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Abstract. We consider the effect on the length of the game of Cops and Robbers when
more cops are added to the game play. In Overprescribed Cops and Robbers, as more
cops are added, the capture time (the minimum length of the game assuming optimal play)
monotonically decreases. We give the full range of capture times for any number of cops on
trees, and classify the capture time for an asymptotic number of cops on grids, hypercubes,
and binomial random graphs. The capture time of planar graphs with a number of cops at
and far above the cop number is considered.

1. Introduction

The game of Cops and Robbers, first introduced in [1, 16, 17], has attracted considerable
recent interest among graph theorists. The game is played on a reflexive graph; that is, each
vertex has at least one loop. Multiple edges are allowed, but make no difference to the play
of the game, so we always assume there is exactly one edge joining adjacent vertices. There
are two players, consisting of a set of cops and a single robber. The game is played over a
sequence of discrete time-steps or turns, with the cops going first on turn 0 and then playing
on alternate time-steps. We refer to the set of cops as C and the robber as R. When a
player is ready to move in a round they must move to a neighbouring vertex. Because of
the loops, players can pass, or remain on their own vertices. Observe that any subset of C
may move in a given round. The cops win if after some finite number of rounds, one of them
can occupy the same vertex as the robber (in a reflexive graph, this is equivalent to the cop
landing on the robber). This is called a capture. The robber wins if he can evade capture
indefinitely. A winning strategy for the cops is a set of rules that if followed, result in a win
for the cops. A winning strategy for the robber is defined analogously.

The cop number of a graph, first introduced in [1], is the minimum number of cops needed
to have a winning strategy. The cop number is often a challenging graph parameter to ana-
lyze, and establishing upper bounds for this parameter is the focus of Meyniel’s conjecture:
the cop number of a connected n-vertex graph is O(

√
n).

The length of a game is the number of rounds it takes (not including the initial or 0th
round) to capture the robber. We say that a play of the game with c(G) cops is optimal if
its length is the minimum over all possible strategies for the cops, assuming the robber is
trying to evade capture for as long as possible (here c(G) denotes the cop number of G). If
k cops play on a graph with k ≥ c(G), we denote this invariant captk(G), which we call the
k-capture time of G. In the case k = c(G), we just write capt(G) and refer to this as the
capture time of G. Note that captk(G) is trivially 0 if k ≥ n, where n is the order of G; and
captk(G) = 1 if γ(G) ≤ k < n, where γ(G) denotes the domination number of G. Hence, the
analysis of this invariant can be restricted to the range c(G) ≤ k ≤ γ(G). (We can assume
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2 ANTHONY BONATO, XAVIER PÉREZ-GIMÉNEZ, PAWE L PRA LAT, AND BENJAMIN REINIGER

that γ(G) < n and thus, captγ(G)(G) = 1, by excluding the degenerate case in which G is a
co-clique.) Observe that captk(G) is monotonically decreasing with k. We refer to this effect
as temporal speed-up.

The capture time was introduced in [5]. From [5, 10] it was shown that if G is cop-win
(that is, has cop number 1) of order n ≥ 7, then capt(G) ≤ n − 4, and there are planar
cop-win graphs that prove that the bound of n− 4 is optimal. Mehrabian [15] investigated
the capture time of Cartesian grids, and proved that if G is the Cartesian product of two
trees, then capt(G) = bdiam(G)/2c. In particular, the 2-capture time of an m×n Cartesian
grid is bm+n

2
c − 1. The capture time of hypercubes was studied in [6], where the authors

used the probabilistic method to prove that capt(Qn) = Θ(n lnn). See also [7].
In the present work, we consider Overprescribed Cops and Robbers games, where the

number of cops is strictly greater than the cop number. We study temporal speed-up for
various graph classes, such as trees (see Section 2), grids and hypercubes (see Section 3),
and planar graphs (see Section 4). For trees, we derive the precise value of captk(G) for all
k using metric k-centers. We give the asymptotic order of all values of temporal speed-up
for grids and hypercubes (with one small exception in the range of k for hypercubes). We
analyze temporal speed-up for planar graphs playing with Ω(

√
n) cops, and bounds on the

k-capture time on planar graphs playing with k = 3 (which is the upper bound for the cop
number of planar graphs). The paper finishes with a discussion of temporal speed-up in
binomial random graphs.

We consider finite undirected, reflexive graphs. For additional background on Cops and
Robbers and Meyniel’s conjecture, see the book [8]. For additional background on graph
theory, see [22].

2. Trees and retracts

The classification of the k-capture times for all k for the class of trees is relatively straight-
forward. Hence, we begin with this class as a warm up. Along the way, we prove an elemen-
tary but useful theorem relating k-capture time to retracts.

