will always denote one of the groups Dn,T,O,I < SO(3),
and the symbol F will always denote a K-invariant subset of F[K]. Moreover, we will continue to
denote m = ∣K∣ > 0 and N −m = ∣F ∣ ≥ 0.

3.2 Reduction of the dynamics of symmetric configurations

Suppose that v = (v1, . . . ,vN) is a (K,F)-symmetric configuration so that v ∈M(Ko,Fo) for certain order-
ings Ko = (g1 = e, . . . ,gm) of K and Fo = ( fm+1, . . . , fN) of F . Let

ρ(Ko,Fo) ∶ S
2
→M, ρ(Ko,Fo)(u) = (u,g2u, . . . ,gmu, fm+1, . . . , fN). (3.1)

In this section we will prove that the solution of equations (2.2) with initial condition v is given by
t ↦ ρ(Ko,Fo)(u(t)), where u(t) is the solution to the reduced system on S2,

u̇ = −
1
m

u×∇uh(K,F)(u), (3.2)

with initial condition u(0) = v1. Here, h(K,F) ∶ S2 →R is the reduced Hamiltonian, that is defined in
terms of the Hamiltonian (2.1) by

h(K,F)(u) ∶=H(ρ(Ko,Fo)(u)). (3.3)

In particular, this shows that the evolution of a (K,F)-symmetric configuration remains a (K,F)-
symmetric configuration at all time, and, therefore, we may speak of (K,F)-symmetric solutions.
Note that along these solutions, the vortices located at fm+1, . . . , fN remain fixed.

We will also show that the reduced system (3.2) possesses a symmetry, and we will describe it in
detail. Note that, in virtue of the invariance of H under the relabelling of the vortices, the reduced
Hamiltonian h(K,F) is well defined independently of the specific orderings Ko and Fo of K and F , and
this is reflected in our notation.

The properties described above follow from the first three items of the following theorem whose
proof relies on the concept of discrete reduction (see e.g. [30]). Applications of discrete reduction to
the study of the N-vortex problem on the sphere already appear in [28].
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Theorem 3.5. Let K be any of the groups Dn,T,O,I and let F ⊂F[K] be a K-invariant set. Suppose
that ∣K∣ =m ≤N and ∣F ∣ =N −m ≥ 0. Let Ko = (g1 = e,g2, . . . ,gm) and Fo = ( fm+1, . . . , fN) be orderings
of K and F. The following statements hold.

(i) The set M(Ko,Fo) is an embedded submanifold of M, diffeomorphic to S2, and invariant under
the flow of the equations of motion (2.2).

(ii) The restriction of the flow of (2.2) to M(Ko,Fo) is conjugated by ρ(Ko,Fo) to the flow of the inte-
grable Hamiltonian system on (S2,mωS2), with (reduced) Hamiltonian h(K,F) ∶ S2 →R defined
by (3.3). That is, t → u(t) is a solution of (3.2) if and only if t ↦ ρ(Ko,Fo)(u(t)) is a solution of
(2.2).

(iii) Let N(K) be the normaliser of K in SO(3) and suppose that the subgroup K1 < SO(3) satisfies
K ≤K1 ≤N(K). If F is invariant with respect to the K1-action on S2, then the reduced Hamilto-
nian h(K,F) is K1-invariant and the reduced system (3.2) is K1-equivariant. In particular, these
conclusions always hold for K1 =N(K) if F =∅ and for K1 =K for general F.

(iv) Up to the addition of a constant term, the reduced Hamiltonian h(K,F) ∶ S2→R satisfies

h(K,F)(u) = −
m
4

m

∑
j=2

ln ∣u−g ju∣
2
−

m
2

N

∑
j=m+1

ln ∣u− f j∣
2
. (3.4)

(v) The centre of vorticity of elements in M(Ko,Fo) is 0 ∈R3, i.e. M(Ko,Fo) ⊂ J−1(0).

Remark 3.6. In trying to understand which are the symmetries of the reduced system (3.2) it will be
useful to keep in mind the following relations between the groups Dn,T,O and I, and their normalisers
in SO(3):

K D2 Dn, n ≥ 3 T O I
N(K) O D2n O O I (3.5)

Remark 3.7. To be precise, at this point of the paper, all statements about the flow of (2.2) in items
(i)-(v) of the theorem only make sense away from collisions. In fact, the reduced system (3.2) is
only defined at those points of S2 at which h(K,F) is smooth. In Section 3.3 ahead will show that the
reduced system is well defined away from (finitely many) points in F[K] which are in one-to-one
correspondence with the collision configurations within M(Ko,Fo). Moreover, we will introduce a regu-
larisation that extends the reduced system (3.2) to all of S2, the flow of (2.2) to all of M(Ko,Fo), and the
conclusions of the theorem are valid for this regularisation without any restriction. We have decided
to oversee this detail in the statement of the theorem and in its proof to simplify the presentation.

The proof of the theorem that we present relies on the following three lemmas whose proof is
postponed until the end of the section.

Lemma 3.8. Let K, F, Ko and Fo be as in the statement of Theorem 3.5. There exists a one-to-one
group morphism τ ∶K→ SN such that M(Ko,Fo) is a connected component of Fix(K̂τ) ⊂M where K̂τ < Ĝ
is the twisted subgroup (2.3), and where

Fix(K̂τ) ∶= {v ∈M ∶ ĝ ⋅v = v for all ĝ ∈ K̂τ}.

Lemma 3.9. Let K, F, Ko and Fo be as in the statement of Theorem 3.5, then ρ
∗
(Ko,Fo)

Ω =mωS2 .
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Lemma 3.10. For the groups K =Dn,T,O,I < SO(3), we have ∑g∈K g = 0.

Proof of Theorem 3.5. (i) The set M(Ko,Fo) is clearly an embedded submanifold of M isomorphic to S2

with the embedding given by (3.1). Indeed, we have M(Ko,Fo) =ρ(Ko,Fo)(S2). The invariance of M(Ko,Fo)

under the flow of (2.2) is immediate in virtue of Lemma 3.8: since the system (2.2) is Ĝ-equivariant
then Fix(K̂τ) is invariant by its flow and so are each of its connected components.

(ii) First note that for ϕ ∶ S2 → R, the associated Hamiltonian vector field Xϕ on S2, determined
by ωS2(Xϕ , ⋅) = dϕ , defines the equations of motion u̇ = −u×∇uϕ(u). If the symplectic form ωS2 is
scaled by a factor of m, then the corresponding Hamiltonian vector field Xϕ inherits a rescaling by
1/m which leads to an appearance of this factor on the right hand side of the equations of motion.
This shows that the Hamiltonian system on (S2,mωS2) with Hamiltonian h(K,F) defines the equations
(3.2), as required. Moreover, this system is trivially integrable in the Arnold-Liouville sense since S2

has dimension 2 and h(K,F) is a first integral.
Next, since Ĝ acts symplectically on (M,Ω) and H is Ĝ-invariant, it is known (e.g. [30]) that

Fix(K̂τ) is a symplectic submanifold of M and that the restriction of the flow of X to Fix(K̂τ) is
Hamiltonian with respect to the restricted Hamiltonian and symplectic form. The same is true about
each of its connected components. In particular, in view of Lemma 3.8, this implies that M(Ko,Fo) is
a symplectic manifold equipped with the restriction Ω0 ∶= Ω∣M(Ko ,Fo)

of the symplectic form Ω, and
that the restriction of the flow of (2.2) to M(Ko,Fo) is Hamiltonian with respect to Ω0 and the Hamilton
function H0 ∶= H ∣M(Ko ,Fo)

.
The key point of the proof is to observe that ρ(Ko,Fo) defined by (3.1) is in fact a symplecto-

morphism between (S2,mωS2) and (M(Ko,Fo),Ω0). This is an immediate consequence of Lemma 3.9
together with the observation that M(Ko,Fo) = ρ(Ko,Fo)(S2). As any symplectomorphism, ρ(Ko,Fo) takes
Hamiltonian vector fields into Hamiltonian vector fields (see e.g. [31]). Considering that the reduced
Hamiltonian (3.3) and the restricted Hamiltonian H0 are related by h(K,F) = H0 ○ρ(Ko,Fo) = ρ

∗
(Ko,Fo)

H0,
it follows that ρ(Ko,Fo) pulls back the vector field on M(Ko,Fo) defined by the restriction of (2.2) onto
the vector field on S2 defined by (3.2). In particular, ρ(Ko,Fo) maps solutions of (3.2) into solutions
of (2.2) that are contained in M(Ko,Fo). This correspondence between solutions is one-to-one since
ρ(Ko,Fo) ∶ S

2→M(Ko,Fo) is invertible.
(iv) By definition of h(K,F) we have

h(K,F)(u) = −
1
2
∑

1≤i< j≤m
ln ∣giu−g ju∣

2
−

1
2

N

∑
j=m+1

m

∑
i=1

ln ∣giu− f j∣
2
−

1
2

∑
m+1≤i< j≤N

ln ∣ fi− f j∣
2
. (3.6)

Now, on the one hand we have

∑
1≤i< j≤m

ln ∣giu−g ju∣
2
=

1
2

m

∑
i, j=1
i≠ j

ln ∣giu−g ju∣
2
=

1
2

m

∑
i, j=1
i≠ j

ln ∣u−g−1
i g ju∣

2
=

m
2

m

∑
j=2

ln ∣u−g ju∣
2
. (3.7)

On the other hand, fix f ∈ F and let I ⊂ {m+ 1, . . . ,N} be such that the K-orbit of f satisfies K f =
{ fi ∶ i ∈ I}. For each i ∈ I let hi ∈ K such that hi f = fi. Since the orbit K f is isomorphic to K/K f we
have K f = {hi f ∶ i ∈ I} and K = ∪i∈IhiK f . Thus

m

∑
i=1

ln ∣giu− f ∣2 =∑
g∈K

ln ∣u−g f ∣2 =∑
i∈I
∑

h∈K f

ln ∣u−hih f ∣2 = ∣K f ∣∑
i∈I

ln ∣u− fi∣
2 .
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Considering that the above formula holds when setting f = f j for all j ∈ I, and that ∣K f j ∣ = m/∣I∣ is
constant for j ∈ I, we have

∑
j∈I

m

∑
i=1

ln ∣giu− f j∣
2
= ∣I∣

m
∣I∣
∑
i∈I

ln ∣u− fi∣
2
=m∑

j∈I
ln ∣u− f j∣

2
.

Therefore, breaking up the set of indices {m+1, . . . ,N} into the disjoint subsets Ik, each containing
the indices of a K orbit of F , we have

N

∑
j=m+1

m

∑
i=1

ln ∣giu− f j∣
2
=∑

k
∑
j∈Ik

m

∑
i=1

ln ∣giu− f j∣
2
=m∑

k
∑
j∈Ik

ln ∣u− f j∣
2
=m

N

∑
j=m+1

ln ∣u− f j∣
2
. (3.8)

Substituting (3.7) and (3.8) into (3.6) yields (3.4) since the third sum in (3.6) is a constant independent
of u.

(iii) Let g ∈K1. Starting from (3.4) and using the SO(3)-invariance of the euclidean norm we have

h(K,F)(gu) = −
m
4

m

∑
j=2

ln ∣u−g−1g jgu∣
2
−

m
2

N

∑
j=m+1

ln ∣u−g−1 f j∣
2
.

Now, for any g ∈ K1 ≤ N(K) the map k ∈ K ↦ g−1kg ∈ K is bijective, and hence (g′1 = e,g′2, . . . ,g
′
m)

with g′j = g−1g jg is a new ordering of K. Moreover, since, by hypothesis, F is K1-invariant, then
( f ′m+1, . . . , f ′N) with f ′j = g−1 f j is a new ordering of F . Therefore h(K,F)(gu) = h(K,F)(u) showing that
h(K,F) is indeed K1-invariant. Since the K1 action on (S2,mωS2) is symplectic, it follows that the flow
of the reduced system (3.2) is K1-equivariant.

