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Abstract

A lattice polytope &2 C R is called a locally anti-blocking polytope if for any closed
orthant Rg inRY, 2 n Rg is unimodularly equivalent to an anti-blocking polytope
by reflections of coordinate hyperplanes. We give a formula for the A*-polynomials
of locally anti-blocking lattice polytopes. In particular, we discuss the y -positivity of
h*-polynomials of locally anti-blocking reflexive polytopes.
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1 Introduction

A lattice polytope is a convex polytope all of whose vertices have integer coordinates.
A lattice polytope & C Rio of dimension d is called anti-blocking if for any y =
iy.eehyq) € Zandx = (xq,...,xq) € R4 with0 < x; < y; for all i, it holds that
x € Z. Anti-blocking polytopes were introduced and studied by Fulkerson [11,12]
in the context of combinatorial optimization. See, e.g., [35]. For ¢ € {—1, 1}d and
x € R?, set ex := (g1x1,...,eqxq) € R?. Given an anti-blocking lattice polytope
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P C Rio of dimension d, we define
to=(exeRY e e {-1,1}, x e 2.

Since 2 is an anti-blocking lattice polytope, £+ is convex (and a lattice polytope).
Moreover, for any ¢ € {—1,1}? and x € 2%, we have ex € Z*. The polytope
2% is called an unconditional lattice polytope [23]. In general, 2% is symmetric
with respect to all coordinate hyperplanes. In particular, the origin 0 of R? is in
the interior int 22*. Given ¢ = (e1,...,8q) € {—1, l}d, let Rg’ denote the closed
orthant {(x1,...,x4) € R4 . xiei > 0 forall 1 < i < d}. A lattice polytope
2 R4 of dimension d is called locally anti-blocking [23] if, for each ¢ € {—1, 1}¢,
there exists an anti-blocking lattice polytope &, C Rio of dimension d such that
Z N R‘gl = 3”} N R‘g’l. Unconditional polytopes are locally anti-blocking.

In the present paper, we investigate the h*-polynomials of locally anti-blocking
lattice polytopes. First, we give a formula for the A*-polynomials of locally anti-
blocking lattice polytopes in terms of that of unconditional lattice polytopes.

Theorem 1.1 Let & C RY be a locally anti-blocking lattice polytope of dimension d
and for each ¢ € {—1,1}%, let P, be an anti-blocking lattice polytope of dimension
d such that 2 N R = 2E N R, Then the h*-polynomial of 2 satisfies

W(Px)=o; Y hN(PE )
se{ 1,1}

In particular, h* (2, x) is y -positive if W* (2=, x) is y-positive for all ¢ € {—1, 1}%.

Second, we discuss the y -positivity of the 2*-polynomials of locally anti-blocking
reflexive polytopes. A lattice polytope is called reflexive if the dual polytope is also
a lattice polytope. Many authors have studied reflexive polytopes from viewpoints of
combinatorics, commutative algebra, and algebraic geometry. In [15], Hibi character-
ized reflexive polytopes in terms of their 2*-polynomials. To be more precise, a lattice
polytope of dimension d is (unimodularly equivalent to) a reflexive polytope if and
only if the 4*-polynomial is a palindromic polynomial of degree d. On the other hand,
in [23], locally anti-blocking reflexive polytopes were characterized. In fact, a locally
anti-blocking lattice polytope &2 C R? of dimension d is reflexive if and only if for
each ¢ € {—1, 1}¢, there exists a perfect graph G, on [d] := {I,...,d} such that
ZN Rd Qi NRY, where Zg, is the stable set polytope of G,. Moreover every
locally anti- blocklng reﬂexwe polytope possesses a regular unimodular triangulation.
This fact and the result of Bruns—Romer [S] imply that its 2*-polynomial is unimodal.

In the present paper, we discuss whether the h*-polynomial of a locally anti-
blocking reflexive polytope has a stronger property, which is called y-positivity. In
[31], a class of lattice polytopes H arising from finite simple graphs G on [d], which
are called symmetric edge polytopes of type B, was introduced. Symmetric edge poly-
topes of type B are unconditional, and they are reflexive if and only if the underlying
graphs are bipartite. Moreover, when they are reflexive, the 4 *-polynomials are always
y-positive. On the other hand, in [30], another family of lattice polytopes %;f) arising
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from finite partially ordered sets P on [d], which are called enriched chain poly-
topes, was given. Enriched chain polytopes are unconditional and reflexive, and their
h*-polynomials are always y-positive. Combining these facts and Theorem 1.1, we
know that, for a locally anti-blocking reflexive polytope &7, if every & N Rﬁ is the
intersection of Rg and either an enriched chain polytope or a symmetric edge reflex-
ive polytope of type B, then the 4*-polynomial of & is y-positive (Corollary 4.2).
By using this result, we show that the ~2*-polynomials of several classes of reflexive
polytopes are y-positive.