For an integer k ≥ 1 and a graph G, let radk(G) denote the k-center radius, defined as

min
S⊆V (G)
|S|≤k

max
v∈V (G)

dist(v, S).

A set S achieving the minimum is called a metric k-center of G. Note that rad1(G) is just
the radius of G; we will drop the subscript 1 in this case. Computing the k-center radius is
NP-hard for general graphs; see [21].

A retract of a graph G is an induced subgraph H for which there exists a graph homo-
morphism from G to H whose restriction to H is the identity. Retracts play an important
role in the game of Cops and Robbers as noted in [1], who proved that for a retract H of G,
c(H) ≤ c(G). We note the following observation, likely part of folklore.

Lemma 1. For a retract H of a graph G, radk(H) ≤ radk(G).

Proof. Let S be a metric k-center of G, let r = radk(G), and let f be a homomorphism
witnessing that H is a retract of G. Consider the set f(S) in H. We claim that every vertex
of H is within distance r of some vertex of f(S), from which it follows that radk(H) ≤ r.

Let v be a vertex of H and let s ∈ S be such that distG(v, s) ≤ r. Consider a (v, s)-walk
W of length at most r in G. Then f(W ) is a (v, f(s))-walk of length at most r in H. �
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Note that cop number and k-center radius are not monotonic under subgraphs or induced
subgraphs: for instance, adding a universal vertex drops both parameters to 1.

Metric k-centers give us an elementary method to lower bound the k-capture time.

Lemma 2. For any graph G, captk(G) ≥ radk(G).

Proof. We need to provide a strategy for the robber. After the cops have chosen their starting
vertices, we place the robber on a vertex of maximum distance from any cop and just keep
her there throughout the game. �

The following corollary is immediate.

Corollary 3. For any G and any k, captk(G) ≥ diam(G)−k+1
2k

.

Proof. Let d = diam(G). Then G has a copy of Pd+1 as a retract; see [1, 8]. (For a
direct argument, let P be a shortest path of length d with end-vertices x and y. Map each
vertex of G to the vertex of P which is the same distance to x.) By Lemma 1 we have
that radk(G) ≥ radk(Pd+1). The balls of radius r in Pd+1 have size at most 2r + 1, so if
a set of k balls are to cover the vertex set, we must have that k(2r + 1) ≥ d + 1. Hence,
radk(Pd+1) ≥ d+1

2k
− 1

2
. �

The following theorem establishes the capture time of trees.

Theorem 4. For any tree T , capt(T ) = rad(T ).

Proof. The lower bound follows from Lemma 2. For the upper bound on capt(T ), we give
a strategy for the cop. He initially places himself on a central vertex of T , and at each
step moves along the unique path between himself and the robber. Rooting the tree at his
starting vertex, this implies that the robber is always in the subtree rooted at the cop’s
current position (if not already caught), and so she is caught in at most rad(T ) steps. �

The next theorem is useful to bound the capture time of a graph when there are many more
cops than are needed to capture the robber. We will see in the later sections that it gives
the correct capture time up to a constant factor for grids and, in some cases, hypercubes.

Theorem 5. Suppose that V (G) = V1 ∪ · · · ∪ Vt, where G[Vi] is a retract of G for every i
and k =

∑
i∈[t] ki. Then captk(G) ≤ maxi∈[t] captki(G[Vi]). Note that if ki < c(G[Vi]), then

we say that captki(G[Vi]) =∞.

Proof. We give a strategy for the cops. For each i, we assign a team of ki cops to G[Vi],
which we refer to as the territory of those cops. Each team of cops plays their optimal
strategy on their territory to capture the image of the robber under the retract to G[Vi].
After maxi captki(G[Vi]) turns, every team of cops has caught their projection of the robber;
in particular, some team of cops has caught the robber. �

The following corollary gives the k-capture time for trees for all k.

Corollary 6. For any tree T , captk(T ) = radk(T ).

Proof. The lower bound follows from Lemma 2. For the upper bound, let {v1, . . . , vk} be
the vertices of metric k-center of T . Take Vi = B(vi, radk(T )). By the definition of radk(T ),
we have V (T ) =

⋃
i∈[k] Vi. With ki = 1 for every i, Theorem 5 and Theorem 4 imply the

result. �
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3. Cartesian grids and hypercubes

Given d, q ∈ N, let Gd
q = �d

i=1Pq be the d-dimensional Cartesian grid on qd vertices. For

q ≥ 2, the cop number of Gd
q is d(d+ 1)/2e [14], with associated capture time less than

1
2
qd dlog2 de (see Theorem 3 in [6]). We will first consider the Cartesian grid Gd

q of constant
dimension d with q = n for some n→∞. Later on, we will shift our attention to the case in
which q = 2 and the dimension d = n for some n → ∞. In that second case, the Cartesian
grid Gn

2 is also known as the hypercube and we will denote it by Qn. All asymptotic notations
in this section are with respect to n, as n grows to infinity.