(v) In view of Lemma 3.10, if v = (v1, . . .vN) ∈M(Ko,Fo), we have

J(v) =
N

∑
j=1

v j =
m

∑
j=1

g jv1+
N

∑
j=m+1

f j =
⎛

⎝
∑
g∈K

g
⎞

⎠
v1+

N

∑
j=m+1

f j =
N

∑
j=m+1

f j.

To show that the remaining sum on the right also vanishes, we rely on the K-invariance of F . Pro-
ceeding as in the proof of item (iv) above, fix fk ∈F and let Ik ⊂ {m+1, . . . ,N} be such that the K-orbit
of fk satisfies K fk = { f j ∶ j ∈ Ik}. For each j ∈ Ik let h j ∈ K such that h j fk = f j. Since the orbit K fk is
isomorphic to K/K fk we have K fk = {h j fk ∶ j ∈ Ik} and K = ∪ j∈Ik h jK fk . Thus

0 =
⎛

⎝
∑
g∈K

g
⎞

⎠
fk =∑

j∈Ik

∑
h∈K fk

h jh fk = ∣K fk ∣∑
j∈Ik

h j fk = ∣K fk ∣ ∑
f ∈K fk

f .

This shows that the sum of the elements of the orbit of fk is zero. Since F is K-invariant, then
∑

N
j=m+1 f j is the sum of elements in disjoint orbits, each of which vanishes. Therefore, ∑N

j=m+1 f j = 0
and v ∈ J−1(0).

We finish this section with the proofs of Lemmas 3.8, 3.9 and 3.10.

Proof of Lemma 3.8. Let Ψ and Λ denote the index mappings associated to the given orderings Ko =

(g1 = e,g2, . . . ,gm) and Fo = ( fm+1, . . . , fN) of K and F :

Ψ ∶K → {1, . . . ,m}, gi↦ i,

Λ ∶ F → {m+1, . . . ,N}, f j ↦ j.
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Then Ψ and Λ are well defined bijections that satisfy gΨ(g̃) = g̃, f
Λ( f̃ ) = f̃ for any g̃ ∈K and f̃ ∈ F .

We define τ ∶K → SN by

τ(gi)( j) =
⎧⎪⎪
⎨
⎪⎪⎩

Ψ(gig j) if j ∈ {1, . . . ,m},

Λ(gi f j) if j ∈ {m+1, . . . ,N}.

It is a simple exercise to show that τ as defined above is indeed a one-to-one group morphism with
respect to our product convention in SN (see Remark 2.3).

We now show that M(Ko,Fo) ⊂ Fix(K̂τ). Let (g1v1, . . . ,gmv1, fm+1, . . . , fN) ∈ M(Ko,Fo) and for i ∈
{1, . . . ,m} denote wi = giv1. Using the definition of the action of K̂τ on M, we have, for any j ∈
{1, . . . ,m}, that

(τ(g j),g j)⋅(g1v1, . . . ,gmv1, fm+1, . . . , fN) =

(g jwτ(g−1
j )(1)

, . . . ,g jwτ(g−1
j )(m)

,g j f
τ(g−1

j )(m+1), . . . ,g j f
τ(g−1

j )(N)
).

However, using the definition of τ , we find

g jwτ(g−1
j )(i)

= g jwΨ(g−1
j gi)

= g jgΨ(g−1
j gi)

v1 = g jg−1
j giv1 = giv1, i = 1, . . . ,m,

and
g j f

τ(g−1
j )(k)

= g j f
Λ(g−1

j fk)
= g jg−1

j fk = fk, k =m+1, . . . ,N,

which shows that

(τ(g j),g j) ⋅(g1v1, . . . ,gmv1, fm+1, . . . , fN) = (g1v1, . . . ,gmv1, fm+1, . . . , fN),

and indeed M(Ko,Fo) ⊂ Fix(K̂τ).
Now let v = (v1, . . . ,vN) ∈ Fix(K̂τ). The condition that (τ(g j),g j) ⋅v = v in particular implies that

v j = g jvτ(g−1
j )( j) = g jvΨ(g−1

j g j)
= g jvΨ(e) = g jv1, j = 1, . . . ,m,

where the last identity uses that g1 = e in the ordering Ko. Thus vi = giv1 for all i ∈ {1, . . . ,m}. Below we
show that for any g ∈K and i, j ∈ {m+1, . . .N} we have f j = g fi if and only if v j = gvi. This implies that
{vm+1, . . . ,vN} is a K-invariant subset of S2 and, moreover, that the K-isotropy of f j coincides with the
K-isotropy of v j. Thus {vm+1, . . . ,vN} is a K-invariant subset of F[K]. In particular, considering that
F[K] is finite (Remark 3.1), we conclude that there are finitely many possibilities for the last N −m
entries of of v ∈ Fix(K̂τ). It is not hard to see that each of these possibilities for {vm+1, . . . ,vN} defines
a connected component of Fix(K̂τ). In particular, we conclude that M(Ko,Fo) is indeed a connected
component of Fix(K̂τ) as required.

Let i, j ∈ {m+1, . . .N}. We now show that indeed, for any g ∈ K we have f j = g fi if and only if
v j = gvi. Suppose first that f j = g fi. Using that (τ(g),g) ⋅v = v and the definition of τ , we find

v j = gvτ(g−1)( j) = gvΛ(g−1 f j)
= gvΛ( fi) = gvi.

Conversely, suppose that v j = gvi. Using again that (τ(g),g) ⋅v = v we get

v j = gvτ(g−1)( j),

and we conclude that vi = vτ(g−1)( j). Hence τ(g−1)( j) = i which, in view of the definition of τ , implies
that f j = g fi.
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Remark 3.11. The above proof, together with the observation that M(Ko,Fo) is diffeomorphic to S2,
shows that, in fact, each of the finitely many connected components of Fix(K̂τ) is diffeomorphic to
S2.

Proof of Lemma 3.9. Let v = (v1, . . . ,vN) ∈ M. The tangent space TvM is given by TvM = Tv1S2× ....×
TvN S2. If α = (a1, . . . ,aN) and β = (b1, . . . ,bN) ∈ TvM, then, by the definition of Ω in (2.1), we have
Ω(v)(α,β) =∑

N
j=1 ωS2(v j)(a j,b j). Now, let u ∈ S2 and a,b ∈ TuS2. It is not difficult to compute

Tuρ(Ko,Fo)(a) = (a,g2a, . . . ,gma,0, . . .0), Tuρ(Ko,Fo)(b) = (b,g2b, . . . ,gmb,0, . . .0).

Therefore,

Ω(ρ(Ko,Fo)(u))(Tuρ(Ko,Fo)(a),Tuρ(Ko,Fo)(b)) =
m

∑
j=1

ωS2(g ju)(g ja,g jb)+
N

∑
j=m+1

ωS2( f j)(0,0)

=mωS2(u)(a,b),

where the last identity uses ωS2(g ju)(g ja,g jb) = ωS2(u)(a,b), which follows from the fact that the
SO(3) action on S2 preserves the area form ωS2 . The above calculation shows that ρ

∗
(Ko,Fo)

Ω = mωS2

as required.

Proof of Lemma 3.10. For the subgroup K = Dn < SO(3), n ≥ 2, we consider the generator matrices
A = eJζ ⊕1 and B = 1⊕−1⊕−1, where J is the symplectic 2×2 matrix and ζ = 2π/n. Then we have

n

∑
j=1

A j
=

n

∑
j=1

(e jJζ
⊕1) = 0⊕0⊕n,

n

∑
j=1

BA j
=

n

∑
j=1

(e− jJζ
⊕−1) = 0⊕0⊕−n.

Thus ∑g∈Dn g = 0. The groups K = T,O,I contain D2 as a subgroup, and since K = h1D2∪ .....∪hLD2,
then

∑
g∈K

g =
L

∑
l=1
∑

g∈D2

hlg =
L

∑
l=1

hl
⎛

⎝
∑

g∈D2

g
⎞

⎠
= 0.

3.3 Regularisation of collisions of symmetric configurations

We now consider in more detail the collisions of (K,F)-symmetric configurations. We begin with the
following propositions that clarify the role of F[K].

Proposition 3.12. Let K, F, Ko and Fo be as in the statement of Theorem 3.5. The following statements
hold:

(i) There is a one-to-one correspondence between F[K] and the collision configurations within
M(Ko,Fo). In particular, M(Ko,Fo) contains finitely many collision points.

(ii) If u ∈F[K] then the point ρ(Ko,Fo)(u) is a (K,F)-symmetric collision configuration whose only
collisions occur at the points of the orbit Ku. Moreover, these are all k-tuple collisions where
k = ∣Ku∣ if u ∉ F and k = ∣Ku∣+1 if u ∈ F.

November 25, 2020



15

Proof. (i) We will prove that
M(Ko,Fo)∩∆ = ρ(Ko,Fo)(F[K]), (3.9)

where ρ(Ko,Fo) ∶ S
2 →M(Ko,Fo) is defined by (3.1). This completes the proof since, with this specified

range, ρ(Ko,Fo) is a bijection. Let u ∈F[K]. Then, by definition of F[K], there exists g j ≠ e such that
g ju = u. This implies that the first and jth entries of ρ(Ko,Fo)(u) coincide and hence ρ(Ko,Fo)(u) ∈ ∆.
Considering that ρ(Ko,Fo)(S2) = M(Ko,Fo), it follows that ρ(Ko,Fo)(F[K]) ⊂ M(Ko,Fo) ∩∆. Now let v =
(v1,g2v1, . . . ,gmv1, fm+1, . . . , fN) ∈M(Ko,Fo)∩∆. Then one of the two following possibilities necessarily
holds:

(a) giv1 = g jv1 for some i≠ j ∈ {1, . . . ,m}. In this case we have v1 = g−1
i g jv1 implying that v1 ∈F[K].

(b) giv1 = fk for some i ∈ {1, . . . ,m}, k ∈ {m+ 1, . . . ,N}. Then we may write v1 = g−1
i fk. Since

F ⊂F[K] is K-invariant, this implies that v1 ∈F[K].

Thus, in any case, if v ∈ M(Ko,Fo) ∩∆ we conclude that v1 ∈ F[K]. Considering that we may write
v = ρ(Ko,Fo)(v1) we conclude that v ∈ ρ(Ko,Fo)(F[K]) and hence M(Ko,Fo) ⊂ ∆ = ρ(Ko,Fo)(F[K]).

(ii) The first m entries of v = (u,g2u, . . . ,gmu, fm+1, . . . , fN) belong to the orbit Ku, so it is clear that
collisions can only occur at points in this orbit. Since Ku is isomorphic to K/Ku, it follows that there
are only m/∣Ku∣ distinct points among the first m entries of v, and that each of them is repeated exactly
∣Ku∣ times. Now, if u ∉ F then, since K is F-invariant, the last m+1 entries of v are distinct from the
first m entries of v and we indeed have ∣Ku∣-tuple collisions. On the other hand, if u ∈F , then, again by
K-invariance of F , each point in the orbit Ku appears exactly once within the list ( fm+1, . . . , fN) and
we have (∣Ku∣+1)-tuple collisions.

Proposition 3.13. The reduced Hamiltonian h(K,F) given by (3.3) and the reduced system (3.2) are
well-defined and smooth away from the finite setF[K]. Moreover, the reduced system (3.2) is complete
on S2∖F[K].

Proof. Equation (3.9) implies that away from F[K] we may write h(K,F) as a composition of smooth
maps: h(K,F) =H ○ρ(Ko,Fo). So h(K,F) is smooth on S2∖F[K], and, therefore, so is the reduced system
(3.2). The completeness of the reduced flow on S2∖F[K] follows from Proposition 2.1 and item (ii)
of Theorem 3.5.

In view of Proposition 3.13, the reduced system (3.2) is smooth away from the finite setF[K]. We
wish to define a regularisation that extends the reduced system (3.2) to the points in F[K] and yields
a complete flow on S2. Since, again by Proposition 3.13, the flow of (3.2) is complete on S2∖F[K],
then the points in F[K] have to be added as equilibrium points.

