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Abstract—To equip Convolutional Neural Networks (CNNs) with explainability, it is essential to interpret how opaque models take
specific decisions, understand what causes the errors, improve the architecture design, and identify unethical biases in the classifiers.
This paper introduces ADVISE, a new explainability method that quantifies and leverages the relevance of each unit of the feature map
to provide better visual explanations. To this end, we propose using adaptive bandwidth kernel density estimation to assign a relevance
score to each unit of the feature map with respect to the predicted class. We also propose an evaluation protocol to quantitatively
assess the visual explainability of CNN models. We extensively evaluate our idea in the image classification task using AlexNet, VGG16,
ResNet50, and Xception pretrained on ImageNet. We compare ADVISE with the state-of-the-art visual explainable methods and show
that the proposed method outperforms competing approaches in quantifying feature-relevance and visual explainability while maintaining
competitive time complexity. Our experiments further show that ADVISE fulfils the sensitivity and implementation independence axioms
while passing the sanity checks. The implementation is accessible for reproducibility purposes on https://github.com/dehshibi/ADVISE.
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1 INTRODUCTION

CONVOLUTIONAL Neural Networks (CNNs) have
gained significant prominence with the potential to

outperform expectations in various computer vision tasks
such as image classification [12], [2], [3], object detec-
tion [49], semantic segmentation [31], image captioning [11],
and human behaviour analysis [14]. However, this sub-
symbolism (also known as the opaque or black-box model)
is vulnerable to the underlying barrier of explainability in
response to critical questions like how a particular trained
model arrives at a decision, how certain it is about its
decision, if and when it can be trusted, why it makes certain
mistakes, and in which part of the learning algorithm or
parametric space correction should take place [28], [4]. Ex-
plainability in CNNs is linked to post-hoc explainability [18]
and, as proposed by Arrieta et al. [4], relies on model sim-
plification [56], [36], [23], feature-relevance estimation [6],
[33], [29], [38], visualisation [53], [30], [26], [39], [48], [22],
and architectural modification [27], [15], [40] to convert a
non-interpretable model into an explainable one.

While model simplification and architectural modifi-
cation techniques have been used to make CNNs inter-
pretable, their associated complexity grows as the number
of layers and parameters increases. Furthermore, several
studies [5], [34], [4] have shown that altering CNNs may
result in the spontaneous appearance of a disentangled
representation [17], [57], which is not only unrelated to the
model’s initial intention but also challenging to interpret.
As a result, the emphasis in explaining CNNs has shifted
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toward feature-relevance and visualisation methods.
Feature visualisation has received much attention be-

cause human cognitive skills favour the understanding of
visual data. However, feature visualisation methods do not
necessarily provide a comprehensive level of explainability
and interpretability. For instance, in Figure 1a, an identical
image is fed into the VGG16 and Xception models, both
of which outperform humans on ImageNet classification.
Although both models have the exact top-1 prediction with
one difference in top-5 prediction, the visual explanations
are significantly different (see LIME and Cumulative Gra-
dients in Figure 1) and cannot provide users with compre-
hensive information about how the models made the final
decision. Therefore, several studies [6], [42], [29] focused on
feature-relevance approaches, which provide an importance
score to each feature for a specific input. However, the visual
and feature-relevance explanations are not mutually exclu-
sive when a feature-relevance method can be visualised as a
saliency map [36], and a saliency map generated using class
activation maps [53], [39], [22] can assign importance scores
to each pixel.