In Sect. 5, we will discuss y-positivity of the h*-polynomials of symmetric edge
polytopes of type A, which are reflexive polytopes arising from finite simple graphs.
In [21], it was shown that the #*-polynomials of the symmetric edge polytopes of type
A of complete bipartite graphs are y-positive. We will show that for a large class of
finite simple graphs, which includes complete bipartite graphs, the #2*-polynomials of
the symmetric edge polytopes of type A are y -positive (Sect. 5.1). Moreover, by giv-
ing explicit ~*-polynomials of del Pezzo polytopes and pseudo-del Pezzo polytopes,
we will show that the A*-polynomial of every pseudo-symmetric simplicial reflexive
polytope is y-positive (Theorem 5.8).

In Sect. 6, we will discuss y-positivity of 2*-polynomials of twinned chain poly-
topes €p,o C R¢, which are reflexive polytopes arising from two finite partially
ordered sets P and Q on [d]. In [39], it was shown that twinned chain polytopes €. ¢
are locally anti-blocking and each €p o NIRY is the intersection of RY and an enriched
chain polytope. Hence the h*-polynomials of €p o are y-positive. We will give a
formula for the #*-polynomials of twinned chain polytopes in terms of the left peak
polynomials of finite partially ordered sets (Theorem 6.3). Moreover, we will define
enriched (P, Q)-partitions of P and Q, and show that the Ehrhart polynomial of the
twined chain polytope ¢p,o of P and Q coincides with a counting polynomial of
enriched (P, Q)-partitions (Theorem 6.8).

This paper is organized as follows: In Sect. 2, we will review the theory of Ehrhart
polynomials, #*-polynomials, and reflexive polytopes. In Sect. 3, we will introduce
several classes of anti-blocking polytopes and unconditional polytopes. In Sect. 4,
we will investigate the h*-polynomials of locally anti-blocking lattice polytopes. In
particular, we will prove Theorem 1.1. We will discuss symmetric edge polytopes of
type A in Sect. 5, and twinned chain polytopes in Sect. 6.

2 Ehrhart Theory and Reflexive Polytopes

In this section, we review the theory of Ehrhart polynomials, 4*-polynomials, and
reflexive polytopes. Let &2 C R? be a lattice polytope of dimension d. Given a
positive integer m, we define

Lyp(m)=|mPN7.

Ehrhart [10] proved that L o (m) is a polynomial in m of degree d with the constant
term 1. We say that L 5 () is the Ehrhart polynomial of &2. The generating function
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of the lattice point enumerator, i.e., the formal power series

o0
Ehrp(x) = 14 ) Lapk)x*
k=1

is called the Ehrhart series of &7. It is well known that it can be expressed as a rational
function of the form

h* (2, x)
Ehr @ (x ) = m .
Then h* (7, x) is a polynomial in x of degree at most d with nonnegative integer coef-
ficients [36] and it is called the h*-polynomial (or the 8-polynomial) of &?. Moreover,
one has Vol(&?) = h* (2, 1), where Vol(4?) is the normalized volume of &.
A lattice polytope &2 C R? of dimension d is called reflexive if the origin of R¥ is
a unique lattice point belonging to the interior of & and its dual polytope

PV ={yeR?: (x,y) < 1forallx € 2}

is also a lattice polytope, where (x, y) is the usual inner product of R¥. It is known that
reflexive polytopes correspond to Gorenstein toric Fano varieties, and they are related
to mirror symmetry (see, e.g., [3,7]). In each dimension there exist only finitely many
reflexive polytopes up to unimodular equivalence [25] and all of them are known up
to dimension 4 [24]. In [15], Hibi characterized reflexive polytopes in terms of their
h*-polynomials. We recall that a polynomial f € R[x] of degree d is said to be
palindromic if f(x) = x¢ f(x~1). Note that if a lattice polytope of dimension d has
interior lattice points, then the degree of its A*-polynomial is equal to d.

Proposition 2.1 [15] Let & C R? be alattice polytope of dimensiond with0 € int 2.
Then & is reflexive if and only if h* (22, x) is a palindromic polynomial of degree d.