The regularisation that we propose is built with the regularised reduced Hamiltonian that is the
smooth function h̃(K,F) ∶ S2→R given by

h̃(K,F)(u) = exp(−2h(K,F)(u)) =
m

∏
j=2

∣u−g ju∣
m N

∏
j=m+1

∣u− f j∣
2m

. (3.10)

Finally, the regularised reduced system is the (smooth) Hamiltonian vector field on (S2,mωS2) with
Hamilton function h̃(K,F), i.e.,

u̇ = −
1
m

u×∇uh̃(K,F)(u). (3.11)

The relationship between the the reduced system (3.2) and its regularisation (3.11) is given next.
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Proposition 3.14. The following statements hold.

(i) The curve t↦ u(t) is a solution of the reduced system (3.2) if and only if t↦ u(at) is a solution of
the regularised reduced system (3.11) not contained inF[K], where a=−2exp(−2h(K,F)(u(0))).

(ii) The points in F[K] are stable equilibria of the regularised reduced system (3.11).

Proof. (i) For u ∈ S2∖F[K] one computes

∇uh̃(K,F)(u) = −2exp(−2h(K,F)(u))∇uh(K,F)(u).

A simple calculation that uses conservation of energy verifies the result. (ii) This follows from the
fact that 0 is the minimum value of h̃(K,F) and F[K] is the corresponding level set.

Based on the above proposition, the points in F[K] will be called collision equilibria of the
reduced system (3.2) and its regularisation (3.11). It is important to remember that these are always
stable. Other equilibrium points of these systems will be called non-collision equilibria.

Remark 3.15. To finish this section, we note that one may also define a regularisation of the unre-
duced system (2.2) by considering the Hamiltonian system on (M,Ω) with regularised Hamiltonian
H̃ ∶M→R defined by

H̃(v) ∶= exp(−2H(v)) =∏
i< j

∣vi−v j∣ ,

with v = (v1, . . . ,vN) ∈ M (recall that Ω is defined by (2.1)). This leads to the regularised equations of
motion on M

v̇ j = −v j ×∇v j H̃(v) = 2
N

∑
i=1(i≠ j)

vi×v j, j = 1, . . . ,N.

Since the regularised Hamiltonian H̃ is also Ĝ-invariant, a version of Theorem 3.5 about the (discrete)
reduction of the above system to the regularised reduced system (3.11) holds, and such result is valid
also at the collision configurations (compare with Remark 3.7).

3.4 Qualitative properties of (K,F)-symmetric solutions

We are now ready to state several facts about the qualitative properties of the reduced system (3.2).

Proposition 3.16. The following statements hold about the dynamics of the reduced system (3.2).

(i) The non-collision equilibrium points are in one-to-one correspondence with the critical points
of h(K,F) ∶ S2∖F[K]→R. Moreover, local maxima and minima are (Lyapunov) stable equilib-
rium points surrounded by a 1-parameter family of periodic orbits that may be parametrised by
their energy, and saddle points are unstable equilibrium points.

(ii) All regular level sets of the reduced Hamiltonian h(K,F) are periodic orbits.

(iii) There exists a 1-parameter family of periodic orbits, parametrised by their energy, around each
collision equilibrium point u0 ∈ F[K]. The energy of these periodic orbits approaches ∞ and
the period approaches 0 as the orbits approach u0.
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The above proposition exhausts the possibilities of motion of the reduced system except for the
possible existence of heteroclinic/homoclinic solutions emanating from the unstable non-collision
equilibrium points.

Proof. (i) Since the reduced Hamiltonian h(K,F) is a first integral, the result is standard for Hamilto-
nian systems on a symplectic manifold of dimension 2.

(ii) The regularised reduced system (3.11) is an integrable, 1-degree of freedom, Hamiltonian
system on the compact symplectic manifold S2. By the Arnold-Liouville Theorem, all regular level
sets of the regularised reduced Hamiltonian h̃(K,F) are periodic orbits. However, it is a simple exercise
to show that the regular level sets of h̃(K,F) are in one-to-one correspondence with the regular level
sets of h(K,F).

(iii) This follows from Proposition 3.14 and the fact that h(K,F)(uk)→∞ for any sequence {uk}k∈N
of points in S2∖F[K] that approaches F[K] as as k→∞.

Proposition 3.16 may be combined with Theorem 3.5 to prove the existence of several periodic
solutions of the system (2.2) describing the full dynamics of the N-vortex problem on the sphere.
The following corollary gives two particular instances. The first of these will be used in the sections
ahead to prove the existence of nonlinear oscillations in the vicinity of the platonic solid equilibrium
configurations.

Corollary 3.17. Let Ko and Fo be orderings of K and F.

(i) If u0 ∈ S2∖F[K] is a local maximum or minimum of the reduced Hamiltonian h(K,F) given by
(3.3), then v0 = ρ(Ko,Fo)(u0) is an equilibrium of (2.2), and there exists a 1-parameter family
of periodic solutions vh(t) of (2.2), emanating from v0, and parametrised by their energy h.
Moreover, these solutions are of the form vh(t) = ρ(Ko,Fo)(uh(t)), where uh(t) is the family
of periodic solutions of the reduced system (3.2) emanating from u0 described in item (i) of
Proposition 3.16.

(ii) If u0 ∈ F[K], then v0 = ρ(Ko,Fo)(u0) is a collision configuration (described in detail in Propo-
sition 3.12) and there exists a 1-parameter family of periodic solutions of (2.2), which may
be parametrised by their energy h, which approaches v0 as h→∞, and whose period tends
to zero in this limit. These solutions have the form vh(t) = ρ(Ko,Fo)(uh(t)), where uh(t) is the
1-parameter family of periodic solutions of (3.2) described in item (iii) of Proposition 3.16.

4 Dn-symmetric solutions of N = 2n vortices (with no fixed vortices)

We consider the dihedral subgroup K =Dn < SO(3), n ≥ 2, generated by the matrices

A =
⎛
⎜
⎝

cosζ −sinζ 0
sinζ cosζ 0

0 0 1

⎞
⎟
⎠

and B =
⎛
⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎟
⎠
, (4.1)

where here, and throughout, we denote ζ ∶= 2π/n. The set F[Dn] is given by

F[Dn] = {(cos(( j−1)
ζ

2
) ,sin(( j−1)

ζ

2
) ,0) ∶ j = 1, . . . ,2n}∪{(0,0,±1)} . (4.2)

November 25, 2020



18

4.1 Classification of Dn-symmetric equilibrium configurations of N = 2n vortices

We consider K = Dn and F = ∅ so N = 2n and analyse the reduced system (3.2) in detail. We start
by noting that, in view of item (iii) of Theorem 3.5 and Table (3.5), the system is O-equivariant if
n = 2 and D2n-equivariant for n ≥ 3. The following theorem gives the full classification of the collision
and non-collision equilibria of the reduced system (3.2) and describes their stability. It also indicates
the correspondence of these equilibria with the equilibrium configurations of the equations of motion
(2.2).

In the statement of the theorem, and for the rest of the paper, Tk and Uk respectively denote the
Chebyshev polynomials of the first and second kind of degree k. To simplify the presentation, the
proof is postponed to Section 4.3 that is devoted to it.

Theorem 4.1. Let K =Dn, F =∅, n ≥ 2 and N = 2n. The classification and stability of the equilibrium
points of the reduced system (3.2) is as follows.

(i) The only non-collision equilibria of (3.2) are:

(a) The anti-prism equilibrium configurations at the 4n points given by:

A±j ∶= (
√

1− z2
a cos((2 j−1)ζ /4) ,

√
1− z2

a sin((2 j−1)ζ /4) , ±za) , j = 1, . . . ,2n,

where za = za(n) ∈ (0,1) is uniquely determined by z2
a = 1−1/λ 2

a where λa = λa(n) is the
unique root greater than 1 of the polynomial

Pa(λ) ∶= (3n−1)T2n(λ)−nU2n(λ)+2n−1.

These are stable equilibria of (3.2) which correspond to equilibrium configurations of
(2.2) where the N = 2n vortices occupy the vertices of the S2-inscribed n-gon anti-prism of
height 2za (see Fig.4.1a).

(b) The prism equilibrium configurations at the 4n points given by:

P±j ∶= (
√

1− z2
p cos(( j−1)ζ /2) ,

√
1− z2

p sin(( j−1)ζ /2) , ±zp) , j = 1, . . . ,2n,

where zp = zp(n) ∈ (0,1) is uniquely determined by z2
p = 1−1/λ 2

p where λp = λp(n) is the
unique root greater than 1 of the polynomial

Pp(λ) ∶= (3n−1)T2n(λ)−nU2n(λ)−2n+1.

These are unstable equilibria (saddle points) of (3.2) which correspond to equilibrium
configurations of (2.2) where the N = 2n vortices occupy the vertices of the S2-inscribed
n-gon prism of height 2zp (see Fig.4.1b).

(c) The polygon equilibrium configurations at the 2n points given by:

Q j ∶= (cos((2 j−1)ζ /4) ,sin((2 j−1)ζ /4) ,0) , j = 1, . . . ,2n.

These are unstable equilibria (saddle points) of (3.2) which correspond to equilibrium
configurations of (2.2) where the N = 2n vortices occupy the vertices of a regular 2n-gon
at the equator (see Fig.4.1c).
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(ii) The only collision equilibria of (the regularisation of) (3.2) are:

(a) The polar collisions at the north and south poles (0,0,±1). These correspond to collision
configurations of (2.2) having two simultaneous n-tuple collisions at antipodal points (see
Fig.5.1d).

(b) The polygonal collisions at the 2n points given by:

C j ∶= (cos(( j−1)ζ /2) ,sin(( j−1)ζ /2) ,0) , j = 1, . . . ,2n.

These correspond to collision configurations of (2.2) having n simultaneous binary colli-
sions at a regular n-gon at the equator (see Fig.5.1e).

All collision configurations are stable equilibria of (the regularisation of) (3.2).

2za

(a) Anti-prism equilibrium.

2zp

(b) Prism equilibrium. (c) Polygon equilibrium.

(d) Polar collision (n-tuple collision at
antipodal points).

(e) Polygonal collision (binary collisions at
vertices of a regular n-gon).

Figure 4.1: Non-collision and collision equilibrium configurations described in Theorem 4.1 for n = 3
and N = 2n = 6.

In Tables (4.3) and (4.4) below we give explicit expressions for the polynomials Pa(λ), Pp(λ)

and the numbers λa, za, λp and zp, appearing in the statement of the theorem for n = 2, . . . ,5.

n Pa(λ) λa za

2 8λ
4−16λ

2+6
√

3
2

1
√

3

3 64λ
6−144λ

4+72λ
2

√
3
2

1
√

3

4 384λ
8−1024λ

6+800λ
4−192λ

2+14 1
2

√
1
3 (10+

√
58)

√
1
7 (2

√
58−13)

5 2048λ
10−6400λ

8+6720λ
6−2800λ

4+400λ
2 1

4

√
15+

√
65

√
1

10 (
√

65−5)

(4.3)
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n Pp(λ) λp zp

2 8λ
4−16λ

2
√

2 1
√

2

3 64λ
6−144λ

4+72λ
2−10

√

4+
√

6
2

√
1
5 (2

√
6−3)

4 384λ
8−1024λ

6+800λ
4−192λ

2
√

3
2

1
√

3
5 2048λ

10−6400λ
8+6720λ

6−2800λ
4+400λ

2−18 ≈ 1.20467... ≈ 0.557613...

(4.4)

4.2 Dynamics of Dn-symmetric configurations of N = 2n vortices

Combining Theorem 4.1 with Corollary 3.17 we may establish the existence of three families of
periodic orbits of the equations of motion (2.2) for N even, N ≥ 4.

Corollary 4.2. Let n ≥ 2 and N = 2n.

