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Abstract
We present the Regensburg Breast Shape Model (RBSM)—a 3D statistical shape model of the female breast built from 110
breast scans acquired in a standing position, and the first publicly available. Together with the model, a fully automated,
pairwise surface registration pipeline used to establish dense correspondence among 3D breast scans is introduced. Our
method is computationally efficient and requires only four landmarks to guide the registration process. A major challenge
when modeling female breasts from surface-only 3D breast scans is the non-separability of breast and thorax. In order to
weaken the strong coupling between breast and surrounding areas, we propose to minimize the variance outside the breast
region as much as possible. To achieve this goal, a novel concept called breast probability masks (BPMs) is introduced. A
BPM assigns probabilities to each point of a 3D breast scan, telling how likely it is that a particular point belongs to the breast
area. During registration, we use BPMs to align the template to the target as accurately as possible inside the breast region
and only roughly outside. This simple yet effective strategy significantly reduces the unwanted variance outside the breast
region, leading to better statistical shape models in which breast shapes are quite well decoupled from the thorax. The RBSM
is thus able to produce a variety of different breast shapes as independently as possible from the shape of the thorax. Our
systematic experimental evaluation reveals a generalization ability of 0.17mm and a specificity of 2.8mm. To underline the
expressiveness of the proposed model, we finally demonstrate in two showcase applications how the RBSM can be used for
surgical outcome simulation and the prediction of a missing breast from the remaining one. Our model is available at https://
www.rbsm.re-mic.de/.

Keywords Statistical shape model · Non-rigid surface registration · Breast imaging · Surgical outcome simulation · Breast
reconstruction surgery

B Christoph Palm
christoph.palm@oth-regensburg.de

1 Regensburg Medical Image Computing (ReMIC),
Ostbayerische Technische Hochschule Regensburg (OTH
Regensburg), Regensburg, Germany

2 Chair of Visual Computing, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Erlangen, Germany

3 Faculty of Mechanical Engineering, OTH Regensburg,
Regensburg, Germany

4 University Center of Plastic, Aesthetic, Hand and
Reconstructive Surgery, University Hospital Regensburg,
Regensburg, Germany

5 Regensburg Center of Biomedical Engineering (RCBE), OTH
Regensburg and Regensburg University, Regensburg,
Germany

1 Introduction

Since the seminal work of Cootes et al. [14], statistical shape
models became an emerging tool to capture natural shape
variability within a given class of objects. As a result, a
large number of shapemodels were developed during the last
decades. The probably most well-known models were built
for the human face using textured 3D face scans. Introduced
by Blanz and Vetter [9], this class of statistical shape mod-
els is commonly known as 3DMorphable Models (3DMMs)
and includes models such as the Basel Face Model (BFM)
and Large-Scale Facial Model (LSFM) presented by Paysan
et al. [42] and Booth et al. [11], respectively. Well-studied
applications of 3DMMs include face recognition, expression
transfer between individuals, face animation, and 3D face
reconstruction from a single 2D photograph [21]. Particu-
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larly in the last decade, shape analysis also gained popularity
in the field of computational anatomy, where statistical shape
models are successfully used to model variations of anatom-
ical objects such as bones and organs. Later, these models
are utilized for a variety of medical applications including
(but not limited to) image segmentation, surgical simula-
tion, therapy planning, and motion analysis [3]. Despite the
popularity of statistical shape models in the aforementioned
areas, to date and to the best of our knowledge, no pub-
licly available 3D statistical shapemodel of the female breast
exists.

With breast cancer being themost commonmalignant neo-
plasm among women [52], successful breast reconstruction
surgery (BRS) is crucial for patients undergoing mastec-
tomy. In order to give patients a first impression about what
their breast might look like after BRS, surgical outcomes
are more and more often simulated using patient-specific
3D breast scans, acquired in a standing position (see Sect.
2 for an overview). Typically, simulations are performed
using physically motivated deformable models of the breast.
While these models take into account material properties
and physical effects such as gravity, they may not always
produce realistic-looking shapes as no prior knowledge in
the form of example shapes is included [43,49]. Hence,
simulated outcomes might be physically plausible, but defi-
nitely lack statistical plausibility in the sense that generated
breast shapes are somehow likely or similar to those typi-
cally observed within a target population. As the ultimate
goal of BRS is an outcome looking as natural as possible,
we believe that simulation of surgical outcomesmust not only
rely on physically based deformable models but also should
take into account statistical effects. Indeed, the phenomenon
that humans tend to compare themselves with others clearly
underlines the importance of the fact that simulated breast
shapes should look similar to the breasts within the tar-
get population. As a first step toward combining physical
and statistical plausibility of simulated breast surgery out-
comes, we propose to use 3D statistical shape models built
from natural-looking female breasts. In addition, by intro-
ducing such models into the breast shape domain, many of
the aforementioned applications from other domains could
be transferred to the breast as we will exemplary show later
in this article.

To this end, this paper introduces the first publicly avail-
able 3D statistical shape model of the female breast built
from 110 breast scans acquired in a standing position.
Together with the model, we present a fully automated,
pairwise registration pipeline especially tailored for 3D
breast scans and its application in the context of statistical
shape modeling. Our method is computationally efficient
and requires only four landmarks to guide the registration
process.

Fig. 1 Three typical 3D breast scans sampled from our database.
Although a common pose was declared during data acquisition, a lot of
pose variations are still present (indicated through a skeleton drawn in
red). These mainly emerge from the arms and shoulders

1.1 Challenges

Compared to shape modeling of most parts of the human
body, building a statistical shape model for the female breast
imposes some new challenges as discussed in the following.

Data acquisition. Firstly, acquiring a sufficient amount of
high-quality training data is challenging. Usually, 3D scan-
ning and manual landmark detection is an uncomfortable
situation for the participants, in which their upper body is
required to be naked. Moreover, landmarks can be identified
only through palpation and by using a regular tape measure,
both requiring a physical examination in a clinical environ-
ment. In addition, during the whole examination, a specified
posture needs to be held fixed ensuring a similar pose across
all subjects. This can be very exhausting, especially if 3D
breast scans are taken in a standing position in which both
arms should ideally be held away from the body in order to
capture the breast as isolated as possible.As a result, 3D scan-
ning protocols used in clinical practice are often designed to
be carried out relatively fast, thus lacking necessary precision
for pose standardization, see Fig. 1. Note that the problem
of only quasi-similar postures was also recently observed by
Mazier et al. [38]. All in all, the aforementioned factors defi-
nitely hinder the implementation of large-scale, high-quality
data surveys and might also explain why no publicly avail-
able data set of female 3D breast scans exits.

Correspondence estimation. Secondly, establishing dense
correspondence among 3D breast scans by means of sur-
face registration (rigid and non-rigid) is difficult due to the
lack of reliable landmarks. In essence, only four valid land-
marks can be used for non-rigid registration. These include
both nipples as well as both lower breast poles (through-
out this work defined as the lowest (most caudal) point of
the breast, see Fig. 2). Anatomical landmark points such as
the sternal notch or processus coracoideus cannot be used
for non-rigid registration purposes as they would recover
undesired, pose-dependent shape variations during statistical
shape modeling. This way, the processus coracoideus dis-
qualifies as its position depends strongly on the position of the
arms and shoulders. On the other hand, the xiphoid, located at
the center of the thorax, could technically be used for registra-
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Fig. 2 A brief overview of
common landmarks and key
anatomical structures of the
female breast and thorax
(illustration adapted from [30])

tion. However, it cannot be reliably and consistently located
across a wide range of differently shaped breasts because
of its dorsal tilt, effectively hindering the identification of a
unique point. Another fundamental problem is the complete
lack of robust landmarks on the lateral part of the breast.
Although Hartmann et al. [28] defined a lateral breast pole
as the orthogonal intersection between the anterior axillary
line and a line passing through the nipple, this point cannot be
used for non-rigid registration as its position is also affected
by the pose of the arms and shoulders. Finally, already the
initial, rigid alignment of 3D breast scans is challenging due
to the lack of reliable landmarks that do not undergo large
soft tissue deformations.