In this paper, we propose a method for quantifying the
feature-relevance and visualising the latent representations
in CNNs. We revisit the relationships between feature maps1

and their associated gradients by introducing ADaptive VI-
Sual EXplanation (ADVISE). ADVISE estimates the kernel
density of gradients with an adaptive bandwidth for each
unit in the feature map (see Figures 1e and 1k) to assign an
importance score to each unit. Then, we calculate the cu-

1. The terms feature map and activation map are used interchangeable
here since the former refers to a mapping of where a specific type of
feature can be found in an image, and the latter is a mapping that
relates to the activation of different areas of the image.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 1: The visual and feature-relevance explanations for VGG16 [43] (the first row) and Xception [13] (the second row)
pretrained models on ILSVRC [37]. (a, g) The input image. (b, h) The output of the Log-scaled softmax Logits for the top-5
predicted classes. (c, i) Local explanations for the prediction of the input image based on LIME [36]. (d, j) Cumulative
gradients of the last convolutional layer, where the feature map is scaled up to the resolution of the input image using
bilinear interpolation. (e, k) Estimated density of the kth unit in feature map, which represents 2 peaks. (f, l) Adaptive
cumulative gradients of units with 2 peaks in their estimated density.

mulative gradient of units with the same importance score
for the class of interest to visualise the feature map. In this
way, we simultaneously quantify the relevance of each unit
and highlight how much the cumulative gradient of units
influence the model’s decision using the generated saliency
map(s) (see Figures 1f and 1l). We use the proposed method
to demonstrate that individual units are significantly more
interpretable than cumulative linear combinations of gradi-
ent’s units.

Our experiment is centred on the image classification
task since it allows us to visualise adaptive cumulative
gradient attributions and compare ADVISE with atten-
tion approaches that focus on global information. We use
AlexNet [24], VGG16 [43], ResNet50 [19], and Xception [13],
which were trained on the ILSVRC [37] in order to decide
to which of 1000 classes each image belongs. However,
unlike previous approaches, estimating the kernel density
of gradients with the adaptive bandwidth can be applied
to a wide range of deep learning models without requiring
architectural changes or retraining.

The rest of this paper is organised as follows: Section 2
surveys the previous studies. The proposed method is de-
tailed in Section 3. Section 4 presents experimental results.
Finally, Section 5 concludes the paper.

2 LITERATURE REVIEW

As previously stated, explaining a model by the visualisa-
tion (i.e.,, explicit explainability) and feature-relevance (i.e.,,
implicit explainability) are not mutually exclusive. In fact,
visualisation techniques present complementary ways of
visualising the output of feature relevance techniques to aid
model interpretation.

In this context, the methods proposed to explain what
CNNs learn can be categorised into three broad categories:

(1) those that rely on attention methods by generating class
activation maps to interpret how the intermediate layers
perceive the external world with respect to the target class
without restricting the method to any specific input; (2)
those that interpret the decision process using a top-down
back-propagation strategy in which the output is mapped
back in the input space to determine which parts of the input
are discriminative for the output; (3) those that integrate
importance over the attribution path and open up the ax-
iomatic sensitivity and implementation invariance attributions
for deep neural networks. These methods are amenable to
intriguing visualisations and serve as a basis for discussing
missingness in the feature space.

The main idea behind class activation mapping is to
achieve class-specific importance for each location of an
image by multiplying each feature map by its weight and
performing a sum of all weighted feature map values at
that location across all channels (units). Following this
procedure, a ReLU operation is used to filter out negative
activations. The method of calculating the weight for each
feature map differs between different attention methods.
CAM [58] obtained the weights from a single fully con-
nected layer that produces the predictions, in which global
average pooling is applied to the final convolutional feature
maps. Grad-CAM [39] improved on CAM by applying class-
specific gradients to each feature map at each location and
averaging the gradients of each feature map unit as its
weight. Grad CAM++ [10] generates a visual explanation
for the corresponding class label by using a weighted
combination of the positive partial derivatives of the last
convolutional layer feature maps with respect to a specific
class score as weights. Score-CAM [50] eliminates gradient
dependence by masking the input image with the activation
map generated with respect to the target class at different
network layers and passing it through the network to obtain



3

the prediction score. Finally, the weight for each feature
map is calculated by the normalised sum of the obtained
scores. Layer-CAM [22] utilises the backward class-specific
gradients, in which the gradient with respect to the class of
interest is calculated for each unit in the feature map, and
the units with positive gradient values are used as weights.