(i) There exists a 1-parameter family of periodic solutions vh(t) of the equations of motion (2.2)
emanating from the anti-prism equilibrium configurations described in Theorem 4.1. Along
these solutions, each vortex travels around a small closed loop around a vertex of the n-gon
anti-prism of height 2za(n) (see Fig. 4.2a).

(ii) There exists a 1-parameter family of periodic solutions vh(t) of the equations of motion (2.2)
converging to the polar collision described in Theorem 4.1. Along these solutions, n vortices
travel along a closed loop around the north pole and the remaining n vortices travel along a
closed loop around the south pole in the opposite direction (see Fig. 4.2b).

(iii) There exists a 1-parameter family of periodic solutions vh(t) of the equations of motion (2.2)
converging to the polygonal collisions described in Theorem 4.1. Along these solutions, there
is a pair of vortices that travels along a small closed loop around each of the vertices of the
regular n-gon at the equator (see Fig. 4.2c).

Each of these families may be parametrised by the energy h. In cases (ii) and (iii) we have h→∞ as
the solutions approach collision, and the period approaches zero in this limit.

For each solution described above, the distinct closed loops traversed by the vortices, and the
position the vortices within the loop at each instant, may be obtained from a single one by the action
of Dn.

(a) Periodic solution near the
anti-prism equilibrium.

(b) Periodic solution near the
polar-collision.

(c) Periodic solution near the
polygonal-collision.

Figure 4.2: Periodic solutions described in Corollary 4.2 for n = 3, N = 6.

We now specialise our discussion to the cases n = 2,3,4 which lead to appearance of platonic
solids as either prism or anti-prism equilibria.
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Case n = 2, N = 4. Nonlinear small oscillations around the tetrahedron.

As we may read from Table (4.3), the height of the anti-prism for n = 2 is 2/
√

3 and it is elementary
to verify that the anti-prism is in fact a tetrahedron whose edges have length 2

√
2/3. These config-

urations are known [23] to be stable equilibria of the unreduced dynamics (2.2) and in fact global
minimisers of the Hamiltonian H. Item (i) of Corollary 4.2 shows the existence of small nonlinear
oscillations of (2.2) around these equilibria.

On the other hand, Table (4.4) indicates that the prism configurations have height
√

2. These
(degenerate) prisms are in fact squares of length

√
2. So, for n = 2, the distinction between the prism

and the polygonal equilibria is artificial. Similarly, since a 2-gon on the equator degenerates to a
diameter of the sphere, the distinction between the polar and the polygonal collisions is artificial.

The phase space of the (regularised) reduced dynamics obtained numerically is illustrated in Fig-
ure 4.3a below. The anti-prism equilibrium points A±j are indicated in green, the prism and polygonal
equilibrium points, P±j and Q j, in black, and the polar and collision configurations C j in red. We
note that the different families of periodic orbits are separated by heteroclinic orbits connecting the
unstable equilibria. Also, as predicted by item (i) of Theorem 4.1, we observe octahedral symmetry
in the reduced dynamics.

Case n = 3, N = 6. Nonlinear small oscillations around the octahedron.

For n = 3, Table (4.3) indicates that the height of the anti-prism is again 2/
√

3 and it is easy to verify
that the anti-prism is in fact an octahedron whose edges have length

√
2 (see Fig.4.1a). Again, these

configurations are known [23] to be stable equilibria of the unreduced dynamics (2.2) and global
minimisers of the Hamiltonian H. Item (i) of Corollary 4.2 shows the the existence of small nonlinear
oscillations of (2.2) around these equilibria. Also, as predicted by item (i) of Theorem 4.1, we observe
D6 symmetry in the reduced dynamics.

The phase space of the (regularised) reduced dynamics obtained numerically is illustrated in Fig-
ure 4.3b below. The anti-prism equilibrium points A±j are indicated in green, the prism equilibrium
points P±j in blue, polygonal equilibrium points Q j in black, polar collisions in red and polygonal
collisions C j in purple. We have used the same colour code to indicate either periodic orbits near the
stable equilibria or heteroclinic orbits emanating from the unstable equilibria. There is also a family
of periodic orbits that do not approach an equilibria or a collision that we have indicated in orange.

Case n = 4, N = 8. Instability of the cube.

For n = 4, we read from Table (4.4) that the height of the prism configuration is 2/
√

3 which corre-
sponds to an inscribed cube whose edges have this length. In contrast with the cases n = 2,3, treated
above, our analysis does not lead to the existence of oscillations around a platonic solid, but rather to
the conclusion that the cube is an unstable configuration of (2.2). The instability of the cube had been
reported before [23].

On the other hand, we conclude from item (i) of Corollary 4.2 that there exists small nonlinear

oscillations around the square anti-prism configuration of height
√

(8
√

58−52)/7. These config-
urations are known [23] to be stable equilibria of the unreduced dynamics (2.2) and in fact global
minimisers of the Hamiltonian H.

The phase space of the (regularised) reduced dynamics obtained numerically is illustrated in Fig-
ure 4.3c below. The colour code is identical to the one followed in the case n= 3. This time we observe
D8 symmetry in the reduced dynamics.
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(a) n = 2, N = 4. (b) n = 3, N = 6. (c) n = 4, N = 8.

Figure 4.3: Phase space of the (regularised) reduced system (3.2) for K = Dn, F = ∅ and N = 2n for
n = 2,3,4. See text for explanations and description of the colour code.

4.3 Proof of Theorem 4.1

Our proof of Theorem 4.1 relies on the following two lemmas that we state and prove first. The first
lemma gives us a working expression of the reduced Hamiltonian h(Dn,∅) ∶ S

2 → R defined by (3.3),
and the second one is a useful trigonometric identity. To simplify notation, for the rest of this section
we denote h(Dn,∅) simply by hn.

Lemma 4.3. In cylindrical coordinates (z,θ) for S2 defined by

x =
√

1− z2 cosθ , y =
√

1− z2 sinθ , z = z, (4.5)

we have, modulo the addition of constants:

hn(z,θ) = −
n(n−1)

2
ln(1− z2

)−
n
2

2n

∑
j=1

ln(1−
√

1− z2 cos(θ +
jζ
2

)) , (4.6)

and

hn(z,θ) = −
n(n−1)

2
ln(1− z2

)−
n
2

ln(q2n(
√

1− z2)−(1− z2
)

n cos(2nθ)) , (4.7)

where q2n(⋅) is the degree 2n polynomial defined by q2n(r) = r2nT2n(1/r). In particular we have

q2n(
√

1− z2)−(1− z2
)

n cos(2nθ) > 0 (4.8)

for all (z,θ) corresponding to points on S2∖F[Dn].

Proof. We start by noticing that (3.4) yields

h(K,∅)(u) = −
m
4

m

∑
j=2

ln ∣u−g ju∣
2
. (4.9)

Now we set K =Dn and work with the following ordering of Dn

g j = A j−1, j = 1, . . . ,n, g j = BA j−n−1, j = n+1, . . . ,2n,

where the matrices A and B are defined by (4.1). In view of (4.9) we have

hn(u) = h(Dn,∅)(u) = −
n
2
⎛

⎝

n−1

∑
j=1

ln ∣u−A ju∣
2
+

n

∑
j=1

ln ∣u−BA ju∣
2⎞

⎠
.
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Writing u in the (z,θ)-coordinates (4.5) we compute

∣u−A ju∣
2
= (1− z2)∣1−ei jζ

∣
2
= 4(1− z2)sin2 jζ

2
,

and

∣u−BA ju∣
2
= (1− z2)∣1−ei(2θ+ jζ)

∣
2
+4z2

= 4(1− z2)sin2
(θ + jζ /2)+4z2

= 4−4(1− z2)cos2
(θ + jζ /2) .

Therefore, modulo the addition of terms that are independent of (z,θ), we have

ln ∣u−A ju∣
2
= ln(1− z2

), ln ∣u−BA ju∣
2
= ln(1−(1− z2)cos2

(θ + jζ /2)) ,

and hence,

hn(z,θ) = −
n(n−1)

2
ln(1− z2

)−
n
2

n

∑
j=1

ln(1−(1− z2)cos2
(θ + jζ /2)) .

The proof that (4.6) holds follows by noting that

n

∑
j=1

ln(1−(1− z2)cos2
(θ + jζ /2))

=
n

∑
j=1

ln(1−(1− z2)
1/2

cos(θ + jζ /2))+ ln(1+(1− z2)
1/2

cos(θ + jζ /2))

=
n

∑
j=1

ln(1−(1− z2)
1/2

cos(θ + jζ /2))+ ln(1−(1− z2)
1/2

cos(θ +(n+ j)ζ /2)) .

In order to prove (4.7) we begin with the identity

1
λ k (cosh(kµ)−cos(kθ)) = 2k−1

k

∏
j=1

(1−
1
λ

cos(θ +
2 jπ

k
)) ,

where k ∈ N and λ = coshµ ≥ 1. This identity is a simple consequence of [17, Formula 1.395(2)].
Using the definition properties of the Chebyshev polynomials we may write cosh(kµ) = Tk(λ), so,
applying the above identity with k = 2n, we obtain

1
22n−1 (q2n(1/λ)−

cos2nθ

λ 2n ) =
2n

∏
j=1

(1−
1
λ

cos(θ + jζ /2)) . (4.10)

Setting λ = (1− z2)−1/2 and taking logarithms we obtain, modulo the addition of a constant,

2n

∑
j=1

ln(1−(1− z2)
1/2

cos2
(θ + jζ /2)) = ln(q2n(

√
1− z2)−(1− z2

)
n cos2nθ) ,

which, in combination with (4.6), proves that (4.7) indeed holds. Finally, note that, since λ ≥ 1, the
right hand side of (4.10) is non-negative and can only vanish if λ = 1 and θ = 2π − jζ /2, j = 1, . . . ,2n.
This observation shows that inequality (4.8) holds away from the points C j ∈F[Dn].
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Lemma 4.4. The following trigonometric identity holds

2n

∑
j=1

cos(ζ /4+ jζ /2)
1−cos(ζ /4+ jζ /2)

= 2n(n−1).

Proof. We begin by recalling the following identity from [16, Proposition 26]

1
2

l−1

∑
j=1

sin2(k jπ/l)
sin2( jπ/l)

=
1
2

k(l−k) ,

that holds for l ∈N and 0 ≤ k ≤ l. In particular, for l even and k = l/2, we obtain

l2
/8 =

1
2

l−1

∑
j=1

sin2( jπ/2)
sin2( jπ/l)

=
1
2

l−1

∑
j=1
( j odd)

1
sin2( jπ/l)

. (4.11)

On the other hand, we have

2n

∑
j=1

1
1−cos( jπ/n+π/2n)

=
2n

∑
j=1

1
2sin2 ((2 j+1)π/4n)

=
1
2

4n−1

∑
j=1
( j odd)

1
sin2 ( jπ/4n)

= 2n2,

where we have used (4.11) in the last identity with l = 4n. The desired result is an immediate conse-
quence of the above identity since we may write

2n

∑
j=1

cos(ζ /4+ jζ /2)
1−cos(ζ /4+ jζ /2)

=
2n

∑
j=1

(
1

1−cos( jπ/n+π/2n)
−1) = 2n2

−2n.

We are now ready to present:

Proof of Theorem 4.1. For item (ii), recall that the collision equilibrium configurations occur at the
points in F[Dn] and are always stable. The set F[Dn] is described by (4.2) and consists of the north
and south poles, and the points C j. Moreover, one can verify that the isotropy group of each of the
the poles has order n, and the isotropy group of C j has order 2. Moreover, F[Dn] contains three
different Dn-orbits which are {(0,0,±1)}, {C j, j odd} and {C j, j even}, and the latter ones determine
a regular n-gon at the equator. These observations, together with item (ii) of Proposition 3.12, show
that the collision equilibria described above indeed correspond to the collision configurations of (2.2)
described in the statement of the theorem.