Next, we review some properties of polynomials. Let f = Z?:o a;x' be a polyno-
mial with real coefficients and a; # 0. We now focus on the following properties.

(RR) We say that f is real-rooted if all its roots are real.
(LC) We say that f is log-concave if aiz > aj_1aij4 foralli.
(UN) We say that f is unimodal ifap < a; <--- <ay > --- > ay for some k.

If all its coefficients are nonnegative, then these properties satisfy the implications
(RR) = (LC) = (UN).

On the other hand, the polynomial f is y-positive if f is palindromic and there are
Y0s Y1, -+ -» Y|dj2) = 0 such that f(x) = Zi>0 yixi(l + x)4=2% The polynomial
DisoVi x' is called the y-polynomial of f. We can see that a y-positive polynomial
is real-rooted if and only if its y-polynomial is real-rooted. If f is palindromic and
real-rooted, then it is y -positive. Moreover, if f is y -positive, then it is unimodal. See,
e.g., [2,34] for details.
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For a given lattice polytope, a fundamental problem within the field of Ehrhart
theory is to determine if its 2*-polynomial is unimodal. One famous instance is given
by reflexive polytopes that possess a regular unimodular triangulation.

Proposition 2.2 [5] Let & C RY be a reflexive polytope of dimension d. If P possesses
a regular unimodular triangulation, then h*(Z2, x) is unimodal.

It is known that if a reflexive polytope possesses a flag regular unimodular trian-
gulation all of whose maximal simplices contain the origin, then the ~2*-polynomial
coincides with the A-polynomial of a flag triangulation of a sphere [5]. For the h-
polynomial of a flag triangulation of a sphere, Gal [13] conjectured the following:

Conjecture 2.3 The h-polynomial of any flag triangulation of a sphere is y -positive.

3 Classes of Anti-Blocking Polytopes and Unconditional Polytopes

In this section, we introduce several classes of anti-blocking polytopes and uncondi-
tional polytopes. Throughout this section, we associate each subset F C [d] with a
(0, 1)-vectorep = Zi cF €€ R4, where each e; is the ith unit coordinate vector in RY.

3.1 (0, 1)-Polytopes Arising from Simplicial Complexes

Let A be a simplicial complex on the vertex set [d]. Then A is a collection of subsets
of [d] with {i} € A foralli € [d] suchthatif F € Aand F/ C F,then F/ € A.In
particular # € A and ey = 0. Let &2, denote the convex hull of {ef € R? : F € A}.
The following is an important observation.

Proposition 3.1 Let & C R‘io be a (0, 1)-polytope of dimension d. Then & is anti-
blocking if and only if there exists a simplicial complex A on [d] such that P = P .

3.2 Stable Set Polytopes

Let G be a finite simple graph on the vertex set [d] and E(G) the set of edges of G.
(A finite graph G is called simple if G possesses no loop and no multiple edge.) A
subset W C [d] is called stable if, for all i and j belonging to W with i # j, one
has {i, j} ¢ E(G). We remark that a stable set is often called an independent set. Let
S(G) denote the set of all stable sets of G. One has ¥ € S(G) and {i} € S(G) for each
i € [d]. The stable set polytope 2 C R? of G is the (0, 1)-polytope defined by

26 :=conv {ey € R : W € S(G)}.
Then one has dim 2 = d. Since we can regard S(G) as a simplicial complex on [d],
2 is an anti-blocking polytope.

Locally anti-blocking reflexive polytopes are characterized by stable set polytopes.
A clique of G is asubset W C [d] that is a stable set of the complement graph G of G.

@ Springer



706 Discrete & Computational Geometry (2021) 66:701-722

The chromatic number of G is the smallest integer + > 1 for which there exist stable
sets Wi, ..., Wy of G with [d] = W U---U W;. A finite simple graph G is said to be
perfect if, for any induced subgraph H of G including G itself, the chromatic number
of H is equal to the maximal cardinality of cliques of H. See, e.g., [9] for details on
graph theoretical terminology.

Proposition 3.2 [23] Let & C RY be alocally anti-blocking lattice polytope of dimen-
siond. Then 2 C RY is reflexive if and only if, for each ¢ € {—1, 1}, there exists a
perfect graph G on [d] such that 2 NRZ = Qa N Rg.