Zhang et al. [54] introduced a top-down back-
propagation approach to compute neuron significance to-
wards a model that passes signals in the network down-
wards based on a probabilistic Winner-Take-All model.
Fong and Vedaldi [16] and Cao et al. [9] learn a perturbation
mask that significantly influences the model’s output by
backpropagating the error signals through the model. Zhou
et al. [59] extracted fine-detailed class instance activation
maps by back-propagating the peak values as top signals
to the network downwards in a Winner-Take-All manner.
However, the generated maps are less faithful than those
produced by CAM-based methods, and such a top-down
procedure is complex and computationally expensive.

Sundararajan et al. [47] introduced integrated gradients
as a way to quantify a neural network’s feature-relevance
when making a prediction for a given data point and
brought up the concept of missingness in the feature space
as a critical interpretability concept. Sturmfels et al. [45]
later discussed the influence of choosing a baseline input for
the integrated gradients. Bau et al. [5] introduced network
dissection to show that individual units are significantly
more interpretable than random linear combinations of
units. They consider each unit as a concept detector to fur-
ther evaluate them for semantic segmentation and quantify
the interpretability of CNN latent representations. While
these studies proposed solutions to fulfil the sensitivity and
implementation invariance axioms, they either required the
definition of a baseline input, relied on a threshold derived
from the training data set, or limited the solution to a binary
segmentation task, all of which failed the sanity checks [1],
[44].

3 ADVISE: ADAPTIVE VISUAL EXPLANATION

Formally, let f(I; θ) = E[yc|I; θ] represents a CNN that
classifies images, and θ denotes its parameters. For the
input image I ∈ RH×W×3, yc is the score for the predicted
class c, where H and W denote the height and width of I ,
respectively. Let A ∈ RU×V×K denotes an activation map
in the f , where Ak represents the kth feature map in A, and
U , V , and K denote the height, width, and the number of
units of f , respectively. The gradient of the predicted score
yc with respect to the spatial location (i, j) in the feature
map A can be obtained by ∂yc

∂Ai,j
.

Although the visualisation methods that calculate cu-
mulative gradients (i.e.,, a linear weighted summation on
all feature maps in A) preserve implementation invariance,
they do not satisfy sensitivity because they assume a sta-
tionary rate variation in the gradients. To preserve both
the implementation invariance and sensitivity axioms [47],
we propose computing φk(A), which assigns an importance
score to the kth unit in the feature map A, indicating how
much that feature contributes to the network decision. Then
we calculate the linear weighted sum of the feature maps in
A that have the same importance score.

Kernel density estimation (KDE) is a conventional non-
parametric signal processing approach for estimating the
probability density function of data with an unknown un-
derlying distribution [35]. Let (a1, a2, · · · , an) be the value
of the independent distributed gradients in the kth unit of A
that were flattened. The gradient values are changed with
respect to the input image I and stacked to form a raw
density as in Eq. 1

xa =
1

n

n∑
i=1

δ(a− ai), (1)

where n = U × V , and {ai}ni=1 is represented by the Dirac
delta function δ(a). The kernel density estimate is obtained
by convolving a kernelHωa with the variable bandwidth ωa
to the raw density xa using Eq. 2.

λ̂a =

∫
xa−sHωa(s) ds. (2)

where ωa is selected as a fixed bandwidth optimised in a lo-
cal interval, and the integral

∫
that does not specify bounds

refers to
∫∞
−∞. The mean integrated squared error (MISE) [8]

is a well-known goodness-of-fit metric for optimising the
estimated density λ̂a to be as close to the unknown underly-
ing density λa as possible. Motivated by [41], we introduce
the adaptive MISE (AMISE) criterion at gradient a to select
an interval length for local optimisation, determine the
goodness-of-fit, and regulate the shape of the function λa
as in Eq. 3.