In order to prove item (i) about the non-collision equilibria, we rely on item (i) of Proposition 3.16,
and determine the critical points of hn. We will prove that these critical points are A±j , P±j and Q j, and
that A±j are local minima while P±j and Q j are saddle points. We will work with the coordinates (z,θ)

defined by (4.5). These coordinates cover the whole sphere except for the north and south poles which
are collision equilibria by item (ii)(a).

In view of item (iii) of Theorem 3.5 and Table (3.5), we know that hn is D2n-invariant (for n = 2 the
group D4 is a subgroup of the full symmetry group O). This symmetry implies that hn is ζ /2-periodic
in θ , i.e. hn(z,θ) = hn(z,θ +ζ /2), and also that hn(z,θ) = hn(−z,−θ). Therefore, in our analysis of
the critical points of hn, we may restrict our attention to (z,θ) ∈ [0,1)× [0,ζ /2). Note that, out of the
points A±j , P±j and Q j in the statement of the theorem, only A+1 , P+1 and Q1 lie on this region, and the
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remaining ones may be obtained as D2n-orbits of A+1 , P+1 and Q1 respectively. Thus, we only need to
prove that A+1 , P+1 and Q1 have the aforementioned properties and that hn has no other (regular) critical
points on (z,θ) ∈ [0,1)× [0,ζ /2). For the rest of the proof we write these latter points in terms of
their (z,θ) coordinates, namely

A+1 = (za,ζ /4), P+1 = (zp,0), Q1 = (0,ζ /4).

Using Eq. (4.7) from Lemma 4.3 we have ∂θ hn(z,θ) = −G(z,θ)sin(2nθ) where

G(θ ,z) ∶=
n2(1− z2)n

q2n(
√

1− z2)−(1− z2)n cos(2nθ)
.

The inequality (4.8) shows that G is a positive function away from the collision-equilibria. In partic-
ular, we conclude that ∂θ hn(z,θ) = 0 if θ = 0 or θ = ζ /4 and that ∂θ hn(z,θ) ≠ 0 for other values of
θ ∈ [0,ζ /4). Hence, equilibria of hn in the region of interest can only occur if θ = 0 or θ = ζ /4. Next
we note from Lemma 4.3 that hn(z,θ) is an even function of z and thus ∂zhn(0,θ) = 0. Therefore, we
have ∂zhn(0,ζ /4) = ∂θ hn(0,ζ /4) = 0 which shows that Q1 is indeed a critical point of hn (the other
critical point (0,0) corresponds to the collision equilibrium C1 at which hn is undefined).

Now we prove that there is exactly one zero za,zp ∈ (0,1) of ∂zhn (z,ζ /4) = 0 and ∂zhn (z,0) = 0,
respectively. In order to simplify the proof we make the change of variables r(z) =

√
1− z2 ∶ (0,1)→

(0,1). Since r′(z) ≠ 0, the existence of a unique critical point of hn(z,θ) for θ = 0,ζ /4 is equivalent
to the existence of a unique critical point of hn(r,θ) for θ = 0,ζ /4. Using Eq. (4.6) from Lemma 4.3
we have

hn(r,θ) = −n(n−1) ln(r)−
n
2

2n

∑
j=1

ln(1− rcos(θ + jζ /2)) .

Since limr→0 hn(r,θ) = limr→1 hn(r,0) = +∞, there exists a minimum rp ∈ (0,1) of the function r ↦
hn(r,0). On the other hand, differentiating the above expression and using Lemma 4.4 we find that
for θ = ζ /4, we have

∂rhn(1,ζ /4) = −n(n−1)+
n
2

2n

∑
j=1

cos(ζ /4+ jζ /2)
1−cos(ζ /4+ jζ /2)

= n(n−1)2
> 0. (4.12)

Therefore, using again that limr→0 hn(r,θ) = +∞, we conclude that there exists a minimum ra ∈ (0,1)
of the function r↦ h(r,ζ /4). However, since

∂
2
r hn(r,θ) = n(n−1)

1
r2 +

n
2

2n

∑
j=1

cos2 (θ + jζ /2)

(1+ rcos(θ + jζ /2))2 > 0, (4.13)

then hn(r,θ) has at most one critical point for r ∈ (0,1). We conclude that zp =
√

1− r2
p and za =

√
1− r2

a, are, respectively, the unique critical points of hn(z,0) and hn(z,ζ /4) on the interval z ∈ (0,1).
It remains to prove that za and zp may indeed be determined in terms of the zeros of the polyno-

mials Pa and Pp given in the statement of the theorem. For this purpose note that Eq. (4.6) and the
condition ∂rhn(ra,ζ /4) = 0 yield

(2n−1)r2n
a +(n−1)q2n(ra)+

ra

2
q′2n(ra) = 0.

Using the definition of q2n, and since ra > 0, this is equivalent to

2n−1+(2n−1)T2n(1/ra)−
1

2ra
T ′

2n(1/ra) = 0.
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Therefore, λa ∶= 1/ra satisfies

2n−1+(3n−1)T2n(λa)−nU2n(λa) = 0,

where we have made use of the Chebyshev polynomial identities:

T ′
2n(s) = 2nU2n−1(s), sU2n−1(s) =U2n(s)−T2n(s).

This shows that za is indeed determined by a root λa > 1 of Pa as explained in the theorem. The unicity
of za as a critical point of z ↦ hn(z,ζ /4) shown above proves that such root of Pa is necessarily
unique. The analogous conclusion for zp is obtained mutatis mutandis starting from the condition
∂rhn(rp,0) = 0.

Thus, we have shown that indeed A+1 , P+1 and Q1 are the unique (non-collision) critical points of
hn on the region (z,θ) ∈ [0,1)× [0,ζ /2). We will now prove that A+1 is a local minimum, whereas P+1
and Q1 are saddle points of hn. Starting from the condition ∂θ hn(z,θ) = −sin(2nθ)G(z,θ) with G
positive we have

∂
2
θ hn(z,θ) = −2ncos(2nθ)G(z,θ)− sin(2nθ)∂θ G(z,θ), ∂z∂θ hn(z,θ) = −sin(2nθ)∂zG(z,θ),

and therefore

∂
2
θ hn(z,0) < 0, ∂

2
θ hn(z,ζ /4) > 0, ∂z∂θ hn(z,0) = ∂z∂θ hn(z,ζ /4) = 0. (4.14)

On the other hand, we show below that

∂
2
z hn(zp,0) > 0, ∂

2
z hn(za,ζ /4) > 0, ∂

2
z hn(0,ζ /4) < 0. (4.15)

The relations in (4.14) and (4.15) prove that the Hessian matrix of hn is positive definite at A+1 and
indefinite at P+1 and Q1.

To prove that the inequalities in (4.15) indeed hold we note that

∂
2
z hn = ∂z ((∂rhn)(∂zr)) = (∂

2
r hn)(∂zr)

2
+(∂rhn)(∂

2
z r) . (4.16)

Evaluating at (zp,0) and (za,ζ /4) yields

∂
2
z hn(zp,0) = ∂

2
r hn(rp,0)(∂zr(zp))

2
> 0, ∂

2
z hn(za,ζ /4) = ∂

2
r hn(ra,ζ /4)(∂zr(za))

2
> 0,

where we have used (4.13) and ∂rhn(rp,0) = ∂rhn(ra,ζ /4) = 0. On the other hand, taking the the limit
as z→ 0 with θ = ζ /4 in (4.16), and considering that in this limit r → 1, ∂zr → 0 and ∂

2
z r → −1, we

obtain
∂

2
z hn(0,ζ /4) = −∂rhn(1,ζ /4) = −n(n−1)2 ,

where the last identity follows from (4.12). In particular, this shows that the third inequality of (4.15)
also holds.

Finally, we show that A±j , P±j and Q j respectively correspond to anti-prism, prism and polygonal
equilibrium configurations of (2.2) with the stated properties. We begin by noting that the set {A±j ∶
j = 1, . . . ,2n} consists of two Dn-orbits given by

{A+j odd,A
−
j even} and {A+j even,A

−
j odd}.

Each of these orbits has 2n points that lie on the vertices of an n-gon anti-prism as described in item
(ii)(a) of the theorem. It follows that, for any ordering of Dn, the mapping ρ(Dn,∅) defined by (3.1)
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maps each of the points A±j into an anti-prism configuration with the given properties. Item (ii) of
Theorem 3.5 implies that these are equilibrium configurations of (2.2). The analogous conclusion
about the prism configurations is obtained by the same reasoning but noting this time that the set
{P±j ∶ j = 1, . . . ,2n} consists of two Dn-orbits given by {P±j even} and {P±j odd}. The conclusion about Q j

is also analogous but it is reached at once since {Q j} consists of a single Dn-orbit whose points lie on
a regular n-gon at the equator.

5 Dn-symmetric solutions of N = 2n+2 vortices (two antipodal vortices
remain fixed)

We continue to consider K = Dn but now we take F = {(0,0,±1)} so N = 2n+2. Note that the set F
satisfies both requirements in our setup since it is Dn-invariant and is contained in F[Dn] (see (4.2)).
We analyse the reduced system (3.2) in detail. Since the set F is also D2n-invariant then, in view of
item (iii) of Theorem 3.5 and Table (3.5), the system is D2n-equivariant for all n ≥ 2 (note that, in
contrast with the previous section, the set F = {(0,0,±1)} is not O-invariant so we cannot expect that
the reduced system is O-equivariant for n = 2).

5.1 Classification of Dn-symmetric equilibrium configurations of N = 2n+2 vortices

The analogous version of Theorem 4.1 on the classification and stability of the collision and non-
collision equilibria of the reduced system (3.2) in this case is given next.

Theorem 5.1. Let K = Dn, F = {(0,0,±1)}, n ≥ 2 and N = 2n+2. The classification and stability of
the equilibrium points of the reduced system (3.2) is as follows.

(i) The only non-collision equilibria of (3.2) are:

(a) For n ≥ 3, the anti-prism with poles equilibrium configurations at the 4n points given by:

Â±j ∶= (
√

1− ẑ2
a cos((2 j−1)ζ /4) ,

√
1− ẑ2

a sin((2 j−1)ζ /4) , ±ẑa) , j = 1, . . . ,2n,

where ẑa = ẑa(n) ∈ (0,1) is uniquely determined as ẑ2
a = 1−1/λ̂ 2

a where λ̂a = λ̂a(n) is the
unique root greater than 1 of the polynomial

P̂a(λ) ∶= (3n+1)T2n(λ)−nU2n(λ)+2n+1.

These are stable equilibria of (3.2) which correspond to equilibrium configurations of
(2.2) where 2n vortices occupy the vertices of the S2-inscribed n-gon-anti-prism of height
2ẑa, and the 2 remaining vortices are antipodal and determine the diameter that is per-
pendicular to the antiprism (see Fig.5.1a).

(b) For all n ≥ 2, the prism with poles equilibrium configurations at the 4n points given by:

P̂±j ∶= (
√

1− ẑ2
p cos(( j−1)ζ /2) ,

√
1− ẑ2

p sin(( j−1)ζ /2) , ±ẑp) , j = 1, . . . ,2n,

where ẑp = ẑp(n) ∈ (0,1) is uniquely determined as ẑ2
p = 1−1/λ̂ 2

p where λ̂p = λ̂p(n) is the
unique root greater than 1 of the polynomial

P̂p(λ) ∶= (3n+1)T2n(λ)−nU2n(λ)−2n−1.
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These are unstable equilibria (saddle points) of (3.2) which correspond to equilibrium
configurations of (2.2) where 2n vortices occupy the vertices of the S2-inscribed n-gon-
prism of height 2ẑp, and the 2 remaining vortices are antipodal and determine the diameter
that is perpendicular to the prism (see Fig.5.1b).

(c) For all n ≥ 2, the polygon with poles equilibrium configurations at the 2n points given
by:

Q̂ j ∶= (cos((2 j−1)/4) ,sin((2 j−1)ζ /4) ,0) , j = 1, . . . ,2n.