Non-separability of breast and thorax. Last but most
importantly, the region of interest, i.e., the breast, obviously
cannot be well separated from the rest of the thorax when
considering 3D breast scans. This is primarily because the
chest wall separating the breast from the thorax cannot be
captured using 3D surface scanning devices, but also due
to the reason that no commonly accepted and exact defini-
tion of the breast contour exists, see, e.g., [35]. A statistical
shape model built from 3D breast scans will therefore neces-
sarily capture also shape variations of the thorax, even after
pose standardization. In particular, these include morpholog-
ical shape variations of the underlying chest wall and upper
abdomen, but also those emerging from the arms, armpits,
and shoulders due to improper pose standardization (also
seen from Fig. 1). If not reduced to a minimum, this will
cause the following unwanted effect. Since breast and thorax
shapes are tightly correlated in the subspace spanned by the
model, the range of representable breast shapes is limited.
The reason is that a considerably large part of the subspace
accounts for the unwanted shape variations of the surround-
ing areas. Hence, the breast region should be decoupled from
the thorax as much as possible in order to build an expressive
andwell-performing statistical shapemodel.Due the absence
of an exact definition of the breast contour, we assume the
breast region to approximately range from the lower breast
pole to the second rib.

1.2 Contributions

As key contribution, this work presents the Regensburg
Breast Shape Model (RBSM)—a 3D statistical shape model

Fig. 3 The proposed concept of BPMs (top row) allows to minimize
unwanted shape variations of the thorax by registering a template sur-
face as precisely as possible inside the breast region and only roughly
outside. The breast region is defined by BPMs in a probabilistic man-
ner. (Top left, red areas correspond to a high probability of belonging
to the breast region.) This simple yet effective strategy decouples the
breast from the surrounding regions by reducing the variance outside the
breast area. In the last column, the per-vertex variance over the whole
dataset is visualized on the resulting mean shape. The regions show-
ing the highest variance (red) are almost coincident with the breasts in
our proposed BPM-based approach. Contrary, without BPMs (bottom
row), a lot of unwanted variance is present in the surrounding regions,
especially around the arms, armpits, shoulders, and upper abdomen.
This implies a strong coupling between breast and thorax in the final
statistical shape model

of the female breast. In order to weaken the strong coupling
between the breast and surrounding regions, we propose to
minimize the variance outside the breast region as much as
possible. To achieve this goal, a novel concept called breast
probability masks (BPMs) is introduced. A BPM assigns
probabilities to each point of a 3D breast scan, telling how
likely it is that a particular point belongs to the breast region.
Later, during pairwise registration, we use the BPMs to align
the template to the target as accurately as possible inside the
breast region and only roughly outside. This way, only the
most prominent and global shape variations outside the breast
region will be recovered, effectively reducing the unwanted
variance in these areas to a minimum. Figure 3 illustrates this
idea.

To summarize, the contributions of this paper are three-
fold:

• We introduce the Regensburg Breast Shape Model
(RBSM)—an open-access 3D statistical shape model of
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the female breast built from 110 breast scans. It is avail-
able at https://www.rbsm.re-mic.de/.

• We propose a fully automated, pairwise registration
pipeline used to establish dense correspondence among
our 3D breast scans. It uses breast probability masks
(BPMs) to decouple the breast from the surrounding
regions as much as possible and requires only four land-
marks to guide the registration process.

• We present two exemplary applications demonstrating
how the RBSM can be used for surgical outcome sim-
ulation and the prediction of a missing breast from the
remaining one.

The remainder of this paper is organized as follows: Sect. 2
briefly reviews some related work. Section 3 describes the
entire model building pipeline used to construct the RBSM.
In particular, it formally introduces the notion of a BPM,
followed by a detailed description of the proposed registra-
tion pipeline. Section 4 presents an extensive evaluation of
the RBSM in terms of the common metrics compactness,
generalization, and specificity. Using the RBSM, two exem-
plary applications are showcased in Sect. 5. Finally, Sect. 6
discusses the results, whereas Sect. 7 concludes this article.

2 Related work

In this section, we briefly summarize some related work con-
cerning statistical shape models of the female breast, breast
surgery simulation, and popular techniques for pairwise sur-
face registration used within the context of statistical shape
modeling in general. Note that we have limited our review to
the 3D case.

Statistical shape models of the female breast The litera-
ture about 3D statistical shape models of the female breast
is sparse. In the early work of Seo et al. [45], a 3D statis-
tical shape model was built from 28 breast scans with the
goal of analyzing breast volume and surface measurements.
However, they assume symmetric breasts obtained by sim-
ply mirroring the right breast and did not make their model
publicly available. To date and to the best of our knowledge,
this is the only work primarily addressing the construction
of a statistical shape model from 3D breast scans, which is
thus closest to our work. Besides, Ruiz et al. [44] utilized a
3D statistical shape model built from 310 breast scans for the
validation of a novel weighted regularized projectionmethod
used for 3D reconstruction. As their focus did not lie on the
construction of a well-performing statistical shape model of
the breast, they did not provide detailed information about
the registrationmethod used to establish correspondence, the
training data nor a comprehensive evaluation in terms of com-
mon metrics. Their model is also not publicly shared.

At last, fewworks exist attempting to construct a 3D statis-
tical shape model from magnetic resonance imaging (MRI)
data. Gallo et al. [23] applied principal component analysis
to surface meshes extracted from 46 MRIs taken in prone
position. Further, Gallego and Martel [22] developed a sta-
tistical shapemodel from 415 semi-automatically segmented
breast MRIs for model-based breast segmentation.

Breast surgery simulation Most of the existing methods
for preoperative breast surgery simulation are designed to
simulate alloplastic, implant-based breast augmentation pro-
cedures, either for aesthetic reasons or after mastectomy
as part of BRS. Typically, those methods first generate a
patient-specific, geometric representation of the breast (using
tetrahedral meshes, for instance). Afterward, the soft tissue
deformation caused by implant insertion is simulated using
a geometric and biomechanical model of the implant and
breast, respectively.

As such, Roose et al. [43] used the tensor–mass model
introduced by Cotin et al. [16], a combination of classical
finite element and mass–spring models, for implant-based
breast augmentation planning. De Heras Ciechomski et al.
[19] proposed a web-based tool for breast augmentation
planning which requires only 2D photographs and anthropo-
metric measurements as input and allows the user to choose
from a variety of different implants. Their method auto-
matically reconstructs a 3D breast model and subsequently
applies a tissue elastic model closely resembling the finite
element model. Georgii et al. [24] utilize patient-specific
finite element models generated from 3D breast scans. Com-
bined with a novel mechanism called displacement template,
geometric implant models are no longer required, thus break-
ing up the coupling between implant and enclosing breast.

Besides the simulation of breast augmentation procedures
using implants, somemethods exist especially addressing the
simulation of BRSwithout implant insertion, for example, by
means of autologous fat tissue. Based on Pascal’s principle
and volume conservation, Costa andBalaniuk [15] developed
a novel approach for real-time physically based simulation
of deformable objects, called Long ElementsMethod (LEM).
An extension of LEM, known as theRadial ElementsMethod
[7], was later used by Balaniuk et al. [6] for cosmetic and
reconstructive breast surgery simulation. Williams et al. [55]
employ a finite element approach incorporating theMooney–
Rivlin hyperelasticmaterialmodel for the realistic simulation
of soft tissue to simulate transverse rectus abdominis myocu-
taneous flap breast reconstruction.

Although the majority of the works on state-of-the-art
breast surgery simulation utilize biomechanical models to
predict the breast shape after surgery, an early attempt by
Kim et al. [32] employs an example-based approach. Using
a sparse set of 3D feature point pairs collected on 30 patients
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Fig. 4 An overview of the pipeline used to build the RBSM. We first
establish dense correspondence by means of pairwise surface registra-
tion. Based on BPMs, our method starts by rigidly aligning the template
to the target. Subsequently, a non-rigid alignment is applied in a hierar-

chical, multi-resolution fashion. In this step, BPMs are used to precisely
recover only shape variations of the breast. Finally, we perform clas-
sical Generalized Procrustes Analysis (GPA) and principal component
analysis (PCA) to build the model

before and after surgery as training database, they developed
a linear combination model to predict the surgical outcome.