AMISE =

∫
E
(
λ̂u − λu

)2
ρu−aW du, (3)

where E is the expected L2 loss function, λ̂u =∫
xu−sHω(s) ds is the estimated density with a fixed

bandwidth ω, and ρu−aW is a weight function that locates
the integration of the squared error in a particular interval
W centring at a. To minimise AMISE, we introduce the
adaptive cost function with respect to a by subtracting the
irrelevant term for the choice of ω as in Eq. 4.

Can(ω,W ) = AMISE−
∫
λ2uρ

u−a
W du. (4)

The optimal fixed bandwidth ω∗ is obtained as a min-
imiser of the estimated cost function that is presented in
Eq. 5:

Ĉan(ω,W ) =
1

n2

∑
i,j

ψaω,W (ai, aj)

− 2

n2

n∑
i6=j
Hω(ai − aj)ρai−aW , (5)

where ψaω,W is given in Eq. 6.

ψaω,W (ai, aj) =

∫
Hω(u− ai)Hω(u− aj)ρu−aW du. (6)

Since the optimal bandwidth ω∗ varies with the length
of W , we select an interval length of ω∗

γ
2 that scales with

2. ω
∗

γ
= n is used in our experiment
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the optimal bandwidth. Here, γ is a smoothing parameter,
with γ << 1 causing the variable bandwidth to fluctuate
slightly, and γ ∼ 1 causing the variable bandwidth to fluc-
tuate significantly. In our experiments, we consider the [0, 1]
interval and use the Nadaraya-Watson kernel regression [32]
to obtain the variable bandwidth ωγa using Eq. 7

ωγa =

∫
ρa−s
Wγ
s
ω̄γs ds

/∫
ρa−s
Wγ
s

ds . (7)

where W γ
a and ω̄γa represent the interval length and fixed

bandwidth at a, respectively. Although the variable band-
width ωγa is derived from the same data, the use of different
γ results in varying degrees of smoothness. In this way, the
cost function for the variable bandwidth selected with γ is
obtained using Eq. 8.

Ĉn(γ) =

∫ 1

0
λ̂2a da− 2

n2

∑
i 6=j
Hωγai (ai − aj), (8)

where λ̂a =
∫
xa−sHωγa (s) ds is an estimated rate, with the

variable bandwidth ωγa . The integral is calculated numeri-
cally with the stiffness constant γ∗ =

√
5+1
2 that minimises

Eq. 8. In this study, we use the Gauss density function which
is expressed in Eq. 9.

Hωγ (s) =
1√

2πωγ
exp

(
− s2

2(ωγ)2

)
, (9)

Figure 2a depicts one of the activation map units in the
VGG16 model’s final convolution layer for the input image
in Figure 1a. Figure 2b shows the difference between the
underlying gradient value distribution (grey area) at that
unit and the estimated density of gradient values (solid red
line) using the proposed variable bandwidth kernel density
estimation.

(a) (b)

Fig. 2: (a) The 265th unit of the activation map in the
last convolution layer of the VGG16 model for the input
image in Figure 1a, where gradient values are mapped to
colours in the ‘cool’ colour map for better visualisation. (b)
Estimated kernel density with variable bandwidth (solid red
line) using Eq. 8. The grey area represents the underlying
distribution of gradient values in the 265th unit of the
activation map.

The proposed scoring method that assigns an impor-
tance score to the kth unit in the feature map as well as
the visualisation approach (ADVISE) are summarised in
Algorithm 1.

Algorithm 1: ADaptive VISual Explanation.

Input : AU×V×K – Feature map, also known as
activation map in CNNs.
yc – predicted class.
[row, col] – size of input image.

Output: φk(A) – Importance score for units in A.
ADVISE – Feature saliency map(s).