The following theorem gives the asymptotic order of the k-capture time of the d-dimensional
Cartesian grid Gd

n, for constant d. Note that the domination number is trivially Θ(nd).

Theorem 7. Fix any constant d ∈ N, and let k = k(n) be such that k ≥ c(Gd
n). If k = O(nd),

then captk(G
d
n) = Θ

(
n/k1/d

)
.

Proof. We will first prove the upper bound on captk(G
d
n). Cover the grid Gd

n by
⌊
k/c(Gd

n)
⌋

subgrids isomorphic to Gd
n′ for n′ = Θ(n/k1/d). (The subgrids may overlap, but they cover all

vertices of Gd
n.) Since subgrids are retracts of the whole grid, Theorem 5 with ki = c(Gd

n) =
c(Gd

n′) = d(d+ 1)/2e for all i and t =
⌊
k/c(Gd

n)
⌋

gives the bound 1
2
n′d dlog2 de = O(n′) (since

d is constant) as desired. To prove the lower bound on captk(G
d
n), pack k+1 pairwise-disjoint

subgrids isomorphic to Gd
n′′ for n′′ = Θ(n/k1/d), and place the k cops in any arbitrary way.

By the pigeonhole principle, at least one subgrid contains no cop. The robber starts in that
subgrid and survives for Ω(n/k1/d) rounds by not moving. �

We now consider the temporal speed-up of hypercubes. The cop number of Qn, the hyper-
cube on 2n vertices, is

⌈
n+1
2

⌉
, with the associated capture time Θ(n log n). The coefficient

hidden in the Θ(·) notation is between 1/2 and 1; see [6] for more details. On the other
hand, the domination number of Qn is (1 + o(1))2

n

n
, with the associated capture time 1. Our

goal in this section is to investigate the capture time for the number of cops between the cop
number and the domination number.

3.1. Upper bounds. Let us start with the following result that works well for a small
number of cops. Let us mention that this bound is not needed to prove Corollary 12 that
summarizes results for hypercubes but concentrates only on the order of magnitude of the
k-capture time. However, it does give better constants in certain ranges of k.

Theorem 8. Let ω = ω(n) be a function tending to infinity arbitrarily slowly. Suppose that
k = k(n) is such that c(Qn) ≤ k ≤ 2n/ω. Then

captk(Qn) ≤ (1 + o(1)) log2(2
n/k) log log(2n/k).

In particular, if k = bn for some 1 < b < 2, then

captk(Qn) ≤ (1 + o(1))(1− log2 b)n log n.

Proof. Given ` a nonnegative integer such that ` ≤ n, we can partition V (Qn) into 2n−`

sets, each inducing a copy of Q`. The cop number of Q` is c = d(`+ 1)/2e ≤ `, and the
capture time is at most (1 + o(1))` log ` (see [6]). Since subcubes are retracts (the standard
projection maps are homomorphisms for the reflexive cubes), we apply Theorem 5 with
t = 2n−` and ki ≥ c for all i. This requires the number of cops to be at least 2n−`c,
which clearly holds if 2`/` ≥ 2n/k. In order to obtain the best bound, we choose ` to be
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the minimum integer such that 2`/` ≥ 2n/k. Since k ≤ 2n/ω, it follows that 2n/k → ∞
and so ` ∼ log2(2

n/k). (Indeed, note that if ` = log2(2
n/k), then 2`/` = (2n/k)/` <

2n/k; but if ` = log2(2
n/k) + 2 log2 log2(2

n/k) ∼ log2(2
n/k), then 2`/` ∼ (2n/k)` ≥ 2n/k.)

The conclusion from Theorem 5 is then captk(Qn) ≤ captki(Q`), which is in turn at most
captc(Q`) ∼ ` log ` ∼ log(2n/k) log log(2n/k). �

To prove the next result, we will use the following version of Chernoff’s bound. Suppose
that X ∈ Bin(n, p) is a binomial random variable with expectation µ = np. If 0 < δ < 3/2,
then

Pr (|X − µ| ≥ δµ) ≤ 2 exp

(
−δ

2µ

3

)
. (1)

(For example, see Corollary 2.3 in [12].) It is also true that (1) holds for a random variable
with the hypergeometric distribution. The hypergeometric distribution with parameters N ,
n, and m (assuming max{n,m} ≤ N) is defined as follows. Let Γ be a set of size n taken
uniformly at random from set [N ]. The random variable X counts the number of elements of
Γ that belong to [m]; that is, X = |Γ∩ [m]|. It follows that (1) holds for the hypergeometric
distribution with parameters N , n, and m, with expectation µ = nm/N . (See, for example,
Theorem 2.10 in [12].)