Formost of the existingmethods, however, various authors
highlighted the disagreement between simulated and actual
outcomes [17,43] or only partially satisfying results for cer-
tain types of breast shapes [53].

Pairwise surface registration During the last few decades,
countless algorithms were proposed tackling the problem of
(pairwise) non-rigid surface registration. To date, however,
none of them were used for 3D breast scan registration.

One of the most widely used methods is the Optimal
Step Non-rigid Iterative Closest Point (NICP) framework
proposed by Amberg et al. [4] and based on the work of
Allen et al. [2]. NICP is the only method already used in
the female breast shape domain to reconstruct a 3D breast
model from a sequence of depth images [33]. Moreover,
NICP was employed to construct the BFM and LSFM. A
second class of non-rigid registration methods is based on
splines, such as Thin Plate Splines (TPS) or B-splines. Pio-
neered by Bookstein [10], TPSwere utilized by Paulsen et al.
[41] to construct a statistical shape model of the human ear

canal. B-splines are extensively used in the free-form defor-
mations framework and, among others, used for the creation
of shape models of the human heart [39]. A third, recently
introduced framework is based on Gaussian Process Mor-
phable Models (GPMMs) introduced by Lüthi et al. [37].
GPMMs are statistical shape models themselves generaliz-
ing classical point-based models as proposed by Cootes et al.
[14]. By means of GPMMs, expected deformations can be
modeled using analytic covariance functions and later used
as a prior for non-rigid surface registration, thus effectively
reducing the search space. This approach was successfully
used by Gerig et al. [25] to build an improved version of the
BFM including facial expressions. Lastly, pairwise non-rigid
surface registration algorithms are built upon the as-rigid-
as-possible (ARAP) real-time mesh deformation framework
proposed by Sorkine and Alexa [46]. This method was suc-
cessfully transferred to the registration domain, yielding to
similar methods constraining deformations to be as con-
formal as possible [59] or as similar as possible [31,57].
Recently, a variant of ARAP was utilized by Dai et al. [18]
to build a shape model of the full human head.
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3 Methodology

This section describes the entire pipeline used to build the
RBSM. As outlined in Fig. 4, we start by establishing dense
correspondence among our training data. Based on a novel
concept called breast probability masks (Sect. 3.1), this is
achieved by means of a fully automated, pairwise registra-
tion pipeline as proposed in Sect. 3.2. Finally, we follow
the typical workflow used to build a point-based statistical
shape model by applying Generalized Procrustes Analysis
and Principal Component Analysis to the registered data set
(briefly summarized in Sect. 3.3).

In what follows, 3D breast scans are represented using tri-
angular surface meshes. A triangle mesh M = (V , E,P)

is fully specified by a set of n vertices V ⊂ N, edges
E ⊂ V × V , and an embedding P = {p1,p2 . . . ,pn} ⊂ R

3.
Sometimes, however, instead of arranging points pi into a
set, it is more convenient to use a matrix notation P =
(p1,p2, . . . ,pn)� ∈ R

n×3. Hence, we will denote a tri-
angle mesh either as M = (V , E,P) or equivalently as
M = (V , E,P).

3.1 Breast probability masks

Given a 3D breast scan represented as triangle mesh M =
(V , E,P), we call

pM : P −→ (0, 1] (1)

a breast probability mask (BPM). Technically, a BPM is a
scalar field defined over M assigning each point pi of a 3D
breast scan a probability pM(pi ) telling how likely it is that
pi belongs to the breast region.

Concrete mapping As a concrete mapping for pM, we pro-
pose to use a normalized sum of elliptical basis functions
(EBFs), centered at the nipples. We use EBFs instead of
ordinary radial basis functions (RBFs) because we found
that they better capture the natural teardrop shape of the
breast (see Fig. 5 for a comparison betweenRBFs and EBFs).
Technically, EBFs are a generalization of RBFs using the
Mahalanobis distance instead of an ordinary vector norm.
Formally, an EBF φ : [0,∞) −→ R centered at a point
c ∈ R

n is of the form φ(x) = φ (dM (x, c)). Here, dM is the
Mahalanobis distance, defined as

dM (x, c) :=
√

(x − c)� S−1 (x − c) , (2)

where S ∈ R
n×n is a symmetric positive definite matrix,

also called covariance matrix. To stress that theMahalanobis
distance depends on S, we write dM (x, c;S) in the following.

Now, in order to define a concrete BPM using EBFs, let
pτ
N ∈ P denote the position of the left (L) and right (R)

nipple, respectively, and τ ∈ {L, R}. We first construct two
individual probability masks for the left and the right breast,
given as

pτ
M(pi ) = φ

(
dM

(
pi ,pτ

N;Sτ

))
. (3)

Hereby, we define φ : [0,∞) −→ (0, 1] as

φ(x) = exp
(
−x2

)
. (4)

Finally, the BPM for a whole 3D breast scan is given as the
normalized sum

pM(pi ) = 1

4

(
pLM(pi ) + p̂LM(pi )

+pRM(pi ) + p̂RM(pi )
)

, (5)

where

p̂τ
M(pi ) = φ

(
dM

(
pi , p̂τ

N; Ŝτ

))
(6)

are shifted BPMs of the left and right breast added to better
mimic the teardrop shape, and p̂τ

N = pτ
N+ tτ with translation

vectors tτ ∈ R
3.

Parameter selection In order to fully define a BPM, appro-
priate matrices Sτ , Ŝτ ∈ R

3×3 and translation vectors tτ ∈
R
3 need to be chosen first. As such, a total of 30 values are

required to be properly determined (six for each Sτ and Ŝτ ,
and three for each tτ ). To simplify that task,we assumediago-
nal covariancematrices and utilize previously expert-marked
landmarks on the 3D breast scans. Specifically, denote the
landmark points shown in Fig. 2 as pSN,pXI ∈ P for sternal
notch and xiphoid, and pτ

LaBP,p
τ
LBP ∈ P for left and right

lateral and lower breast pole, respectively. We then define

Sτ = 1

2
diag

(
dG

(
pτ
LaBP,p

τ
N

) + dG
(
pτ
N,pXI

)
,

dG
(
pτ
N,pτ

LBP

)
, dG

(
pτ
LaBP,p

τ
N

))
,

Ŝτ = 1

2
diag

(
dG

(
pτ
LaBP,p

τ
N

) + dG
(
pτ
N,pXI

)
,

dG
(
pτ
N,pSN

)
, dG

(
pτ
LaBP,p

τ
N

))
,

tτ = pτ
N + 1

5

(
0, dG

(
pτ
N,pSN

)
, 0

)
,

(7)

where dG denotes the Geodesic distance between two points
on the surface mesh. Note that Sτ and Ŝτ differ only in the
second diagonal element.

3.2 Registration of 3D breast scans

Following Fig. 4, the proposed pairwise registration pipeline
is mainly composed of rigid alignment (Sect. 3.2.1) and non-

123



Learning the shape of female breasts: an open-access 3D statistical shape… 1603

Fig. 5 From left to right:
comparison between RBF, EBF,
and a sum of two EBFs,
illustrated as contour plots.
While a simple RBF or EBF is
not able to accurately mimic the
typical teardrop shape of the
breast, a sum of two EBFs
comes close

rigid alignment (Sect. 3.2.2). To speed up convergence, the
latter is carried out in a hierarchical, multi-resolution fashion
(Sect. 3.2.3).

Both phases make extensive use of BPMs in order to align
a template surface S = (V , E,P) to a target T as accurately
as possible inside the breast region and only roughly outside,
effectively decoupling the breast from the rest of the thoraxby
reducing the varianceoutside the breast region to aminimum.
This is justified as the covariance cov(x, y) becomes smaller
if var(x) or var(y) is lowered, following from thewell-known
fact that |cov(x, y)| ≤ √

var(x)
√
var(y) (which holds via the

Cauchy–Schwarz inequality).
Finally, note that the target surface T can be given in any

representation that allows for closest point search. We use a
triangular surface mesh but write T ⊂ R

3 for the sake of
notational simplicity.