1 for k ← 1 to K do
2 {ai}ni=1 ← flatten(A);

// n = U × V .
3 φk(A) =

findPeaks(
∫ 1
0 λ̂

2
a da− 2

n2

∑
i 6=j Hωγai (ai−aj));

4 end

5 g = ∂yc

∂A ;
6 for i← min(φk(A)) to max(φk(A)) do
7 idx← find(φk(A) == i);
8 Ãi = A(:, :, idx);
9 w̃ci = 1

n

∑
U

∑
V g(:, :, idx);

10 mapi = ReLU
(∑|idx|

j=1 w̃
c
i,j · Ãi,j

)
;

// | • | is the cardinality of •
11 ADVISEi = resize(mapi, [row, col], bc);

// ‘bc’ is bicubic interpolation
12 end

13 return φk(A), ADVISE

Figure 3 shows outputs of the proposed method using
AlexNet [24], VGG16 [43], ResNet50 [19], and Xception [13],
which were trained on the ILSVRC [37].

The results of scoring function φk(A) and the saliency
maps generated by ADVISE can highlight three key points.
(1) Not all feature map units can contribute equally to
the model’s prediction, and some of these units may be
misleading in some instances (see Figure 3a). (2) As Bau et
al. [5] pointed out, CNNs trained for a specific purpose may
encounter the emergence of disentangled representations
unrelated to the model’s initial intention, complicating in-
terpretation (see Figure 3b). As a result, quantifying feature-
relevance in conjunction with visualisation can provide
adequate answers for users, particularly neural network
designers, to underlying questions such as how certain the
model is about its decision, if and when it can be trusted,
why it makes inevitable mistakes, and in which part of the
learning algorithm or parametric space correction should
take place. (3) In scenarios such as transfer learning, this
mutual explainability approach assists designers in deter-
mining which layers should be frozen to achieve better
and faster convergence, specifically when the feature map
shows less divergence (see Figures 3c and 3d). In Section 4,
where we introduce quantitative metrics to compare the
visualisation approach with the competing ones, we will
delve into greater depth on these points.

4 EXPERIMENTS

The proposed method for quantifying feature relevance is
applicable to a variety of deep networks. However, we
centre our experiments on the image classification task since
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(a)

(b)

(c)

(d)

Fig. 3: The outputs of ADVISE and Grad-CAM [39] are compared for four images fed into the pretrained AlexNet [24],
VGG16 [43], ResNet50 [19], and Xception [13] models on ILSVRC [37]. The use of φk(A) on the estimated kernel density and
ADVISE show that in the explainability of (a) AlexNet prediction (‘Bernese mountain dog’), two units with two peaks work
better than Grad-CAM that requires 1000 units, (b) VGG16 prediction (‘monastery’), four units with six peaks contribute
more than Grad-CAM that requires 512 units, (c) ResNet50 prediction (‘Zebra’), 177 units with one peak outperform Grad-
CAM, which requires 2048 units, and (d) Xception prediction (‘band aid’), eight units with three peaks perform better than
Grad-CAM which utilises 2048 units.

it allows us to visualise adaptive cumulative gradient at-
tributions and compare ADVISE with attention approaches
that focus on global information. ADVISE is tested on a
subset of ILSVRC [37] with 3,000 images using pretrained
AlexNet [24], VGG16 [43], ResNet50 [19], and Xception [13]
models.

In the absence of ground-truth discriminative features
for a trained CNN [25], objectively identifying which
method delivers the best approximation to the usefulness
and satisfaction of explanations is still in its early stages.
Furthermore, the community has not yet reached a consen-
sus on the impact of explanations on the model’s perfor-
mance, trust, and reliance. A natural assumption is that a
well-trained model would make predictions based on the
features from the object itself [4]. With this assumption
and following quantitative metrics that are used to evaluate
image retrieval methods and saliency models, we present

a novel evaluation protocol for the visual explanation ap-
proaches.