These points are stable equilibria of (3.2) if n = 2 and unstable (saddle points) if n ≥

3. Moreover, they correspond to equilibrium configurations of (2.2) where 2n vortices
occupy the vertices of a regular 2n-gon at the equator and the 2 remaining vortices are
antipodal and determine the diameter that is perpendicular to the polygon (see Fig.5.1c).

(ii) The only collision equilibria of (the regularisation of) (3.2) are:

(a) The polar collisions at the north and south poles (0,0,±1). These correspond to colli-
sion configurations of (2.2) having two simultaneous (n+1)-tuple collisions at antipodal
points (see Fig.5.1d).

(b) The polygonal with poles collisions at the 2n points given by:

Ĉ j ∶= (cos(( j−1)ζ /2) ,sin(( j−1)ζ /2) ,0) , j = 1, . . . ,2n.

These correspond to collision configurations of (2.2) having n simultaneous binary col-
lisions at a regular n-gon at the equator and the 2 remaining vortices are antipodal and
determine the diameter that is perpendicular to the polygon (see Fig.5.1e).

All collision configurations are stable equilibria of (the regularisation of) (3.2).

Proof of Theorem 5.1. In broad terms, the proof of the theorem is analogous to that of Theorem 4.1 so
we only indicate the key differences. The main one is that the expressions for the reduced Hamiltonian
in Lemma 4.3 have to be modified to account for the presence of the vortices at the poles. In view of
(3.4), such correction is given by the addition of the term

−
m
2

N

∑
j=m+1

ln ∣u− f j∣
2
= −n(ln ∣u−(0,0,1)∣2+ ln ∣u−(0,0,−1)∣2) .

Writing u in the cylindrical coordinates (4.5) and performing elementary operations shows that, up
to the addition of a constant, the above expression equals −n ln(1− z2). Therefore, if we simplify the
notation and denote the reduced Hamiltonian h(Dn,{(0,0,±1)}) ∶ S2→R simply by ĥn, we conclude that

ĥn(z,θ) = hn(z,θ)−n ln(1− z2
), (5.1)

where hn(z,θ) is given by (4.6), (4.7).
Using the expression (5.1), one may proceed in direct analogy with the proof of Theorem 4.1 to

prove the result. One difference that is worth pointing out is the computation of

∂rĥn(1,ζ /4) = ∂rhn(1,ζ /4)−2n = n(n−1)2
−2n = n(n2

−2n−1) ,

Thus ∂rĥn(1,ζ /4) = −2 for n = 2 and ∂rĥn(1,ζ /4) > 0 for n ≥ 3. This implies that for n ≥ 3 there is a
unique ra ∈ (0,1) such that ∂rĥn(ra,ζ /4) = 0, while for n = 2 there are no solutions. Another difference
is that the polygonal equilibrium points Q j are local minima of ĥn for n = 2 and saddle points of ĥn for
n ≥ 3. We omit this and all other details.
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2ẑa

(a) Anti-prism with poles equilib-
rium.

2ẑp

(b) Prism with poles equilibrium.
(c) Polygon with poles equilib-
rium.

(d) Polar collision ((n+1)-tuple collision at
antipodal points).

(e) Polygonal with poles collision (binary collisions at
the vertices of a regular n-gon).

Figure 5.1: Non-collision and collision equilibrium configurations described in Theorem 5.1 for n = 5
and N = 12.

The Tables below provide explicit expressions for the polynomials P̂a(λ), P̂p(λ) and the numbers
λ̂a, ẑa, λ̂p and ẑp, in the statement of the theorem for n = 2, . . . ,5.

n P̂a(λ) λ̂a ẑa

2 24λ
4−32λ

2+10 − −

3 128λ
6−240λ

4+108λ
2 3

2
√

2
1
3

4 640λ
8−1536λ

6+1120λ
4−256λ

2+18 1
2

√
1
5 (14+

√
106) 1

3

√
2
√

106−19

5 3072λ
10−8960λ

8+8960λ
6−3600λ

4+500λ
2

√

5
2

1
√

5

(5.2)

n P̂p(λ) λ̂p ẑp

2 24λ
4−32λ

2 2
√

3
1
2

3 128λ
6−240λ

4+108λ
2−14 1

4

√
13+

√
57

√
1
7 (

√
57−6)

4 640λ
8−1536λ

6+1120λ
4−256λ

2 1
2

√
1
5 (19+

√
41) 1

4

√√
41−3

5 3072λ
10−8960λ

8+8960λ
6−3600λ

4+500λ
2−22 ≈ 1.12677... ≈ 0.460816...

(5.3)

5.2 Dynamics of Dn-symmetric configurations of N = 2n vortices

In analogy with Corollary 4.2, we may combine Theorem 5.1 with Corollary 3.17 to establish the
existence of three families of periodic orbits of the equations of motion (2.2).

Corollary 5.2. Let N = 2n+2.

(i) For n ≥ 3, there exists a 1-parameter family of periodic solutions vh(t) of the equations of
motion (2.2), emanating from the anti-prism with poles equilibrium configurations described
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in Theorem 5.1. Along these solutions, two vortices remain fixed at the north and south poles
and each remaining vortex travels around a small closed loop around a vertex of the n-gon
anti-prism of height 2ẑa(n) (see Fig. 5.2a).

(ii) For n≥ 2, there exists a 1-parameter family of periodic solutions vh(t) of the equations of motion
(2.2) emanating from the polar collision described in Theorem 5.1. Along these solutions, two
vortices remain fixed at the north and south poles, n vortices travel along a closed loop around
the north pole and the remaining n vortices travel along a closed loop around the south pole in
the opposite direction (see Fig. 5.2b).

(iii) For n≥ 2, there exists a 1-parameter family of periodic solutions vh(t) of the equations of motion
(2.2) converging to the polygonal collisions with poles described in Theorem 5.1. Along these
solutions, two vortices remain fixed at the north and south poles and there is a pair of vortices
that travels along a small closed loop around each of the vertices of the regular n-gon at the
equator (see Fig. 5.2c).

Each of these families may be parametrised by the energy h. In cases (ii) and (iii) we have h→∞ as
the solutions approach collision, and the period approaches zero in this limit.

For each solution described above, the distinct closed loops traversed by the vortices, and the
position the vortices within the loop at each instant, may be obtained from a single one by the action
of Dn.

(a) Periodic solution near the
anti-prism equilibrium with
poles.

(b) Periodic solution near the
polar-collision with poles.

(c) Periodic solution near the
polygonal-collision with poles.

Figure 5.2: Periodic solutions described in Corollary 5.2 for n = 5, N = 12.

We now specialise our discussion to the cases n = 2,3,5 which lead to appearance of platonic
solids as either polygon with poles equilibria or as anti-prism with poles equilibria.

Case n = 2, N = 6. Nonlinear small oscillations around the octahedron.

In this case the polygonal with poles equilibrium configurations in Theorem 5.1 are stable and corre-
spond to octahedral equilibrium configurations of (2.2). A 1-parameter family of periodic solutions
emanating from this configuration is established from Corollary 3.17. Hence, we have a family of
non-linear normal modes of oscillation with D2-symmetry around the octahedral equilibrium. We
emphasise that this family is different from the one determined in the previous section by looking at
the octahedron as the anti-prism equilibria with symmetry group D3 and F =∅.
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On the other hand, according to Table (5.3) the prism with poles equilibrium configurations have
height 1. It is a simple exercise to verify that the prisms degenerate and, together with the poles, form
hexagons which are contained on an equatorial plane.

The phase space of the (regularised) reduced dynamics obtained numerically is illustrated in Fig-
ure 5.3a below. The polygonal with poles equilibrium points, Q̂ j, corresponding to the octahedron
configuration are indicated in green. The prism with poles equilibrium points, P̂±j , corresponding
to the hexagon configuration are illustrated in black. Finally, the polar collisions are red while the
polygon with poles configurations are purple. We have used the same colour code to indicate either
periodic orbits near the stable equilibria or heteroclinic orbits emanating from the unstable equilibria.

Finally, we note that the subset F = {(0,0,±1)} is not invariant under the action of O = N(D2).
However, F is invariant under D4 and moreover, D2 <D4 <O = N(D2). So, as predicted by item (iii)
of Theorem 3.5, we observe a D4 symmetry in the reduced dynamics.

Case n = 3, N = 8. Nonlinear small oscillations around the cube.

For n = 3, Table (5.2) indicates that the height of the anti-prism is 2/3. One may verify that the
resulting anti-prism with poles is in fact a cube whose edges have length 2/

√
3. Despite the instability

of these configurations as equilibria of (2.2), we conclude from item (i) of Corollary 5.2 that there is
a family of nonlinear small oscillations emanating from these configurations.

The phase space of the (regularised) reduced dynamics obtained numerically is illustrated in Fig-
ure 5.3b below and the colour code is similar to the one used in Figures 4.3b and 4.3c. The anti-prism
equilibrium points Â±j are indicated in green, the prism equilibrium points P̂±j in blue, polygonal equi-
librium points Q̂ j in black, polar collisions in red and polygonal collisions Ĉ j in purple. The same
colour is used to indicate either periodic orbits near the stable equilibria or heteroclinic/homoclinic
orbits emanating from the unstable equilibria. There is also a family of periodic orbits that do not
approach an equilibria or a collision that we have indicated in orange. Considering that the set
F = {(0,0,±1)} is invariant under the action of D6, then, as predicted by item (iii) of Theorem 3.5,
we observe a D6-symmetry in the reduced dynamics.

Case n = 5, N = 12. Nonlinear small oscillations around the icosahedron.

For n = 5, we read from Table (4.4) that the height of the anti-prism with poles configuration is
2/

√
5 and one may show that this corresponds to an inscribed icosahedron whose edges have length

√
2− 2√

5
. Figure 5.1a illustrates this. By connecting the north and south pole with each one of the

vertices on the top and bottom faces of the anti-prism we get an icosahedron. These configurations
are known [23] to be stable equilibria of (2.2) and item (i) of Corollary 5.2 shows the existence of
a family of small oscillations emanating from them. The phase space of the (regularised) reduced
dynamics obtained numerically is illustrated in Figure 5.3c below. The colour code is identical to the
one followed in the case n = 3 described above. This time we observe D10-symmetry in the reduced
dynamics.
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(a) n = 2, N = 6. (b) n = 3, N = 8. (c) n = 5, N = 12.

Figure 5.3: Phase space of the (regularised) reduced system (3.2) for K = Dn, F = {(0,0,±1)} and
N = 2n+2 for N = 2,3,5. See text for explanations and description of the colour code.

6 T-symmetric solutions for N = 12 vortices (with no fixed vortices)

We consider the tetrahedral subgroup T < SO(3) generated by the matrices

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

and
⎛
⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎟
⎠
.

Then T has order 12 and is isomorphic to the subgroup A4 of even permutations of 4 elements. An
explicit group isomorphism may be defined in terms of the above generators as

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
↦ (1,2,3)(4),

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
↦ (1,2)(3,4),

where we have used the standard cyclic notation for permutations. The group T consists of the orien-
tation preserving symmetries of the tetrahedra T1,T2 with vertices at

T1 = {c(1,1,1), c(−1,−1,1), c(−1,1,−1), c(1,−1,−1)},

T2 = {c(−1,−1,−1), c(1,1,−1), c(1,−1,1), c(−1,1,1)},
(6.1)

where c−1 =
√

3. One may check that

F[T] = T1∪T2∪{(±1,0,0),(0,±1,0),(0,0,±1)}. (6.2)

6.1 Classification of T-symmetric equilibrium configurations of N = 12 vortices

We now analyse the reduced system (3.2) in detail in the case K =T and F =∅ so N = 12. Item (iii) of
Theorem 3.5 and Table (3.5) indicate that such system is O-equivariant. The theorem below gives the
full classification of the collision and non-collision equilibria.

Theorem 6.1. Let K =T, F =∅ and N = 12. The classification and stability of the equilibrium points
of the reduced system (3.2) is as follows.