3.2.1 Rigid alignment

The overall goal of the rigid alignment is to move the tem-
plate as close as possible to the rigid part of the target, which
we define as the thorax without the breast. In particular, we
expect that the thoraxes of two subjects without the breast
region can be sufficientlywell aligned ifwe assume the breast
to be the only part of the thorax that deforms non-rigidly.
Based on this assumption, the absence of suitable landmarks,
and due to the fact that our initial 3D breast scans are already
reasonably well aligned (see Sect. 4.1), we propose a modi-
fied version of the Iterative Closest Point (ICP) algorithm,
originally introduced by Besl and McKay [8].

Essentially, compared to the standard version of the ICP
algorithm, our modified version differs in the following
three aspects: (i) A scaling factor is added to the rigid
transformation effectively allowing for Euclidean similarity
transformations [20,60]. Secondly, (ii) to ensure that only
the rigid parts of the 3D breast scans are used for alignment,
correspondences, where both points have a high probabil-
ity belonging to the breast region, are discarded. This is
implemented by thresholding the template and target BPMs.
Finally, (iii) rotations are restricted to the x-axis correspond-
ing to the transversal plane. Rotations around the y- and
z-axis (sagittal and coronal plane) possibly introduced due
to severe overweight in conjunction with an uneven distribu-
tion of abdominal fat could destroy the initial alignment and

lead to misalignment. In any case, asymmetries introduced
due to the thorax should not affect the rigid alignment of the
template.

3.2.2 Non-rigid alignment

Given the rigidly aligned templateS = (V , E,P), the goal of
the non-rigid alignment is to gradually deform S into a new
surface S ′ = (V , E,P′) with identical topology such that S ′
is as close as possible to the target T inside the breast region.
Following various authors including Jiang et al. [31] and
Yamazaki et al. [57], we formulate our non-rigid registration
problem using the following nonlinear energy functional

F
(
P′) = FD

(
P′) + αFR

(
P′) + βFL

(
P′) , (8)

where FD is a distance term used to penalize the point-to-
point distance between the template and target surface, FR is
a regularization term constraining deformations as similar as
possible, and FL constitutes a landmark term ensuring cer-
tain points to be matched. α, β ≥ 0 are weights controlling
the individual contribution of each term to the cost func-
tion. Minimizing F finally leads to the new points P′ of the
deformed template surface S ′, i.e.,

P′ = argmin
P′∈Rn×3

F(P′). (9)

Adapting the strategy proposed by Allen et al. [2], instead
of computing (9) only once, we minimize F several times
but each time lowering the regularization weight α in (8).
As later demonstrated by Amberg et al. [4], this strategy is
able to recover the whole range of global and local non-rigid
deformations efficiently. Following various authors [31,46],
the optimization problem in (9) is solved using an alternat-
ing minimization (AM) approach as briefly summarized in
Appendix A.

Distance term The distance term FD is used to attract the
template S to the target T . Assuming fixed correspondences
betweenboth surfaces, i.e., {(p1,q1), (p2,q2), . . . , (pn,qn)}
with qi ∈ T being the closest point to pi , the distance term
can be written as

FD(P′) = 1

2

∥∥C (
P′ − Q

)∥∥2
F , (10)

123



1604 M. Weiherer et al.

where C := diag(c1, c2, . . . , cn), ci ≥ 0 for all i ∈
{1, 2, . . . , n} are weights used to quantify the reliability of
a match, and Q := (q1,q2, . . . ,qn)� ∈ R

n×3. Using the
BPMs pS and pT of the template and target, we set

ci = pS(pi ) + pT (qi )
2

. (11)

This way, correspondences (pi ,qi )mapping from one breast
region to the other have a greater impact on the overall
distance term as ci ∈ (0, 1] becomes large in this case. Con-
versely, the influence tends to zero if ci → 0, i.e., if both
points are less likely to belong to the breast region. As such,
the deformation of points pi on the template with a small
value for ci is mainly controlled by the regularization term,
as previously described by Allen et al. [2].

Regularization term The regularization term FR should
prevent the template surface from shearing and distortion
while simultaneously ensuring structure preservation and
smooth deformations. To do so, we adapt the consistent
as-similar-as-possible (CASAP) regularization technique in
which deformations are constrained to be locally as similar
as possible [31,57]. Specifically, given a local neighborhood
Ei ⊂ E around each point pi , the template surface is only
allowed to move in terms of an Euclidean similarity trans-
formation

p′
j − p′

k = siRi
(
p j − pk

) ∀( j, k) ∈ Ei , (12)

where si > 0 is a scaling factor and Ri ∈ SO(3) a rotation
matrix. Following Chao et al. [13], we define Ei as the set
containing all (directed) edges of triangles incident to pi ,
also known as spokes-and-rims. Finally, our CASAP regu-
larization term reads

FR(P′) = 1

2

n∑
i=1

wi

⎡
⎣ ∑

( j,k)∈Ei

w jk

∥∥∥
(
p′
j − p′

k

)
− siRi

(
p j − pk

)∥∥∥
2

2
+

λ
∑
l∈Ni

wil ‖Ri − Rl‖2F
⎤
⎦ , (13)

where weights wi > 0 are added to individually control
the amount of regularization for each particular point. As
mentioned above, since the deformation of points pi with a
small value for ci is mainly controlled by the regularization
term, we define

wi = 1

(h − 1)ci + 1
with

1

h
≤ wi < 1 (14)

for all i ∈ {1, 2, . . . , n} and h ∈ N
+ (we used h = 2 through-

out this paper). As seen, this strategy keeps points pi of the
template relatively stiff if (i) pi has a low probability belong-
ing to the breast region and (ii) if the corresponding point
on the target is also not likely to be part of the breast region
(because wi → 1 if ci → 0), thus effectively preventing
the template from adapting too close to the target outside the
breast region. Lastly, Ni ⊂ V in (13) denotes the one-ring
neighborhood of the i-th point and w jk ∈ R are the popular
cotangent weights, see, e.g., [12]. λ ≥ 0 is usually set to
0.02A, where A ≥ 0 is the total surface area of S [34].

Landmark termThe goal of the landmark term FL is to keep
certain positions (i.e., landmarks) fix during the registration
process. Let I ⊂ N be an index set containing the indices of
the m landmarks specified on the template surface S. Define
a matrix D ∈ R

m×n as

D = (di j ) :=
{
1, if j ∈ I ,

0, otherwise
(15)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Next, denote
the corresponding landmarks on the target surface by
{q1,q2, . . . ,qm} ⊂ T . Then, the landmark term is defined
as

FL(P′) = 1

2

∥∥DP′ − QL
∥∥2
F , (16)

where QL := (q1,q2, . . . ,qm)� ∈ R
m×3.

3.2.3 Multi-resolution fitting strategy

Following common practice and to speed up convergence,
instead of applying the previously described non-rigid align-
ment only once, we employ a hierarchical, multi-resolution
fitting strategy composed of initial fitting, coarse fitting, and
fine fitting (see also Fig. 4).

Initial fittingHaving a low-resolution instance of the rigidly
aligned template at hand, the goal of the initial fitting is to
roughly adapt the coarse template to the key features (i.e.,
landmarks) of the target. To do so, we strictly prioritize the
landmark constraints and do not use BPMs in this phase.

Coarse fitting In this step, the initially fitted low-resolution
template is gradually deformed toward the target.

Upsampling Next, the deformation obtained from the pre-
vious step is applied to the original, full-resolution template.
This is achieved using a concept called Embedded Defor-
mation, introduced by Sumner et al. [50]. In essence, the
deformation of the coarse template obtained from the previ-
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ous step is transferred to the template by linearly interpolating
the transformation at each point.

Fine fitting Lastly, the upsampled template is fitted to the
target again to produce the final result.