4.1 Evaluation Metrics

(1) Class Sensitivity (CS): it measures the similarity of
saliency maps generated with respect to the top two class
scores predicted by the model. We use Pearson’s Correlation
Coefficient to measure CS as in Eq. 10.

CS =
cov (E(f, I)c1 , E(f, I)c2)

σ (E(f, I)c1)× σ (E(f, I)c2)
. (10)

where E, cov, and σ denote the explanation map, covari-
ance, and standard deviation, respectively. A good expla-
nation method should have a score near to or below zero,
while a score outside the [−0.5, 0.5] range implies that the
correlation between two maps is not statistically significant.
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(2) Hit: it is a proxy that indicates if the model can retrieve
the target class c in its top-5 prediction when it just sees
the explanation map and not the entire image. This proxy is
formulated in Eq. 11.

Hit =

{
1 : NI ∩MI�E(f,I)c

0 : otherwise
(11)

where NI is the index of the predicted class c by the model
when it just sees the input image as input, and MI�E(f,I)c

is a set including the top-5 index of the predicted class
when the model sees the explanation map. Here, � is the
Hadamard product.
(3) Average Drop (AD): it measures the average percentage
drop in confidence for the target class c when the explana-
tion map (I � E(f, I)c) is fed to the model instead of the
input image I . This metric is defined in Eq. 12, where lower
is better.

AD = max (0, (yc − oc))/yc (12)

where oc is the predicted score by model to which the the
explanation map is fed.
(4) Structural similarity index (SSIM): it is a perception-
based measure that considers image degradation as a per-
ceived change in structural information while also consider-
ing crucial perceptual phenomena [51]. In this context, SSIM
measures the structural similarity index between the input
image masked by the explanation map and the input image
as the reference. This metric returns a value in (0, 1], where
the higher is better, and is formulated in Eq. 13.

SSIM(I, Ĩ) =
(2µIµĨ + e1)(2cov(I, Ĩ) + e2)

(µ2
I + µ2

Ĩ
+ e1)(σ2

I + σ2
Ĩ

+ e2)
. (13)

where Ĩ = I � E(f, I)c, and µ and σ are the average and
variance, respectively. In order to stabilise the division with
weak denominator, e1 = (0.01 · L)2 and e2 = (0.03 · L)2

are used, where L denotes the dynamic range of the pixel
values and is set to 255 in this study.
(5) Feature similarity index (FSIM): it uses phase congru-
ency and gradient magnitude, which reflect complementary
components of visual image quality, to measure local im-
age quality. This metric also includes a saliency measure
for the image gradient feature, which weights each pixel’s
contribution to the overall quality score. This metric returns
a value in (0, 1], where the higher is better, and the complete
mathematical formulation is given in [55].
(6) Mean squared error (MSE): it is the second error mo-
ment and measures the average squared difference between
the input image masked by the explanation map and the
input image as the reference as in Eq. 14.

MSE(I, Ĩ) =
1

HW

H∑
i=1

W∑
j=1

(
Ii,j − Ĩi,j

)2
. (14)

(7) AVerage eXplainability (AVX): it measures the harmonic
mean of AD, SSIM, FSIM, and MSE and returns a value in
[0, 1] to ease of comparison as defined in Eq. 15.

AVX = 4

(
1

1−AD
+

1

SSIM
+

1

FSIM
+

1

1−MSE

)−1
(15)

Recall that we defined two proxies, CS and Hit, which
allow us to adjust AVX. If Hit = 0 and CS ∈ [−0.5, 0.5],
we define a penalty coefficient ∆ = 1 − |yc − oc| and
multiply AD, SSIM, FSIM, and MSE by ∆ before measuring
the harmonic mean. If Hit = 0 and CS /∈ [−0.5, 0.5], we set
AD to 1, SSIM to 0, FSIM to 0, and MSE to 1.