Given a vertex v and an integer 0 ≤ i ≤ n, Ni(v) is the set of vertices at distance exactly

i from v and N≤i(v) =
⋃i
j=0Nj(v). Now, we are ready to state the upper bound that works

well for a large number of cops.

Theorem 9. Suppose that k = k(n) ∈ N is such that

k ≥ 36 · 2n (2d+ 1)d+1

(n− d)d+1

, (2)

for some d ≤ cn− 2, where c = 1/2−
√

2/4 ≈ 0.1464. Then, for n large enough,

captk(Qn) ≤ 2d+ 1.

In particular, the desired upper bound for the capture time holds provided that

k ≥ 36 · 2nn
(

3d

n(1− c)

)d+1

.

Before we move to the proof of the theorem, let us mention that the condition for d
is, in some sense, not needed and it does not make the result weaker. Indeed, note that
after replacing d by d + 1, the lower bound (2) for the number of cops is affected by the
multiplicative constant

(2d+ 3)d+2/(n− d− 1)d+2

(2d+ 1)d+1/(n− d)d+1

=
(2d+ 3)(2d+ 2)(n− d)

(d+ 1)(n− 2d− 1)(n− 2d− 2)
≤ 4c(1− c)

(1− c)2
= 1.

Hence, only up to this point the lower bound for the number of cops is a decreasing function
of d. After removing this artificial restriction on d, there would be more choices for d to
satisfy the desired condition but clearly one should consider the smallest value of d to get
the best bound.

We observe that since Qn is a relatively good expander, the proof follows similar ideas as
the ones used to bound the cop number for random graphs [13, 19, 20].
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Proof of Theorem 9. We distribute all the cops at random; that is, cops select a set of vertices
of cardinality k uniformly at random, and then they start on this set. Suppose that the robber
starts the game on vertex v. Our goal is to show that a.a.s., regardless where she starts,
after d + 1 (cops’) moves the cops can completely occupy Nd = Nd(v). As the first move
belongs to the cops, the robber will not be able to escape from the ball N≤d(v) around her
initial position; she will be “trapped” there.

We are going to show that with probability at least 1 − 2−2n+2, there exists a matching
saturating Nd between vertices of Nd and cops initially occupying N2d+1 = N2d+1(v). In
order to do it, we are going to use Hall’s theorem for matchings in bipartite graphs. A
“neighbour” in N2d+1 of a vertex w ∈ Nd (in this auxiliary bipartite graph) is a vertex in
N2d+1 that contains a cop and is at distance exactly d + 1 from w. For a given S ⊆ Nd of
size s = |S| ≥ 1, we wish to find ts, a lower bound for the number of vertices in N2d+1 at
distance d+ 1 from some vertex in S. As each vertex in Nd has

(
n−d
d+1

)
vertices in N2d+1 that

are at distance d+ 1, and each vertex in N2d+1 has
(
2d+1
d+1

)
vertices in Nd that are at distance

d+ 1, we get

ts ≥
(
n−d
d+1

)(
2d+1
d+1

)s =
(n− d)d+1

(2d+ 1)d+1

s.

Let X be the random variable counting how many of these vertices initially contain cops. Us-
ing the assumption for k, we get that E [X] ≥ tsk/2

n ≥ 36ns, and it follows from Chernoff’s
bound (applied to X, a hypergeometric random variable) that

Pr (X < s) ≤ Pr (X ≤ E [X] /2) ≤ 2 exp(−E [X] /12) ≤ 2 exp(−3ns).

Taking a union bound over all
((nd)
s

)
≤
(
2n

s

)
≤ 2ns choices for sets S of cardinality s, we

conclude that with probability at least 1− 2−2ns+1, Hall’s condition holds for all sets of size
s. Summing the failure probability over 1 ≤ s ≤

(
n
d

)
, we get that the desired condition holds

for all sets with probability at least 1−2−2n+2. Finally, by taking a further union bound over
all 2n choices for v, the initial vertex the robber starts on, we conclude that a.a.s., regardless
where the robber initially starts, the desired matching can be found. We may assume then
that this is the case.