3.3 Model building

Once the data set is brought into correspondence, we follow
the typical workflow used to build a classical point-based
statistical shape model as proposed by Cootes et al. [14].
For notational simplicity, instead of stacking points P of a
triangular mesh M = (V , E,P) into a matrix P ∈ R

n×3

as before, we use a vectorized representation, denoted as
x = vec(P) ∈ R

3n in the following.
Briefly, given a set of k breast scans {x1, x2, . . . , xk} ⊂

R
3n in correspondence, we first perform Generalized Pro-

crustes Analysis (GPA) as introduced by Gower [26]. GPA
iteratively aligns the objects to the arithmetic mean x̄ ∈
R
3n (successively estimated from the data) by using an

Euclidean similarity transformation, effectively transform-
ing the objects into the shape space. Secondly, principal
component analysis (PCA) is carried out on the Procrustes-
aligned shapes. Let {λ1, λ2, . . . , λq} ⊂ R

+ be the q < k
nonzero eigenvalues (also called principal components (PCs)
in this context) of the empirical covariance matrix calcu-
lated from the data and sorted in a descending order. Denote
the corresponding eigenvectors as {u1,u2, . . . ,uq} ⊂ R

3n .
Then, a statistical shape model can be interpreted as a linear
function M : Rq −→ R

3n defined as

M(α) = x̄ + Uα, (17)

where U := (u1,u2, . . . ,uq) ∈ R
3n×q . To ensure plausibil-

ity of the newly generated shapes, αi is usually restricted to
|αi | ≤ 3

√
λi for all i ∈ {1, 2, . . . , q}. If a (possibly unseen)

shape x′ ∈ R
3n is in correspondence with the model and

properly aligned, it can be reconstructed from M in a least-
squares sense by using

α∗ = U−1 (
x′ − x̄

)
(18)

as the model parameters, i.e., x′ ≈ M(α∗). The number
q < k of retained PCs is chosen so that the model typi-
cally represents a fixed proportion of the total variance, e.g.,
98%.

4 Evaluation

Based on our 3D breast scan database which we present in
Sect. 4.1, several experiments were conducted in order to
evaluate the proposed statistical shape model (Sect. 4.2).

Table 1 An overview of the 3D breast scan database used to build the
RBSM

Mean (± SD) Range [min–max]

Age [years] 40.78 (± 14.30) 18.00–83.00

BMI [kg/m2] 23.66 (± 3.57) 16.90–38.27

Breast volume [cc]

Left 477.23 (± 242.94) 70.60–1,258.90

Right 481.45 (± 240.27) 80.00–1,609.30

Difference 80.12 (± 81.34) 0.30–367.40

It includes 110 textured 3D breast scans

4.1 Data

Our database consists of 110 textured 3D breast scans col-
lected at our institution (St. Josef Hospital Regensburg)
using the portable Vectra H2TM scanning system (Canfield
Scientific, New Jersey, USA). The H2 system employs pho-
togrammetry to reconstruct a 3D surface mesh from a series
of 2D images with a resolution of 3.5mm and a maximal
capture volume of 70 × 41 × 40 cm3 (width × height ×
depth). In our case, in total three photographs were taken of
each subject: one from a frontal view and two from a lat-
eral view (±45◦). Note that due to the standardized distance
and angles from which the photographs are taken, the recon-
structed 3D breast scans are already reasonably well aligned
and consistently oriented.

A previously developed standardized scanning protocol
[28] was used to ensure a common pose and same imag-
ing conditions for all participants. In brief, all subjects
were asked to stand in an upright posture and abduct both
arms by an angle of 45◦. (A telescopic stick was used
to support the subjects in holding their arms fixed at the
specified angle.) This posture produces a natural-looking
breast shape and allows to capture the whole breast as iso-
lated as possible. Moreover, it is fast and easy to adopt for
all participants regardless of age, body weight, or medical
history.

A compact overview of some key parameters in our
database is given in Table 1. In addition, 62 out of 110 par-
ticipants have at least one ptotic breast. Of these, 15 women
show different ptosis grades on the left and right breast. 72
out of 110 participants received some kind of breast surgery
such as alloplastic or autologous breast reconstruction or aug-
mentation.

4.2 Experiments and results

Following commonpractice,we evaluate our statistical shape
model using the well-known metrics compactness, general-
ization, and specificity as proposed by Styner et al. [48]. Reg-
istration results are assessed by the classical distance-based
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Fig. 6 From left to right: compactness, generalization, and specificity of statistical shape models built from 3D breast scans registered either with
(i.e., the RBSM) or without using BPMs during registration

Fig. 7 MSE (left) and angle
distortion (right), calculated
from 3D breast scans registered
with and without BPMs

D
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mean squared error (MSE) between deformed template and
target. In addition, the angle distortion between the deformed
templateS ′ and the original templateS is determined in order
to quantify the amount of shearing introduced due to non-
rigid registration. This is achieved by simply averaging the
absolute deviation between the inner-triangle angles ofS and
S ′ over all triangles [54].

For all experiments, the same template S was used during
registration. In particular, the 3D breast scan of a healthy,
non-operated subject was chosen and subsequently mirrored
along the sagittal plane to produce a perfectly symmetrical
template. After isotropic remeshing and Laplacian smooth-
ing, a regular surface mesh with an average edge length of
2.05mm was obtained. It consists of 30,924 vertices. The
coarse, low-resolution version of our template was created
using mesh simplification techniques and includes 646 ver-
tices. All relevant parameters used for registration are listed
in Appendix B.

The complete registration pipeline was implemented in
C++.Statistical shapemodelingwas performedwith anopen-
source framework called Scalismo (https://scalismo.org/),
implemented in Scala and based on Statismo [36].

4.2.1 On the effect of BPMs

The first experiment should evaluate our novel BPM-based
registration technique, its influence on the resulting sta-
tistical shape models, and, in particular, whether or not
BPMs are able to weaken the strong coupling between
the breast and surrounding regions. As such, we compare
two different models: The first one is constructed from 3D
breast scans brought into correspondence using the proposed
approach based on BPMs (i.e., the RBSM). The second
model is built from 3D breast scans registered without using
BPMs.

Figure 6 shows the evaluation metrics of the resulting
statistical shape models. As seen, although the model built
without BPMs is more compact than with BPMs (i.e., the
RBSM) when considering only the very first PCs, it is also
the model that generalizes worse. Specifically, when using
all 109 available PCs a generalization error of 0.65mm is
reported. For comparison, the RBSM shows a generalization
error of only 0.17mm when using the same number of PCs.
Finally, the RBSM constantly achieves the lower specificity
error of about 2.8mm if more than 30 PCs are used.

Figure 7 summarizes the registration results, quantified in
terms of MSE and angle distortion. As expected, registra-
tion without using BPMs clearly achieves the lower MSE of
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Fig. 8 Comparison between five random samples from the RBSM (top
row, generated from 3D breast scans registered using BPMs) and five
random samples from amodel constructedwithout usingBPMs (bottom
row). The samples are colored according to the distance from the mean

x̄. As such, the red areas underwent a high deformation, whereas blue
regions are rather stiff. For samples drawn from the RBSM, the regions
showing the highest variation are almost always the breast region, indi-
cating a solid decoupling between breast shape and thorax

Fig. 9 The first eight principal modes of variation from the RBSM, visualized by either adding (top row) or subtracting (bottom row) 3
√

λiui from
the mean x̄, displayed on the left. Together, they represent about 85% of the total variance present in the dataset

1.05mm as the goal here is to register the template to the tar-
get as close as possible. For comparison, the MSE achieved
when using BPMs is 2.98mm. However, it is important to
remember that the goal of the BPM-based registration is to
align the template as precisely as possible to the target only
inside the breast region. Therefore, the overall MSE between
template and target might not reflect the actual registration
quality well (see, e.g., Fig. 3). In terms of angle distortion,
only a small difference is noticeable between registration
with and without BPMs, respectively. In particular, registra-
tion without BPMs caused the angle distortion to increase by
only 0.008 degrees on average.