4.2 Experimental result

Table 1 shows the comparison of the ADVISE with
Grad-CAM [39], Grad-CAM++ [10], Score-CAM [50], and
Layer-CAM [22] visualisation methods on AlexNet [24],
VGG16 [43], ResNet50 [19], and Xception [13] pretrained
models on ILSVRC [37]. Despite having a higher perfor-
mance in classifying ILSVRC than the AlexNet, VGG16, and
ResNet50, the Xception model has a lower efficiency in the
visual explanation, according to the AVX metric.

In our quest for this AVX decline in Xception, we exam-
ined the saliency maps produced by the ADVISE in shallow,
middle, and deep layers (see an example in Figure 4). We
observed that the saliency maps in the shallow and middle
layers highlight low-level visual features distributed across
the image, such as edges and blobs. The Xception model, on
the other hand, focuses on the centre of a scene in the deep
layer, whereas the other models look at different locations.
This focus is known as the centre bias in saliency studies [7],
[52], where most studies revealed that observers prefer to
look more often at the centre of the image than at the edges.
However, the Xception model’s tendency toward centre
bias is a double-edged sword. While it is more aligned
with human cognitive skills for perceiving visual data, as
explained by [45], the centre of mass of the saliency map
is the Achilles Heel of many visual explanation methods,
with path attribution methods offered to address it [47] but
failing the sanity checks [1].

So what should be done? Although the proposed method
and quantitative metrics, which are supported by best prac-
tices, can evaluate the performance of different models in
visual explanation, we still have a fundamental problem
with the lack of ground-truth explanations. In fact, we aim to
determine which methods best explain our model without
knowing how it works. Evaluating supervised models is
relatively straightforward since we have a test set. However,
evaluating explanations is difficult since we do not exactly
know how our model works and do not have the ground-
truth for a fair comparison.

4.2.1 Ablation study
The gradient quantifies how much a change in each input
dimension affects f prediction in a narrow area around the
input. Keeping this in mind, our ablation study is composed
of two parts: (1) we ablate the input image by randomly
replacing pixels with the salt and pepper noise counterparts;
(2) we remove ReLU at the same time to explore the effect
of negative gradients on scoring the feature map units
and the visual explanation. To do this, all 3,000 images
selected from ILSVRC are ablated using the noise density
of δ = [0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225].
Figure 5a depicts an ablated image, and Figure 5b–5e shows
the proposed method’s performance compared with other
visual explanation methods.
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TABLE 1: The comparison of the ADVISE with Grad-CAM, Grad-CAM++,
Score-CAM, and Layer-CAM visualisation methods on AlexNet, VGG16,
ResNet50, and Xception pretrained models on ILSVRC.

Architecture Method Metrics Time (s)
Peak range AD ↓ SSIM ↑ FSIM ↑ MSE ↓ AVX ↑ GPU/Parallel CPU

AlexNet [24]

ADVISE 0 – 8 0.26 0.14 0.38 0.14 0.28 0.69 30.3
Grad-CAM N/A 0.39 0.05 0.26 0.32 0.13 1.06 1.64
Grad-CAM++ N/A 0.38 0.06 0.27 0.32 0.17 1.16 2.14
Score-CAM N/A 0.37 0.06 0.28 0.31 0.17 1.18 2.60
Layer-CAM N/A 0.33 0.07 0.31 0.28 0.19 1.48 3.33
LIME N/A 0.39 0.05 0.26 0.32 0.13 5.71 11.85

VGG16 [43]

ADVISE 0 – 7 0.26 0.14 0.40 0.15 0.29 1.56 6.91
Grad-CAM N/A 0.38 0.06 0.26 0.29 0.15 1.88 2.66
Grad-CAM++ N/A 0.38 0.07 0.27 0.28 0.19 2.01 3.36
Score-CAM N/A 0.37 0.09 0.30 0.29 0.22 2.21 3.87
Layer-CAM N/A 0.32 0.09 0.34 0.27 0.23 2.66 4.24
LIME N/A 0.38 0.06 0.26 0.29 0.15 22.18 57.95