Let us suppose that the robber starts at vertex v. We give a strategy for the cops for the
remainder of the game. The cops in N2d+1(v) move to destinations in Nd(v) according to
the matching guaranteed above (moving along any shortest path), thereby occupying every
vertex of Nd(v), taking exactly d + 1 steps. As we already mentioned, the robber is now
“trapped” in the ball around v. In the next d steps, the cops move towards v by covering
at each step one full layer Ni(v). Note that for any i with 1 ≤ i ≤ d− 1 (and in particular
i < cn < n/2), there exists a matching between Ni(v) and Ni+1(v) saturating Ni(v). Indeed,
arguing as before we notice that for any S ⊆ Ni(v), |N(S) ∩ Ni+1(v)| ≥ n−i

i+1
|S| ≥ |S| and

so Hall’s condition holds for the bipartite graph induced by layers Ni(v) and Ni+1(v). The
robber is captured after another d steps, and the proof is finished. �

3.2. Lower bounds. As in the previous subsection, let us start with the results that works
well for a small number of cops.

Theorem 10. Fix any constants 0 < α < α′ < 1, and suppose that c(Qn) ≤ k = k(n) ≤ en
α
.

Then,

captk(Qn) ≥ 1− α′

2
(n− 1) log n.
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Proof. We provide a sketch of the proof only. The robber performs a random walk on
Qn. Following the proof of Theorem 8 in [6] with T = (1/2)(n − 1) log n and ε = α′, the
probability that any of the cops captures the robber in under (1 − ε)T rounds is at most
k exp(−(n/2)α

′
/4) = o(1). �

The next result works well for a large number of cops.

Theorem 11. Suppose that k = k(n) ∈ N is such that

k <
2n∑d
i=0

(
n
i

) .
Then,

captk(Qn) > d.

In particular, the desired lower bound for the capture time holds, provided that

k <
1

2
· 2n

(
d

en

)d
,

for some d ≤ n/3.

Proof. In d steps, any cop can reach
∑d

i=0

(
n
i

)
vertices. Therefore, regardless of how cops

are initially distributed, they can reach at most k
∑d

i=0

(
n
i

)
< 2n vertices in d steps. Hence,

the robber can pick an initial vertex that is at distance at least d+ 1 from any cop and stay
put. She clearly survives for more than d rounds.

The second part follows from the fact that for any d ≤ n/3 we have

2n∑d
i=0

(
n
i

) ≥ 2n

2
(
n
d

) ≥ 2n

2(en/d)d
. �

3.3. Summary and open questions. In this section we summarize the results for hyper-
cubes, highlighting what remains to be investigated. It seems that the behaviour of the
capture time is well understood for all cases except part (ii).

Corollary 12. Let ε > 0,

g(x) = 2x log2(2x) + (1− 2x) log2(1− 2x)− x log2 x− (1− x) log2(1− x),

c = 1/2−
√

2/4 ≈ 0.1464, and

b = −g(c) ≈ 0.2716.

Suppose k ≥ c(Qn). The following hold for large enough n.

(i) If k ≤ 2n
α

for some α < 1, then captk(Qn) = Θ(n log n).
(ii) If k ≤ 2n(1−b+ε), then Ω(n) = captk(Qn) = O(n log n).

(iii) If 2n(1−b+ε) < k ≤ 2n(1−ε), then captk(Qn) = Θ(n).
(iv) If k = 2n−f(n) with log n� f(n) = o(n), then

captk(Qn) = Θ

(
f(n)

log(n/f(n))

)
= Θ

(
n

ω logω

)
where ω = ω(n) = n/f(n) (note that ω →∞, so 1� captk(Qn) = o(n)).

(v) If k = 2n−f(n) with f(n) = O(log n) (which is equivalent to k ≥ 2n/nO(1)), then
captk(Qn) = O(1).
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Proof. Recall that the capture time with c(Qn) cops was determined to be Θ(n log n) in [6];
since captk(G) is monotone non-increasing in k, this establishes the upper bounds in parts (i)
and (ii). The lower bound in part (i) follows immediately from Theorem 10. The lower bound
in part (iii) (and hence, by monotonicity also in (ii)) follows from Theorem 11, with d = αn
chosen so that ε > log2((e/α)α) + 1/n. For the upper bound in part (iii) note that if
d = cn− 2, then (using Stirling’s formula x! ∼

√
2πx(x/e)x) we have

36 · 2nn (2d+ 1)d+1

(n− d)d+1

∼ 36n · 2n
√

2d+ 1((2d+ 1)/e)2d+1

√
d(d/e)d

√
n− 2d((n− 2d)/e)n−2d√
(n− d)((n− d)/e)n−d

= O(1) · 2nn(2cn)2cn−1((1− 2c)n)(1−2c)n

(cn)cn((1− c)n)(1−c)n

= O(1) · 2n
(

(2c)2c(1− 2c)1−2c

cc(1− c)1−c

)n
= 2n(1+g(c)+o(1)) < k,

(when n is large enough to make the o(1) term less than ε) and Theorem 9 yields the linear
upper bound. To get the upper bound in part (iv) we will again use Theorem 9, this time
with d = 2n/(ω logω). Since 1� ω = o(n/ log n), we have