In order to further investigate to which extend BPM-based
registration is able to weaken the strong coupling between
breast region and thorax, Fig. 8 shows some random samples
from the RBSM and the model built from 3D breast scans
registeredwithout BPMs. The samples are colored according
to their distance to the mean shape, effectively providing a
measure of variation. Interestingly, the areas of the highest
variation in the samples drawn from the RBSM are almost
always located at the breasts. The surrounding regions are
rather stiff, indicating low variance and a quite well decou-
pling between breast and thorax. Hence, the RBSM is able
to produce a variety of breast shapes without altering the
whole thorax too much, also reflected in the principal modes

of variation shown in Fig. 9. Contrary, the area of the high-
est variation in the samples generated from the model built
without BPMs is oftentimes not the breast region.

4.2.2 Howmuch data are needed?

An often arising question in the context of statistical shape
modeling concerns the amount of training data needed to
build a reasonably well-performing model. Generally, this
question very much depends on the amount of variability
samples from a particular class of objects are expected to
show. As a rule of thumb, a good training set should always
reflect the whole bandwidth of possible variations likely to
occur within a target population. The goal of this experiment
is to test howmuch data is needed to build a well-performing
statistical shapemodel of the female breast. To do so, we ran-
domly sample 30, 60, and 90 breast scans from our database
and subsequently compare the resulting models with the
model containing all 110 breast scans (i.e., the RBSM). To
avoid sampling bias, the whole procedure was repeated three
times, and results were averaged.

Figure 10 shows the results in terms of compactness, gen-
eralization, and specificity. Regarding compactness, it can
be clearly seen that the model built with 30 breast scans is
the most compact one, followed by the models constructed
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Fig. 10 From left to right: compactness, generalization, and specificity of statistical shape models built from randomly sampled subsets of the
training data

Fig. 11 Generalization ability of a statistical shape model built from
37 operated breasts, calculated using the 38 non-operated breasts as test
set. For comparison purposes, a secondmodelwas trainedwith the same
number of non-operated breasts. Its generalization ability was evaluated
on the 38 non-operated breasts using leave-one-out cross-validation

from 60 and 90 breast scans and the RBSM. On the other
hand, the model built from only 30 breast scans shows the
worst generalization ability (about 1.07mm when using all
29 PCs available). The model containing 90 breast scans and
the RBSM achieved very similar results, both showing a gen-
eralization error of about 0.6mm when considering the first
29 PCs. As expected, whereas the RBSM is the most specific
one, the model learned from only 30 breast scans clearly
performs the worst.

4.2.3 Building a statistical shape model from operated
breasts

As already mentioned earlier, a quite big proportion of our
3D breast scans (72 out of 110) result from subjects who
already received some kind of breast surgery. It is thus natu-
ral to assume that theRBSMmight be biased toward operated
breasts and is therefore not able to explain non-operated
breasts well. The goal of this experiment is thus to verify how
well amodel built from operated breasts is able to reconstruct
3D breast scans from participants that did not undergo breast
surgery. In particular, a statistical shape model is built from a

random subset of 37 (out of 72) operated breasts. Afterward,
generalization ability is evaluated using the 38 non-operated
breasts as test set.Again, to avoid sampling bias, the sampling
procedure was repeated three times, and results were aver-
aged. 37 out of the 38 non-operated breasts are the basis for
a second model, calculating the generalization ability using
leave-one-out cross-validation.

The results are shown in Fig. 11. As it can be seen,
although our database is obviously biased toward operated
breasts, a model built only from operated breasts is able to
explain non-operated breasts quite well. Specifically, starting
with a generalization error of over 3.5mm, the generalization
ability increases constantly as the number of PCs increase.
Finally, a generalization error of 0.77mm is achieved when
using 36 PCs. For comparison, the model constructed from
37 non-operated breasts is able to reconstruct non-operated
breasts only slightly better with an error of 0.71mm when
using the same number of PCs.

4.2.4 Generalization ability using clinical parameters

Our final experiment evaluates the generalization ability of
theRBSMusing three common, clinical parameters typically
obtained on the breast. This way, we aim to show whether or
not reconstructions obtained from the RBSM not only well
explain unseen objects in general, but also preservemeaning-
ful clinical parameters. Technically, this is quite similar to the
generalization ability as defined by Styner et al. [48]. How-
ever, instead of calculating point-to-point distances between
an unseen 3D breast scan and its corresponding reconstruc-
tion from the RBSM, we compare three anthropometric
measurements obtained on each mesh. The following three
distances between expert-annotated landmarks aremeasured:

• sternal notch to left nipple (SN-NL),
• sternal notch to right nipple (SN-NR), and
• left nipple to right nipple (NL-NR).
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SN-NL
SN-NR
NL-NR
mean

Fig. 12 Generalization ability of the proposed RBSM, evaluated by
comparing anthropometric measurements obtained on an original 3D
breast scan and its corresponding reconstruction from the model. The
average generalization error of the three measurements considered is
also shown

Afterward, the absolute difference between the ground-truth
distance taken on the original 3D breast scan and the distance
obtained from the reconstruction is calculated for each of
the three anthropometric measurements. Similar to ordinary
generalization based on point-to-point distances, we employ
leave-one-out cross-validation for all 110 breast scans to cal-
culate our newly defined generalization ability.

The results are shown in Fig. 12. As it can be seen, using
less than 30 PCs leads to a high generalization error for all
three anthropometricmeasurements, ranging between 15mm
and 45mm. However, as the number of PCs increases, the
generalization error drops significantly and remains low for
the SN-NL and SN-NR distances. Interestingly, only the
NL-NR distance increases again up to 20mm. In summary,
all three anthropometric measurements are best preserved
when using 109 PCs, showing an average generalization
error of 1.82mm. The individual generalization errors when
using 109 PCs are 0.66mm (SN-NL), 3.24mm (SN-NR), and
1.57mm (NL-NR).

5 Applications

To further underline the expressiveness of the proposed
model, this section demonstrates two exemplary applications
for the RBSM that may be used for breast surgery simulation.
The first application (Sect. 5.1) is based on the feature edit-
ing framework [2,9] and allows to specifically manipulate
clinical parameters on the breast. In the second application
(Sect. 5.2), we demonstrate how the RBSM can be used to
predict a missing breast from the remaining one by utilizing
posterior shape models [1].

Fig. 13 Systematic breast shape editing for two examples (top row and
bottom row) using the RBSM and three common anthropometric dis-
tances as features. Note that all measurements are given in centimeters

5.1 Breast shape editing

So far, our statistical shape model provides a convenient way
to generate newbreast shapes by simply varying its parameter
α ∈ R

q within a suitable range. However, a major drawback
of this parameterization is the non-interpretability of α in the
sense that it does not correlate with any meaningful features
of the breast. This clearly hinders the generation of breast
shapes with certain properties or the ability to alter an exist-
ing shape according to some clinical parameters, for instance.
To this end, the feature editing framework proposed by Blanz
and Vetter [9] and extended by Allen et al. [2] overcomes this
drawback by linearly relating features with shape parame-
ters. Briefly, being l feature values { fi1, fi2, . . . , fil} ⊂ R

l

for each individual given and stacked into a feature vec-
tor fi := ( fi1, fi2, . . . , fil , 1) ∈ R

l+1, i = 1, 2, . . . , k, a
matrix F := (f1, f2, . . . , fk) ∈ R

(l+1)×k is defined. Arrang-
ing the shape parameters of each individual in a matrix
A := (α1,α2, . . . ,αk) ∈ R

q×k and following Allen et al.
[2], F and A can be related by means of an unknown trans-
formation matrixM ∈ R

q×(l+1) satisfying

MF != A �⇒ M = F+A, (19)

whereF+ denotes theMoore–Penrose inverse ofF. Using the
matrixM, the shape of an individual can be edited by simply
providing new feature values. If �f denotes the component-
wise difference between a target feature vector and the actual
feature vector of an individual, the new shape parameter α′
is obtained as α′ = α + M�f . The edited shape is given by
M(α′).

For our exemplary application, we use the clinical param-
eters SN-NL, SN-NR, and NL-NR as features and set q =
k−1. Two exemplary results are shown inFig. 13. TheRBSM
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Fig. 14 Predicting the right breast (marked as missing in red) from the
left one for two examples (top row and bottom row) using the RBSM

not only allows specific manipulation of important anthropo-
metric distances but also produces at the same time plausible
and natural-looking breast shapes, confirmed by the clinical
experts involved in this project.