(i) The only non-collision equilibria of (3.2) are:
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(a) The icosahedron equilibrium configurations occurring at all 24 points obtained by per-
muting the entries and considering all sign flips of

1
√

1+φ 2
(±φ ,±1,0) ,

where φ = 1+
√

5
2 is the golden mean. These are stable equilibria of (3.2) which correspond

to equilibrium configurations of (2.2) where the vortices occupy the vertices of an S2-
inscribed regular icosahedron (see Fig.6.1a).

(b) The truncated tetrahedron configurations occurring at all 24 points obtained by permut-
ing the entries and considering all sign flips of

(±α,±α,±
√

1−2α2) ,

where 0 < α ≈ 0.269484 . . . is characterised by the condition that α
2 is the unique zero of

the polynomial p(λ) = 1−13λ −13λ
2+33λ

3 between 0 and 1/2. These are unstable equi-
libria of (3.2) which correspond to equilibrium configurations of (2.2) where the vortices
occupy the vertices of an irregular S2-inscribed truncated tetrahedron (see Fig.6.1b and
Remark 6.2).

(c) The cub-octahedron configurations occurring at all 12 points obtained by permuting the
entries and considering all sign flips of

(±
1

√
2
,±

1
√

2
,0) .

These are unstable equilibria of (3.2) which correspond to equilibrium configurations of
(2.2) where the vortices occupy the vertices of a regular S2-inscribed cuboctahedron (see
Fig.6.1c).

(ii) The only collision equilibria of (the regularisation of) (3.2) are:

(a) The tetrahedral collisions at the 8 points of T1∪T2. These correspond to collision config-
urations of (2.2) having four simultaneous triple collisions at the vertices of a tetrahedron
(see Fig.6.1d).

(b) The octahedral collisions at the 6 points (±1,0,0),(0,±1,0),(0,0,±1). These correspond
to collision configurations of (2.2) having 6 simultaneous binary collisions at the vertices
of an octahedron (see Fig.6.1e).

All collision configurations are stable equilibria of (the regularisation of) (3.2).

Remark 6.2. The polyhedron determined by the truncated tetrahedron equilibria consists of 4 irregu-
lar hexagonal faces and 4 four equilateral triangular faces. The distance between the vertices forming
an edge between adjacent hexagonal faces is 2

√
2α ≈ 0.762215 while the distance between vertices

forming an edge of an equilateral triangular face is
√

2(−α +
√

1−2α2) ≈ 0.926377.

Before giving the proof of the theorem we present:
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(a) Icosahedron equilibrium. The
distance between adjacent ver-
tices is 2/

√
3.

(b) Truncated tetrahedron equi-
librium. See Remark 6.2 for de-
tails on the dimensions.

(c) Cuboctahedron equilibrium.
The distance between adjacent
vertices is 1.

(d) Tetrahedron collision (simultaneous triple col-
lision at each vertex). (e) Octahedron collision (simultaneous binary col-

lision at each vertex).

Figure 6.1: Non-collision and collision equilibrium configurations described in Theorem 6.1.

Lemma 6.3. Let

p±1 (R,Θ) = 2+2R2
+R2 sin2Θ±2R(cosΘ− sinΘ),

p±2 (R,Θ) = 2+2R2
−R2 sin2Θ±2R(cosΘ+ sinΘ),

p3(R,Θ) = 5R8 cos8Θ+76(R4
+8R2

+8)R4 cos4Θ+47R8
−864R6

−4320R4
−6912R2

−3456.

For (R,Θ) ∈ [0,
√

2]×(0,π/4) we have p±1 (R,Θ) > 0, p±2 (R,Θ) > 0 and p3(R,Θ) < 0.

Proof. For Θ ∈ (0,π/4) we have sin2Θ ∈ (0,1), cosΘ− sinΘ ∈ (0,1) and cosΘ+ sinΘ ∈ (1,
√

2).
Therefore,

p±1 (R,Θ) > 2+2R2
−2R(cosΘ− sinΘ) > 2(R2

−R+1) ≥ 3/2,

p±2 (R,Θ) > 2+R2
−2R(cosΘ+ sinΘ) > R2

−2
√

2R+2 ≥ 0.

On the other hand, we have

p3(R,Θ) ≤ 5R8
+76(R4

+8R2
+8)R4

+47R8
−864R6

−4320R4
−6912R2

−3456

= 128R8
−256R6

−3712R4
−6912R2

−3456

≤ 128R8
−3456.

Therefore, for R ∈ [0,
√

2] we may estimate p3(R,Θ) ≤ 128(24)−3456 = −1408.

Proof of Theorem 6.1. Recall that the collision equilibria are always stable and occur at the points
in F[T]. This set is given by (6.2) and consists of three T-orbits: the tetrahedra T1 and T2, and
{(±1,0,0),(0,±1,0), (0,0,±1)}. The points on the latter orbit lie on the vertices of an octahedron.
The proof of item (ii) in the theorem follows from these observations and item (ii) of Proposition 3.12.
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In order to prove item (i), we will classify the critical points of the regularised reduced Hamiltonian
h̃(T,∅). Using (3.10) and writing u = (x,y,z) we find h̃(T,∅)(x,y,z) = 284a(x,y,z)6, where a ∶ S2→R is
given by

a(x,y,z) = (x2
+y2

)(y2
+ z2

)(x2
+ z2

)(1−xy−xz−yz)2
(1+xy+xz−yz)2

⋅(1−xy+xz+yz)2
(1+xy−xz+yz)2.

The critical points of h̃(T,∅) and a coincide and are of the same type, so, in what follows, we instead
classify the critical points of a.

We begin by noting that the value of a does not change if x, y and z are permuted; and also if any of
x, y or z are changed into −x, −y or −z. This shows that a is invariant under the action of the group Oh
consisting of all rotational and reflectional symmetries of a regular octahedron (the O-symmetry of a
was expected from item (iii) of Theorem 3.5 and the reflectional part is inherited from the invariance
of the Hamiltonian H ∶M→R under the diagonal action of O(3)).

The group Oh has order 48 and a fundamental region R ⊂ S2 is determined by 0 ≤ y ≤ x ≤ z ≤ 1.
Without loss of generality, we will restrict the analysis of the critical points of a to this region. Our
strategy is to introduce local coordinates on S2 tracking carefully the parametrisation of R. First
consider the gnomonic (or stereographic) projection from the origin to the tangent plane to the north
pole. This defines the coordinates (X ,Y) ∈R2 on the northern hemisphere by

x =
X

√
X2+Y 2+1

, y =
Y

√
X2+Y 2+1

, z =
1

√
X2+Y 2+1

,

and the fundamental regionR corresponds to the triangle 0 ≤Y ≤X ≤ 1. Now pass to polar coordinates

X = RcosΘ, Y = RsinΘ.

The northern hemisphere is parametrised by R ≥ 0 and Θ ∈ [0,2π), and the fundamental region R
corresponds to

0 ≤ R ≤
1

cosΘ
, 0 ≤Θ ≤ π/4. (6.3)

In particular, it will be convenient to notice thatR is contained in the region parametrised by (R,Θ) ∈

[0,
√

2]× [0,π/4]. In these coordinates we have:

a(R,Θ) =
R2 (R2+2−R2 cos2Θ)(R2+2+R2 cos2Θ)(p+1 (R,Θ)p−1 (R,Θ)p+2 (R,Θ)p−2 (R,Θ))

2

1024(R2+1)11 ,

where p±1 , and p±2 are defined in the statement of Lemma 6.3. With the help of a symbolic algebra
software, one finds that the partial derivative ∂Θa(R,Θ) may be written as

∂Θa(R,Θ) =
R6 sin4Θ

4096(R2+1)11 p+1 (R,Θ)p−1 (R,Θ)p+2 (R,Θ)p−2 (R,Θ)p3(R,Θ),

with p3 given in the statement of Lemma 6.3. Because of this lemma we conclude that, when restricted
to the fundamental regionR, the partial derivative ∂Θa(R,Θ) can only vanish if Θ = 0 or Θ = π/4.

Now, on the one hand one computes

∂Ra(R,0) = −2R(R2
+1)

−11
(R4

+R2
+1)

3
(R2

−1)(R4
−3R2

+1) ,
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whose real roots are R = 0, R = ±1 and R = (±1±
√

5)/2. Hence, in view of (6.3), for Θ = 0, the only
critical points of a on the fundamental region R occur when R = 0, R = (

√
5−1)/2 and R = 1. These

respectively correspond to the following points on S2:

(0,0,1),
1

√
1+φ 2

(1,0,φ) ,
1

√
2
(1,0,1) ,

that are, respectively, representatives of the octahedral collisions of (ii)(b), of the icosahedral equilibria
of (i)(a) and the cuboctahedron equilibria of (i)(c).

On the other hand, one finds

∂Ra(R,π/4) =
R

512
(R2

+1)
−12

(3R2
+2)

3
(R2

−2)
2
(R4

−4)q3(R2
), (6.4)

where q3 is the cubic polynomial q3(λ) = 37λ
3 + 106λ

2 + 28λ − 8. This polynomial has a unique
positive root λ = 2α

2/(1−2α
2) with α as defined in the statement of item (i)(b). Therefore, the only

real roots of the right hand side of (6.4) are R = 0, R = ±
√

2 and R = ±
√

2α/(1−2α
2)1/2, and, in view

of (6.3), we conclude that for Θ = π/4, the only critical points of a on the fundamental regionR occur
when R = 0, R =

√
2α/(1−2α

2)1/2 and R =
√

2. These respectively correspond to the following points
on S2:

(0,0,1), (α,α,
√

1−2α2) ,
1

√
3
(1,1,1) ,

that are, respectively, representatives of the octahedral collisions of (ii)(b), of the irregular truncated
tetrahedron equilibria of (i)(b) and the tetrahedron collisions of (ii)(a).

The analysis above proves that, indeed, the only equilibrium points of the (regularised) system are
those described in the statement of the theorem. Now recall that the collision equilibria are always
stable. To investigate the stability of the non-collision equilibria we compute the Hessian matrix of a
at the representatives of these points. Using a symbolic algebra program one obtains:

Hess(a)(

√
5−1
2

,0) =
128

3125
(
−3−

√
5 0

0 17
5 (

√
5−5)

) , Hess(a)(1,0) =
27

512
(

1 0
0 − 37

2
) ,

Hess(a)(

√
2α

√
1−2α2

,π/4) ≈ (
−1.42703 0

0 0.0859734
) .

The first of these matrices is negative definite and the other two are indefinite. We conclude that
icosahedral equilibria are local maxima of a, whereas cub-octahedral and truncated tetrahedral equi-
libria are saddle points of a. The same is true for the regularised reduced Hamiltonian h̃(T,∅). On the
other hand, this implies that the (non-regularised) reduced Hamiltonian h(T,∅) has local minima at the
icosahedral equilibria and saddle points at the cub-octahedral and truncated tetrahedral equilibria. In
view of item (i) of Proposition 3.16, these observations imply that the stability properties described in
the theorem hold.

It remains to show that the non-collision equilibrium points in items (i)(a)-(c) indeed correspond
to the polyhedron equilibria of (2.2) described in the statement of the theorem. Let γ = φ/(1+φ

2)1/2.
The 24 points obtained by permuting the entries of (±γ,±

√
1− γ2,0) lie at the vertices of a compound

of two icosahedra. One of them corresponds to the even and the other to the odd permutations.
Moreover, the vertices of each of these icosahedra lie on a T-orbit. In particular, the embedding
ρ(T,∅) maps any of the 24 points into the vertices of a regular icosahedron. A similar scenario occurs
for the set obtained by permuting the entries of (±α,±α,±

√
1−2α2). Such set has 24 elements and
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consists of two T-orbits according to whether the product of the entries is positive or negative. Each
of these orbits determine the vertices of a (irregular) truncated tetrahedron. The situation is simpler
for the points obtained by permuting 1/

√
2(±1,±1,0) since there are only 12 of them, they lie on a

T-orbit and lie on the vertices of a cuboctahedron.