36 · 2nn
(

3d

n(1− c)

)d+1

≤ 2n+O(logn)+ 2n
ω logω

log( 8
ω logω ) = 2n−

(2+o(1))n log logω
ω < 2n−f(n) = k,

and the desired upper bound holds. To get the matching lower bound we will use Theorem 11
with d = n/(2ω logω). This time we need to verify that

1

2
· 2n

(
d

en

)d
= 2n−1+

n
2ω logω

log( 1
2eω logω ) = 2n−(1+o(1))

n
2ω > 2n−f(n) = k,

and the desired lower bound holds too. Finally, part (v) follows immediately from Theorem 9
with d constant. �

4. Planar graphs

We first investigate temporal speed-up on planar graphs if k = Ω(
√
n).

Theorem 13. For any connected planar graph G, if k ≥ 12
√
n, then captk(G) ≤ 6 rad(G) log n.

Proof. We use the planar separator theorem of Alon, Seymour, and Thomas [2]: there is a
set of at most 2.13

√
n vertices that separate the graph into two sets of size at most 2

3
n. Now

k ≥ 12
√
n > 2.13

√
n+ 2.13

√
2

3
n+ 2.13

√(
2

3

)2

n+ · · · ,

so place an initial team of cops on a separator of size at most 2.13
√
n (so that each vertex

of the separator is covered by exactly one cop) and the rest of the cops on a central vertex.
The robber will place herself on some vertex that is in one of the two subgraphs separated

by the first team of cops. A second team of cops, of size 2.13
√

2
3
n, moves to a separator of

that subgraph, while all the other cops remain still. Repeat this process until the robber’s
territory is reduced to nothing. This requires a number of teams t that satisfies(

2

3

)t
n < 1,
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which is true with t = 6 log n. Each team of cops takes its position in at most rad(G)
steps. �

Observe that the proof of Theorem 13 works even in a version of the game in which the
robber is allowed to move infinitely fast ; that is, she can move to any vertex in the same
component of the graph minus the cops’ vertices.

We can use the version for graphs of genus g of Gilbert, Hutchinson, and Tarjan [11] to
obtain the following.

Corollary 14. Let G be a connected graph with genus g, and suppose that k ≥ (19 +
66
√
g)
√
n. Then captk(G) ≤ 6 rad(G) log n.

For the square grid Pn�Pn with n2 vertices and k = n cops, note that the strategy in the
proof above takes O(n log n) time, whereas one can just sweep along the rows to capture in
time n/2, and our partitioning scheme for Theorem 7 gets it down to O(

√
n) time.

We finish this section by considering the effect of having three cops play on planar graphs.

Theorem 15. If G is a connected planar graph, then capt3(G) ≤ (diam(G) + 1)|V (G)|.

The bound in Theorem 15 is an improvement over the bound (for any G) that for k ≥ c(G),
captk(G) ≤ nc(G)+1 [3]. It does not, however, improve the bound for cop-win graphs of
n− 3 [5, 10].

Proof of Theorem 15. We follow the proof that 3 cops suffice to catch the robber presented
in [8] (based on the original proof of [1]), with some slight modifications, and give an upper
bound on the time the cop’s algorithm given there may take. The main observation is that
a cop can guard any shortest path P in a subgraph H of G in at most diam(G) + |V (P )|/2
steps: at most diam(G) steps to reach the central vertex of P , followed by at most |V (P )|/2
steps to capture the shadow of the robber on P .

The cops maintain a cop territory into which the robber cannot enter without being
immediately caught; the remainder of the graph is the unguarded territory, denoted H. The
cops ensure one of the following three cases hold throughout the game (after an initial phase):

(I) Some cop is guarding a (nontrivial) shortest path P of H, and any path from the
robber to the cop territory is through P .

(II) Two cops guard P1 ∪ P2, where P1 and P2 are internally disjoint paths with the same
endpoints, and any path from the robber to the cop territory is through a vertex of
P1 ∪ P2. (H is either the interior or exterior region of the cycle P1 ∪ P2, whichever
contains the robber.)

(III) Some cop guards a single vertex that prevents the robber from leaving H.