5.2 Breast shape prediction

While our first application is designed to alter key clinical
parameters of the breast, this section demonstrates how the
RBSM can be used to predict a missing breast from the exist-
ing one by means of posterior shape models [1].

Given an unseen 3D breast scan in correspondence with
the template and represented as x ∈ R

3n , the area enclos-
ing the missing breast is marked first. Denote the indices
of marked points as J ⊂ N. Following Albrecht et al. [1],
the remaining r := n − |J | points provide known observa-
tions which we use to compute a posterior mean x̄p ∈ R

3n .
It is the likeliest reconstruction of the missing breast. For-
mally, denote as x̄∗ ∈ R

3r and U∗ ∈ R
3r×q the sub-vector

and sub-matrix obtained by removing those entries from x̄
and U corresponding to the selected points in J . Similarly,
x∗ ∈ R

3r represents the target 3D breast scan after removing
the marked points. Then,

x̄p = x̄ + U
(
U�∗ U∗ + σ 2Iq

)−1
U�∗ (x∗ − x̄∗) , (20)

whereσ 2 ≥ 0 is a small variance accounting for the deviation
of x∗ from themodel [1] and Iq ∈ R

q×q is the identitymatrix.
Two exemplary results are shown in Fig. 14. Note that,

compared to simply mirroring the remaining breast, the pre-
diction obtained from theRBSM is equippedwith a statistical
probability. Hence, itmay not be themost symmetrical result,
but, more importantly, the likeliest and probablymost natural
one. This is crucial especially in BRS, where the goal is to
reconstruct a breast looking as natural as possible.

6 Discussion

The following section discusses the most important insights
gained from experimental evaluation and also summarizes
some limitations of our method.

6.1 Decoupling between breast and thorax

The experimental evaluation showed that BPM-based regis-
tration is able to decouple the breast region from the thorax
well. The areas with the highest variation in random samples
drawn from the RBSM are almost always coincident with
the breast region whereas the thorax is kept relatively stiff.
Hence, a variety of different breast shapes can be generated
independently from the surrounding areas or without alter-
ing the thorax too much, implying a quite well decoupling
between breast and thorax. This can be also verified fromFig.
3, showing that the unwanted variance of the surrounding
regions is properly reduced when using BPM-based registra-
tion. Furthermore, the fact that our feature editing application
is able to change only the requested features without altering
the shape of the thorax supports our observations.

Finally, we also want to note that there might be an
alternative strategy for breaking up the strong correlation
between breast and surrounding regions. In particular, the
framework proposed by Wilms et al. [56] allows construct-
ing statistical shape models with a locality assumption by
manipulating the sample covariancematrix. Distant areas are
decoupled by explicitly setting nonzero covariances between
those points to zero. This way, covariances between points
in the breast region and points outside could be set to zero,
effectively decoupling those regions. A similar but prob-
ably easier way to localize statistical shape models is by
using GPMMs as described by Lüthi et al. [37]. We believe,
however, that minimizing variances instead of covariances
(between pairs of points) is a more intuitive way to weaken
the coupling between breast and thorax. Note that there is a
strong relation between both approaches since |cov(x, y)| ≤√
var(x)

√
var(y).

6.2 Landmarks guiding the registration process

Using only four landmarks (both nipples aswell as both lower
breast poles) for non-rigid registration is quite uncommon.
Most of the existing methods need a lot more points to guide
the registration process reasonably well. For instance, the
registration of facial 3D scans for the construction of sta-
tistical shape models is usually guided by about 60 to 80
landmarks, see, e.g., [11,25]. Due to human anatomy, col-
lecting such a huge amount of landmarks on the female
breast is challenging and a fundamental problem of 3D breast
scan registration. Except for the nipples (and partially the
lower breast poles), there are no landmarks that can be reli-

123



Learning the shape of female breasts: an open-access 3D statistical shape… 1611

ably detected only through visual inspection and consistently
across a wide range of differently-shaped breasts.

Besides anatomical points, additional landmarks based on
easy-detectable, non-bony structures may be used. This way,
the lower breast pole was simply defined as the lowest (most
caudal) point of the breast. From amedical point of view, this
is indeed a valid definition of a landmark that is also used
in clinical practice. Based on our collected data, however,
it turns out that this definition is not sufficiently precise to
be used for registration purposes. The actually determined
lower breast poles were oftentimes not accurately located
at the lowest point of the breast. As a result, the initially
detected points had to be manually refined in about 40% of
the subjects.

Another fundamental issue is the non-existence of easy-
detectable landmarks on the lateral part of the breast. The
absence of those points poses a serious problem in our 3D
breast scan registration. In particular, when not already quite
well aligned initially, the template has no chance of being
pulled laterally due to the missing guidance.

To conclude, detecting landmarks on 3D breast scans reli-
ably is challenging. Ultimately, since a physical examination
is required to detect anatomical landmarks, automatic land-
mark detection algorithms based on 3D breast scans (only
capturing the surface of the body) are almost impossible to
develop. Additionally, it is important to note that even in
some participants clearly detectable landmark points would
be present, one has to keep in mind that those landmarks
always need to be consistently located across all subjects.
By means of the proposed registration pipeline, however, we
demonstrated that 3D breast scan registration is generally
possible by providing only four landmarks.

6.3 BPM-based registration

Our quantitative evaluation clearly indicates that BPM-based
registration produces superior results than registration with-
out BPMs, affecting both, registration and model quality.
When using BPMs, only a little distortion was introduced. In
addition, although only four landmarks are provided, pretty
well correspondences are established. We observed only
minor correspondence errors when randomly sampling from
the RBSM.

Regarding the EBF-based representation of the BPMs,
we can conclude that EBFs are quite well suited to capture
the natural teardrop shape of the breast. However, in some
cases, we observed that the current BPMs are not always
able to properly capture the entire breast region, especially
if the breast does not follow a typical teardrop shape. The
reason is the restriction of the covariance matrices (occur-
ring in the Mahalanobis distance) to be diagonal, pulling off
a lot of flexibility for the BPM to capture unusual breast
shapes. We expect that if the full covariance matrix would

be specified, better BPMs can be constructed. However, this
will clearly hinder the automatic parameter selection as 30
values need to be carefully determined for each 3D breast
scan.

Lastly, it is important to note that our rigid alignment will
completely fail to estimate the correct transformation if the
initial alignment is bad. This is a well-known behavior of the
ICP algorithm as it does not optimize for a globally optimal
transformation. Since our 3D breast scans are initially quite
well aligned and consistently oriented due to the standardized
data acquisition using photogrammetry, we did not run into
this problem.

6.4 3D breast scan database

Although our 3D breast scan database contains nearly twice
as many operated than non-operated breasts (72 operated,
38 non-operated), the RBSM is likely to show only a minor
bias toward operated breasts. This is supported by the fact
that a model built from a randomly chosen subset of 37
operated breasts is able to reconstruct non-operated breasts
with an almost similar error than a model trained and tested
on the same number of non-operated breasts. Specifically,
an absolute difference of 0.06mm between both reconstruc-
tions was reported. Intuitively, this suggests that the operated
breasts contained in our database look quite natural (or, at
least, similar to non-operated ones), making it challenging
to decide whether a particular patient received breast surgery
or not. It is, however, important to note that this experiment
was conducted by considering only a subset of 37 operated
breasts. This is because otherwise, a model built from an
equal amount of non-operated breasts could not be con-
structed for comparison purposes. On the other hand, the
RBSM contains 72 operated breasts. However, even if the
absolute difference between a reconstruction obtained from
a model trained on operated breasts and one that includes
only non-operates breasts scales exponentiallywith the num-
ber of operated breasts considered, an absolute difference of
0.23mm would be reported for the RBSM. It is thus valid to
assume that the bias introduced due to operated breasts will
not hinder the RBSM from explaining non-operated breasts
sufficiently well.