6.2 Dynamics of T-symmetric configurations of N = 12 vortices

In view of Theorem 6.1 and Corollary 3.17 we deduce the existence of three families of periodic orbits
of the equations of motion (2.2) for N = 12 that we describe in the following corollary. We note that
the existence of the solutions described in items (ii) and (iii) had been already indicated by Soulière
& Tokieda [41, Section 5].

Corollary 6.4. Let N = 12.

(i) There exists a 1-parameter family of periodic solutions vh(t) of the equations of motion (2.2),
emanating from the icosahedral equilibrium configurations. Along these solutions, each vortex
travels around a small closed loop around a vertex of the icosahedron (see Fig. 7.2a).

(ii) There exists a 1-parameter family of periodic solutions vh(t) of the equations of motion (2.2)
converging to the tetrahedral collision described in Theorem 6.1. Along these solutions, three
vortices travel along a closed loop around each of the 4 vertices of a tetrahedron (see Fig.
7.2b).

(iii) There exists a 1-parameter family of periodic solutions vh(t) of the equations of motion (2.2)
converging to the octahedral collisions described in Theorem 6.1. Along these solutions, a pair
of vortices travels along a small closed loop around each of the 6 vertices of an octahedron (see
Fig. 7.2c).

Each of these families may be parametrised by the energy h. In cases (ii) and (iii) we have h→∞ as
the solutions approach collision, and the period approaches zero in this limit.

For each solution described above, the distinct closed loops traversed by the vortices, and the
position the vortices within the loop at each instant, may be obtained from a single one by the action
of T.

(a) Periodic solution near the
icosahedron equilibrium.

(b) Periodic solution near the
tetrahedral collision.

(c) Periodic solution near the oc-
tahedral collision.

Figure 6.2: Periodic solutions described in Corollary 6.4. (The view angle is different from the one in
Fig 6.1.)

We emphasise that the family of periodic orbits emanating from the icosahedron configurations
described in item (i) above is different than the one obtained from item (i) of Corollary 5.2 with n = 5.
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Figure 6.3: The reduced phase space for T-symmetric solutions of the 12-vortex problem.

Figure 6.3 shows the phase space of the (regularised) reduced dynamics obtained numerically. The
icosahedron equilibrium points are indicated in green, the truncated tetrahedron equilibrium points
in blue, the cuboctahedron equilibrium points in black, tetrahedron collisions in red and octahedron
collisions in purple. The same colour is used to indicate either periodic orbits near the stable equilibria
or heteroclinic/homoclinic orbits emanating from the unstable equilibria. There is also a family of
periodic orbits that do not approach an equilibria or a collision that we have indicated in orange.

7 T-symmetric solutions of N = 20 vortices (8 vortices are fixed at the
vertices of a cube)

We again consider K = T but now we take F = T1∪T2 (see Eq. (6.1)) so N = 20. The points in the set
F lie on the vertices of a cube so all solutions of (2.2) treated in this section will have a fixed vortex
at each vertex of this cube. We note that the set F is T-invariant and, in view of (6.2), is contained
in F[T] so it satisfies both requirements in our setup. We analyse the reduced system (3.2) in detail.
Since the set F is also O-invariant then, in view of item (iii) of Theorem 3.5 and Table (3.5), the
reduced system is O-equivariant.

7.1 Classification of T-symmetric equilibrium configurations of N = 20 vortices

The analogous version of Theorem 6.1 on the classification and stability of the collision and non-
collision equilibria of the reduced system (3.2) in this case is given next.

Theorem 7.1. Let K = T, F = T1 ∪T2 (see Eq. (6.1)) and N = 20. The classification and stability of
the equilibrium points of the reduced system (3.2) is as follows.

(i) The only non-collision equilibria of (3.2) are:

(a) The dodecahedron equilibrium configurations occurring at all 24 points obtained by
permuting the entries and considering all sign flips of

1
√

3
(±φ ,±φ

−1,0) ,
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where φ = 1+
√

5
2 is the golden mean. These are stable equilibria of (3.2) which correspond

to equilibrium configurations of (2.2) where the vortices occupy the vertices of an S2-
inscribed regular dodecahedron (see Fig.7.1a).

(b) The truncated tetrahedron - cube configurations occurring at all 24 points obtained by
permuting the entries and considering all sign flips of

(±α̂,±α̂,±
√

1−2α̂2) ,

where α̂ ≈ 0.21228 . . . is characterised by the condition that α̂
2 is the unique zero of the

polynomial p̂(λ)=57λ
3−29λ

2−21λ +1 between 0 and 1/2. These are unstable equilibria
of (3.2) which correspond to equilibrium configurations of (2.2) where the vortices occupy
the vertices of the compound of an irregular S2-inscribed truncated tetrahedron and a cube
(see Fig.7.1b and Remark 7.2).

(c) The cuboctahedron - cube configurations occurring at all 12 points obtained by permut-
ing the entries and considering all sign flips of

(±
1

√
2
,±

1
√

2
,0) .

These are unstable equilibria of (3.2) which correspond to equilibrium configurations of
(2.2) where the vortices occupy the vertices of the compound of a regular S2-inscribed
cuboctahedron and a cube (see Fig.7.1c).

(ii) The only collision equilibria of (the regularisation of) (3.2) are:

(a) The tetrahedral - cube collisions at the 8 points of T1∪T2. These correspond to collision
configurations of (2.2) where the 20 vortices lie on the vertices of a cube. There are
four simultaneous quadruple collisions at the vertices of a tetrahedron and the other four
vortices lie at each antipodal point (see Fig.7.1d).

(b) The octahedral - cube collisions at the 6 points (±1,0,0),(0,±1,0),(0,0,±1). These
correspond to collision configurations of (2.2) where the 20 vortices lie on the vertices of
the compound of an octahedron and a cube and there are 6 simultaneous binary collisions
at the vertices of the octahedron (see Fig.7.1e).

All collision configurations are stable equilibria of (the regularisation of) (3.2).

Remark 7.2. The truncated tetrahedron on the compound of item (i)(b) consists of 4 irregular hexag-
onal faces and 4 four equilateral triangular faces. The distance between vortices forming an edge
between adjacent hexagonal faces is 2

√
2α̂ ≈ 0.600421. The distance between vortices forming an

edge of an equilateral triangular face is
√

2(−α̂ +
√

1−2α̂2) ≈ 1.04877.

Proof. The conclusions of item (ii) about the collision equilibria follow from the description of F[T]

in (6.2) and Proposition 3.12 in analogy with the proof of Theorem 6.1.
In order to analyse the non-collision equilibria, let f13, . . . , f20 denote the points in F = T1∪T2. A

direct calculation shows that for u = (x,y,z) ∈ S2 we have

N

∏
j=m+1

∣u− f j∣
2
=

20

∏
j=13

∣u− f j∣
2
= (

8
3
)

4
(1−xy−xz−yz)(1+xy+xz−yz)(1−xy+xz+yz)(1+xy−xz+yz).
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(a) Dodecahedron equilibrium.
The distance between adjacent

vertices is
√

2− 2
√

5
3 .

(b) Compound of a truncated
tetrahedron and cube equilibrium
configuration. See Remark 7.2
for details on the dimensions of
the truncated tetrahedron.

(c) Compound of a regular
cuboctahedron and a cube
equilibrium configuration. The
distance between adjacent ver-
tices in the cuboctahedron is
1.

(d) Tetrahedron - cube collision. There is a
quadruple collision at each vertex of the tetrahe-
dron and no collisions at the other 4 vertices of
the cube (marked in black).

(e) Octahedron -cube collision. There is a binary
collision at each vertex of the octahedron and no
collision at the 8 vertices of the cube.

Figure 7.1: Non-collision and collision equilibrium configurations described in Theorem 7.1. The
dashed lines connect the elements in F = T1∪T2 that lie on the vertices of a cube.

Therefore, in view of (3.10) and the proof of Theorem 6.1 we find h̃(T,F)(x,y,z) = 284 (8
3)

48
â(x,y,z)6,

where â ∶ S2→R is given by

â(x,y,z) = (x2
+y2

)(y2
+ z2

)(x2
+ z2

)(1−xy−xz−yz)4
(1+xy+xz−yz)4

⋅(1−xy+xz+yz)4
(1+xy−xz+yz)4.

The proof proceeds by finding the critical points of â on the fundamental region R described in the
proof of Theorem 6.1 and is analogous to it. We omit the details.

7.2 Dynamics of T-symmetric configurations of N = 20 vortices

By combining Theorem 7.1 with Corollary 3.17 we deduce the existence of three families of periodic
orbits of the equations of motion (2.2) for N = 20 that we describe in the following:

Corollary 7.3. Let N = 20.

(i) There exists a 1-parameter family of periodic solutions vh(t) of the equations of motion (2.2),
emanating from the dodecahedral equilibrium configurations. Along these solutions, 8 vortices
are fixed at the vertices of a cube inscribed in the dodecahedron and the remaining 12 vortices
travel around a small closed loop around the remaining vertices of the dodecahedron (see Fig.
7.2a).
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(ii) There exists a 1-parameter family of periodic solutions vh(t) of the equations of motion (2.2)
converging to the tetrahedral-cube collision described in Theorem 7.1. Along these solutions, 8
vortices are fixed on the vertices of a cube and there are 4 triples of vortices that travel along a
closed loop around each of the 4 vertices of a tetrahedron inscribed in the cube (see Fig. 7.2b).

(iii) There exists a 1-parameter family of periodic solutions vh(t) of the equations of motion (2.2)
converging to the octahedral collisions described in Theorem 6.1. Along these solutions, a pair
of vortices travels along a small closed loop around each of the 6 vertices of an octahedron and
the remaining 8 vortices are fixed at the vertices of the dual cube (see Fig. 7.2c) .

Each of these families may be parametrised by the energy h. In cases (ii) and (iii) we have h→∞ as
the solutions approach collision, and the period approaches zero in this limit.

For each solution described above, the distinct closed loops traversed by the vortices, and the
position the vortices within the loop at each instant, may be obtained from a single one by the action
of T.

(a) Periodic solution near the do-
decahedron equilibrium.

(b) Periodic solution near the
tetrahedral-cube collision.

(c) Periodic solution near the
octahedral-cube collision.

Figure 7.2: Periodic solutions described in Corollary 7.3.

Figure 7.3: The reduced phase space for T-symmetric solutions of the 20-vortex problem.

Figure 7.3 shows the phase space of the (regularised) reduced dynamics obtained numerically. The
colour code is similar to the one used in the previous section. The dodecahedron equilibrium points

November 25, 2020



42

are indicated in green, the truncated tetrahedron–cube equilibrium points in blue, the cuboctahedron–
cube equilibrium points in black, tetrahedral–cube collisions in red and octahedral–cube collisions in
purple. As usual, we use the same colour to indicate either periodic orbits near the stable equilibria or
heteroclinic orbits emanating from the unstable equilibria and we indicate a family of periodic orbits
that do not approach an equilibria in orange.

Acknowledgements

CGA and LGN respectively acknowledge support for their research from the Programs UNAM-
PAPIIT-IN115019 and UNAM-PAPIIT-IN115820.

References

[1] AREF H., NEWTON P.K., STREMLER M.A., TOKIEDA T. & D.L. VAINCHTEIN, Vortex crystals, Adv.
Appl. Mech. 39 (2003), 1–79.

[2] AREF H., Point vortex dynamics: A classical mathematics playground, Journal of Mathematical Physics,
48 (2007), 065401.

[3] BAGRETS A. & D. BAGRETS, Nonintegrability of two problems in vortex dynamics, Chaos 7 (1997),
368–375.

[4] BETHUEL F., BREZIS H. & F. HELEIN, Ginzburg-Landau Vortices. Progress in Nonlinear Differential
Equations and their Applications. 13 (1994), Birkhäuser, Basel.
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