To begin, we send one cop to guard a shortest path P joining two vertices at maximum
distance from each other. This takes at most |P |/2(= diam(G)/2) steps and puts us into
Case I (with H = G − V (P )). The cops’ strategy now repeatedly reduces the unguarded
territory H while ensuring one of the three cases holds at all times. We claim that in the ith
phase, we take at most diam(G) + ki steps and reduce the unguarded territory by at least ki
vertices for some ki. This will imply that the robber is caught when

∑
i ki = n, which will

take at most
∑

i(diam(G) + ki) ≤ n diam(G) + n steps.

Case I: Let Y denote the component of H − V (P ) containing the robber, and let C1 be the
cop guarding P .
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If there is a unique v ∈ V (P ) with a neighbour in Y , then C1 prevents the robber from
reaching v, so we are actually in Case III. This is not counted as a phase, as it does not
require additional time.

Otherwise, let v1 and v2 be the first and last vertices of P that have neighbours in Y , and
let u1 and u2 be such neighbours (respectively). Let P2 be a shortest (u1, u2)-path in Y , and
move C2 to guard P2. This takes at most diam(G) + |V (P2)|/2 steps. Let P1 be the portion
of P from v1 to v2. The robber’s territory is now Y restricted to either the inside or outside
of the cycle P1 ∪ P2 ∪ {v1u1, v2u2}. Thus we are in Case II and we have reduced H by at
least |V (P2)|.
Case II: Let C1 and C2 be the cops guarding P1 and P2, respectively. Let X = P1∪P2, and
let Y be the component of H containing the robber.

If there is a unique v ∈ V (X) with a neighbour in Y , then one of C1 and C2 prevents the
robber from escaping Y through v, so we are actually in Case III. Again we do not count
this as a phase.

If each of P1, P2 have exactly one vertex (say v1, v2 respectively) with a neighbour in Y ,
then let K = G[V (Y ) ∪ {v1, v2}]− {v1v2}. Let P be a shortest (v1, v2)-path in K; note that
P contains at least one vertex of Y . Send C3 to guard P . The robber cannot reach v1 or
v2 without being caught by C1 or C2, so this takes at most diam(G) + (|V (P )| − 2)/2 steps.
Once C3 is in place, note that the robber cannot safely reach P1 or P2, so C1 and C2 are free
again to move. We are now in Case I and have reduced H by at least |V (P )| − 2 vertices.

Finally, suppose P1 has at least two vertices with neighbours in Y ; let v1, v2 be the first
and last such vertices of P1. Let u1, u2 be neighbours of v1, v2 (respectively) in Y . Let P
be a shortest (u1, u2)-path in Y , and send C3 to guard P . Let Q denote the subpath of
P1 from v1 to v2. If the robber is in the region bounded by Q ∪ P ∪ {v1u1, v2u2}, then
we are in Case II with C2 free to move. If instead the robber is in the region bounded by
(P1 − Q) ∪ P2 ∪ P ∪ {v1u1, v2u2}, then let P ′ = (P1 − Q) ∪ P ∪ {v1u1, v2u2}; note that P ′

is a shortest (v1, v2)-path in the region bounded by P ′ ∪ P2, so C3 may actually guard all
of P ′. Hence we are in Case II with C1 free to move. In either case we have taken at most
diam(G) + |V (P )|/2 steps and have reduced H by |V (P )| vertices.

Case III: Let Y ′ be the component of H containing the robber, and let Y = G[Y ′ ∪ {v}].
Let u be a vertex of maximum distance (in Y ) from v, and let P be a shortest (u, v)-path in
Y . Move a free cop to guard P − v; once he is in place, he guards all of P . We are in Case I,
have taken at most diam(G) + (|V (P )| − 1)/2 turns, and have reduced H by |V (P )| − 1
vertices. �

5. Binomial Random Graphs

The binomial random graph G(n, p) is defined as a random graph with vertex set [n] =
{1, 2, . . . , n} in which a pair of vertices appears as an edge with probability p, independently
for each such a pair. As typical in random graph theory, we consider only asymptotic
properties of G(n, p) as n → ∞, where p = p(n) may and usually does depend on n. We
say that an event in a probability space holds asymptotically almost surely (a.a.s.) if its
probability tends to one as n goes to infinity.

We first briefly describe some known results on the cop number of G(n, p). The first
and third author along with Wang investigated such games in G(n, p) random graphs, and
their generalizations used to model complex networks with a power-law degree distribution
(see [9]). From their results it follows that if 2 log n/

√
n ≤ p < 1−ε for some ε > 0, then a.a.s.
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Figure 1. The “zigzag” function f .

c(G(n, p)) = Θ(log n/p). Bollobás, Kun and Leader [4] showed that for p(n) ≥ 2.1 log n/n,
then a.a.s.