Regarding the amount of data, our experiments confirmed
what was expected: the more data, the better. The RBSM
(containing all 110 breast scans) clearly outperforms the
other models trained only on a subset of the data. Our exper-
iments do not allow a conclusion about whether or not 110
breast scans are already enough in order to represent the
vast amount of possible breast shapes well. However, the
difference between 90 and 110 breast scans in terms of
generalization and specificity is quite small (see Fig. 10)
strengthening the impression of being near convergence.
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Besides, we believe that in order to provide better pose-
standardized training data, a more advanced technical setup
is needed in which the movement of arms and shoulders is
further constrained. This, however, would lengthen thewhole
data acquisition which might then become unfeasible to be
applied in a clinical environment.

7 Conclusion and outlook

This paper proposed the RBSM—the first publicly available
3D statistical shapemodel for the female breast, learned from
110 breast scans. Our extensive evaluation reveals a general-
ization ability of 0.17mm and a specificity error of about
2.8mm when using all 109 PCs available. Together with
the model, a fully automated, pairwise surface registration
pipeline was presented which requires only four landmarks
to guide the registration process. In order to break up the
strong coupling between breast and thorax and thus being
able to capture the actual breast shape as isolated as possible,
we proposed to minimize the unwanted variance of the sur-
rounding regions by means of a novel concept called BPMs.
Defined over a surfacemesh and based on EBFs, BPMs allow
for a probabilistic definition of the breast region and hence
overcomes the difficulty in determining an exact delineation
of the breast. Later, BPMs are incorporated into the regis-
tration pipeline in order to align the template as accurately
as possible inside the breast region and only roughly out-
side. With our experiments, we could show that this strategy
effectively reduces the unwanted variance outside the breast
region and hence, decouples the breast from the surrounding
areas very well. As a result, the RBSM is able to generate a
variety of different breast shapes quite independently from
the thorax.

In our future work, we ultimately plan to combine phys-
ically motivated deformable models and statistical shape
models of the breast in order to enable more realistic and
statistically plausible surgical outcome simulation for BRS.
The proposed RBSM is seen as a first step toward this goal.
Moreover, although the results of the proposed sample appli-
cations look visually pleasing and promising from a medical
point of view, further evaluation is needed in order to assess
the practical impact.

Besides the two exemplary applications shown in this
paper, there is room for plenty of different applications,
extensions, and improvements of our model. Inspired by
recent work of Göpper et al. [27], an interesting future appli-
cation could include a thoracic wall into the RBSM to enable
breast volume estimation from 3D surface scans. Further-
more, since our model is generative, it could be conveniently
used for data augmentation in the machine learning domain.
TheRBSMmay also be used as a prior for surface registration
algorithms, effectively reducing the search space of possi-

ble deformations. Following the ideas of Booth et al. [11],
so-called bespoke models (statistical shape models trained
from a dedicated subset of the training set) may be built,
for example, for different classes of BMIs, ptosis grades, or
breast volumes. Additionally, instead of one global model
accounting for the whole breast, two individual models for
the left and right breast could be built and subsequently com-
bined. Lastly, our rigid alignment needs to be improved to be
able to deal with an arbitrary initial alignment. For instance,
more robust ICP variants such as Go-ICP [58] may be used
or advanced feature detectors (based on heat or wave ker-
nel signatures [5,51] or multi-scale mean curvatures [40],
for instance) combined with a robust outlier detection to find
reliable correspondences for transformation calculation.
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Appendix A. Nonlinear optimization of F
using AM

In this section, we briefly summarize the alternating mini-
mization (AM) approach used to solve the nonlinear opti-
mization problem in (9). Before we proceed by adapting the
AMmethod to our specific problem, we note that the regular-
ization term FR is actually supposed to have three parameters.
Besides the new points P′, the scales {s1, s2, . . . , sn} as
well as rotations {R1,R2, . . . ,Rn} are also unknown. Con-
sequently, the optimization procedure needs to take into
account all three variables. AM does this by independently
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optimizing for each variable, while the remaining variables
are fixed.

Appendix A.1. Optimization for scale and rotation

Tobeginwith,wefirst perform some algebraicmanipulations
to simplify further calculations. Additionally, according to
Horn et al. [29], however, using the formulation of (12) leads
to an asymmetry in the determination of the optimal scale
factor during the optimization process. That is, if we trans-
form the surface S into S ′, then the inverse scaling factor
from S ′ to S is in general not 1/s as one would expect. We
thus use the following symmetric version as suggested by
Horn et al. [29], which is given by

1√
si

(
p′
j − p′

k

)
= √

siRi
(
p j − pk

) ∀( j, k) ∈ Ei .

(A.1)

Using the fact that ‖Q − R‖2F = 6 − 2 tr
(
R�Q

)
for all

Q,R ∈ SO(3), we can finally rewrite (13) into
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2

− 2
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wherewe defined e′
jk := p′

j −p′
k and e jk := p j −pk .Wewill

use this symmetric representation of FR for the calculation
of the optimal scale and rotation, both presented next.

Scale Taking partial derivative
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and setting it to zero yield
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since wi , si > 0.

Rotation Next, we solve for the optimal rotation Ri . Drop-
ping terms of FR that do not depend on Ri , using the fact
that tr

(
vw�) = w�v for all v,w ∈ R

n , and exploiting some
well-known facts of the trace, we are remained with
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(A.5)

This problem can be efficiently solved using a singular value
decomposition of Si , see, e.g., [47].

Appendix A.2. Optimization for new points

To solve for the new points P′, we first differentiate F w.r.t.
P′ and then set the derivative to zero. Taking derivative of F
leads to

∇F(P′) = ∇FD(P′) + α∇FR(P′) + β∇FL(P′). (A.6)

The first and the last term is obvious since they are just
ordinary least squares objectives. The derivative of the regu-
larization term in the middle of (A.6) is a bit more involved.
We have

∂FR

∂p′
i

= 2wi

∑
j∈Ni

wi j

((
2 + |G|

2

)
e′
i j

−
(
siRi + s jR j + 1

2

∑
k∈G

skRk

)
e j i

)
, (A.7)

where we defined G := {v ∈ Ni : ( j, i) ∈ Ev} ⊂ V . Intu-
itively, the set G contains all vertices v ∈ Ni opposite to the
edge ( j, i). Note that for triangle meshes and non-boundary
edges |G| = 2, for boundary edges |G| = 1. Setting deriva-
tive to zero yields

wi

∑
j∈Ni

wi je′
i j

= wi
1

2 + |G|
2

∑
j∈Ni

wi j

(
siRi + s jR j + 1

2

∑
k∈G
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)
e j i
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=:hi∈R3

(A.8)
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and hence

∇FR(P′) = 0 ⇐⇒ WLP′ = WH, (A.9)

where W := diag(w1, w2, . . . , wn) ∈ R
n×n , H :=

(h1,h2, . . . ,hn) ∈ R
n×3, and L ∈ R

n×n is the Laplacian
matrix, see, e.g., [12]. Putting everything together finally
yields the following sparse linear system

∇F(P′) = 0 ⇐⇒
⎛
⎝

C
αWL
βD

⎞
⎠

︸ ︷︷ ︸
=:A

P′ =
⎛
⎝

CQ
αWH
βQL

⎞
⎠

︸ ︷︷ ︸
=:B

(A.10)

with A ∈ R
3n×n and B ∈ R

n×3. This can be quite efficiently
solved using iterative algorithms or direct solvers based on
Cholesky decomposition, for example.

Appendix B. Parameters for registration

This section lists relevant parameters we used during rigid
and non-rigid registration.

Rigid alignment The template and target BPMs are
thresholded using a value of 0.2. Ourmodified ICP algorithm
terminates if the relative change of MSE between template
and target is less than 0.001 or a maximum of 150 iterations
is reached.

Non-rigid alignment For all three phases, initial, coarse,
and fine fitting α = 250 and β = 103 was used. However,
during initial fitting, no BPMs are used and only one iteration
is performed. For the coarse and fine fitting steps,α is divided
by 1.1 and 2 in each iteration, respectively. As a termination
criterion, we utilized the distance term FD and terminate if
its value becomes less than 1.9 or if α < 1.
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