ResNet50 [19]

ADVISE 0 – 5 0.26 0.15 0.43 0.17 0.31 1.46 6.37
Grad-CAM N/A 0.33 0.10 0.34 0.24 0.23 6.22 7.77
Grad-CAM++ N/A 0.36 0.11 0.35 0.24 0.26 6.62 8.56
Score-CAM N/A 0.35 0.11 0.37 0.22 0.27 7.02 9.18
Layer-CAM N/A 0.32 0.12 0.39 0.21 0.29 7.51 11.18
LIME N/A 0.33 0.10 0.34 0.24 0.23 7.68 31.61

Xception [13]

ADVISE 0 – 6 0.43 0.12 0.37 0.31 0.24 4.20 16.38
Grad-CAM N/A 0.68 0.04 0.20 0.59 0.10 5.92 8.12
Grad-CAM++ N/A 0.65 0.04 0.21 0.59 0.11 6.03 9.10
Score-CAM N/A 0.64 0.05 0.21 0.57 0.13 6.56 9.70
Layer-CAM N/A 0.57 0.08 0.27 0.49 0.19 7.07 10.34
LIME N/A 0.68 0.04 0.20 0.59 0.10 26.31 90.31

Fig. 4: ADVISE outputs for shallow, mid-
dle, and deep layers of (a) VGG16, (b)
ResNet50, and (c) Xception pretrained
models on ILSVRC.

While the AVX value of the ADVISE and other visual
explanation methods degrades due to incorporating nega-
tive gradients and ablating the input images, the proposed
feature scoring method, unlike other methods, could meet
the sensitivity axiom [47] in this classification task because
the AVX never reached 0. However, we should mention
that the pitfall of the ablation test is that if we artificially
ablate pixels in an image, we end up with inputs that do
not belong to the original data distribution. The question of
whether or not users should feed their models with inputs
that are not part of the initial training distribution is still
being debated [20], [46], [21].

5 CONCLUSION

The significant achievement of Convolutional Neural Net-
works (CNNs) has resulted in a torrent of computer vi-
sion applications. Autonomous systems that can perceive,
learn, decide, and act independently are on the horizon for
these continuous breakthroughs. However, the incapacity
of current approaches to adequately explain their decisions
and actions to users limits their effectiveness. Therefore,
CNNs must be equipped with the ability to explain their
reasoning, characterise their strengths and shortcomings,
and convey an understanding of how they will behave in
the future. In this study, we have introduced ADVISE, a new
explainability method that could quantify and leverage the
relevance of each unit of the feature map to provide better
visual explanations in CNNs. To this end, we have proposed
a method to estimate the kernel density of gradients with
an adaptive bandwidth for each unit in the feature map
in order to calculate the number of peaks as the unit’s
relevance score. The cumulative gradient of units with the
same relevance score for the class of interest was then

calculated to visualise the latent representations in CNNs.
We have also proposed a protocol for evaluating the visual
explainability of CNN models quantitatively.

In our experiments, we used AlexNet, VGG16, ResNet50,
and Xception pretrained on ILSVRC. We have compared
ADVISE with the state-of-the-art visual explainable meth-
ods and showed that our proposed method outperformed
competing approaches in quantifying feature-relevance and
visual explainability while maintaining competitive time
complexity. Our experiments further demonstrated that AD-
VISE meets the sensitivity and implementation independence
axioms while passing the sanity checks.

It is worth mentioning that different metrics have been
proposed to evaluate interpretability methods, each with
its own set of pros and cons. This lack of consensus on
evaluating interpretability methods is related to the fact
that we do not know how exactly and transparently our
model works and have no specific ground truth against
which to compare it. As a result, more experiments on
various computer vision tasks and other applications that
benefit from the use of deep neural network architectures
are required to demonstrate that ADVISE can meet a range
of metrics for evaluating interpretability, as we intend to do
in the future work.
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