1

(pn)2
n1/2−9/(2 log log(pn)) ≤ c(G(n, p)) ≤ 160000

√
n log n .

From these results, if np ≥ 2.1 log n and either np = no(1) or np = n1/2+o(1), then a.a.s.
c(G(n, p)) = n1/2+o(1). Somewhat surprisingly, between these values c(G(n, p)) was shown by
 Luczak and the third author [13] to have more complicated behaviour. It follows that a.a.s.
logn c(G(n, nx−1)) is asymptotic to the function f(x) shown in Figure 1.

Using ideas from [13, 20], we may obtain bounds for the capture time of binomial random
graphs. For simplicity, we restrict ourselves to dense random graphs (d = p(n− 1) ≥ log3 n)
and a large number of cops (k = k(n) ≥ C

√
n log n). Further, we present a sketch of the proof

only. Adjusting the argument to sparser graphs (based on the more sophisticated argument
in [20] for the sparse case) should be straightforward, but the upper bound will not match
the lower bound. Similarly, adjusting the argument to fewer cops is possible but definitely
not all the way to the cop number. Investigating the capture time for k = c(G(n, p)), even
for very dense random graphs (say, for p = 1/2) appears to be a challenging problem. We do
not even know the exact value of the cop number there! For further background, the reader
is directed to [13, 19, 20].

Theorem 16. Suppose that d = p(n− 1) ≥ log3 n and C
√
n log n ≤ k = k(n) < n for some

sufficiently large constant C. Finally, let r = r(d, k) be the smallest positive integer such
that dr+1 ≥ Cn log n/k. Let G = (V,E) ∈ G(n, p). Then a.a.s.

captk(G) = Θ(r).

Proof. As referenced above, we sketch the proof only. First, let us mention that a.a.s. G(n, p)
is a good expander. Let N(v, j) be the set of vertices at distance at most j from vertex v. One
can show that a.a.s. for any vertex v and every j such that dj = o(n), N(v, j) = (1+o(1))dj.
Moreover, it is well known that any graph G with minimum degree δ = δ(G) > 2 has a
dominating set of size O(n log δ/δ). Hence, we may assume that d <

√
n log n as for denser

graphs we immediately get that a.a.s. captk(G) = Θ(1) for any C
√
n log n ≤ k < n. Finally,

we may assume that d < Cn log n/k. Indeed, if k is too large so that d ≥ Cn log n/k, then
the result for k′ = C

√
n log n implies that a.a.s. captk(G) ≤ captk′(G) = Θ(1).
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We place k cops at random as in the proof of Theorem 9. The robber appears at some
vertex v ∈ V . Note that it follows from the definition of d that

dr <
Cn log n

k
≤
√
n log n ≤ k

C
.

The main difficulty is to show that with probability 1−o(n−1), it is possible to assign distinct
cops to all vertices u in N(v, r) \N(v, r− 1) such that a cop assigned to u is within distance
(r + 1) of u. (Note that here, the probability refers to the randomness in distributing the
cops; the random graph is fixed.) If this can be done, then after the robber appears these
cops can begin moving straight to their assigned destinations in N(v, r) \N(v, r− 1). Since
the first move belongs to the cops, they have r + 1 steps to do so, after which the robber
must still be inside N(v, r), while N(v, r) \ N(v, r − 1) is fully occupied by cops. Then in
at most r additional steps, the cops can “tighten the net” around v and capture the robber.
Hence, the cops will win after at most 2r + 1 steps with probability 1 − o(n−1), for each
possible starting vertex v ∈ V . Hence, this strategy gives a win for the cops a.a.s.

We will use Hall’s theorem for bipartite graphs to show that the desired assignment exists.
We need to verify that, for any set S ⊆ N(v, r)\N(v, r− 1), there are at least |S| cops lying
on vertices within distance r + 1 from some vertex in S. One thing to make sure of is that
Hall’s condition holds for S = N(v, r)\N(v, r−1). It follows from expansion properties that
|N(v, r)| < 2dr ≤ 2k/C, so there are enough cops to achieve this goal. The main bottleneck
is to satisfy the condition for sets with |S| = 1. Since for any vertex u, the expected number
of cops in N(u, r+ 1) is asymptotic to kdr+1/n ≥ C log n, the condition holds provided that
C is large enough (see [13] or [20] for more details).

In order to get the lower bound, we need to use expansion properties again. It is possible
to show that a.a.s. for any starting position of k cops, the number of vertices at distance at
most r − 1 from them is asymptotic to kdr−1, since kdr−1 < Cn log n/d = o(n). The robber
can start at distance at least r from any cop and wait there. �
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