3.3 Chain Polytopes and Enriched Chain Polytopes

Let (P, <p) be a partially ordered set (poset, for short) on [d]. A subset A of [d] is
called an antichain of P if all i and j belonging to A with i # j are incomparable
in P. In particular, the empty set ¥ and each 1-element subset {i} are antichains of
P. Let &/ (P) denote the set of antichains of P. In [37], Stanley introduced the chain
polytope €p of P defined by

Gp :=conv{ey € RY:Ac o (P)}.

It is known that chain polytopes are stable set polytopes. Indeed, let G p be the finite
simple graph on [d] such that {i, j} € E(Gp) ifandonlyifi <p jorj <p i. We
call G p the comparability graph of P. It then follows that 7 (P) = S(Gp). Hence
the chain polytope % is the stable set polytope 2 ,,. Therefore, chain polytopes are
anti-blocking polytopes. We remark that any comparability graph is perfect.

On the other hand, the enriched chain polytope ‘ﬁl(f) of P is the unconditional lattice
polytope defined by ‘5;,6) = ‘Kfj,[. In [30], it was shown that the Ehrhart polynomial of
55;,6) coincides with a counting polynomial of left enriched P-partitions. We assume
that P is naturally labeled. A map f: P — Z\ {0} is called an enriched P-partition
[38]1if, forall x, y € P withx <p y, f satisfies

fOI=[fO and [fO]=[fODI = f(y)>0.

A map f: P — Zis called a left enriched P-partition [33] if, for all x, y € P with
x <py, f satisfies

[fOI=1fOI and [f)l=1fI = f(y) =0.
The symbol Q%)(m) will denote the number of left enriched P-partitions

f: P — Z with |f(x)|] < m for any x € P, which is called the left enriched order
polynomial of P.

Proposition 3.3 [30] Let P be a naturally labeled finite poset on [d]. Then one has

Ly (m) = QW (m).
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Given a linear extension w = (7, ..., my) of a finite poset P on [d], a left peak of
mwisanindex 1 <i <d — 1 such that ;1 < 7; > w41, where we set mgp = 0. Let
pk© () denote the number of left peaks of 7. Then the left peak polynomial Wg) (x)
of P is defined by

(4 (©)
Wyt = Y x P,
reZ(P)

where .Z (P) is the set of linear extensions of P.

Proposition 3.4 [30] Let P be a naturally labeled finite poset on [d]. Then the h*-po-
lynomial of %}()e) is

y 4
R, x) = (x + DIWY (ﬁ)

In particular, h*(%[(,e), X) is y-positive.

Note that if Q is a finite poset that is obtained from P by reordering the label, then
‘5;,“) and ‘Kg) are unimodularly equivalent. Hence the 4*-polynomials of enriched
chain polytopes are always y-positive.

3.4 Symmetric Edge Polytopes of Type B
Let G be a finite simple graph on [d]. We set
Bg :=conv ({0, e, ...,es} Ufei +e;:{i, j} € E(G)}).

Then Bg = &#a where A is a simplicial complex on [d] obtained by regarding G as
a l-dimensional simplicial complex. The symmetric edge polytope of type B of G is
the unconditional lattice polytope defined by % := B(i;.

Proposition 3.5 [31] Let G be a finite simple graph on [d). Then Bg is reflexive if
and only if G is bipartite.

A hypergraph is a pair 5 = (V, E), where E = {ey, ..., e,} is a finite multiset
of non-empty subsets of V. = {vy, ..., v,}. Elements of V are called vertices and
the elements of E are the hyperedges. Then we can associate .7 to a bipartite graph
Bip 2 with a bipartition V U E, such that {v;, e;} is an edge of Bip 7 if v; € e;.
Assume that Bip 57 is connected. A hypertree in ¢ is a functionf: E — {0, 1, ...}
such that there exists a spanning tree I" of Bip 7 whose vertices have degree f(e) + 1
ateach e € E. Then we say that I" induces f. Let B, denote the set of all hypertrees in
J€. Ahyperedge e¢; € E is said to be internally active with respect to the hypertree f if
itis not possible to decrease f(¢;) by 1 and increase f(e;), j* < j, by 1 so that another
hypertree results. We call a hyperedge internally inactive with respect to a hypertree if
it is not internally active and denote the number of such hyperedges of f by ¢(f). Then
the interior polynomial of ¢ is the generating function Iy (x) = ) ¢, By x'® Ttis
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known [22, Prop. 6.1] that deg I ;»(x) < min {| V|, |E|} — 1. If G = Bip JZ, then we

set Ig(x) = Iy (x). ~
Assume that G is a bipartite graph with a bipartition V; U V, = [d]. Then let G be
a connected bipartite graph on [d + 2] whose edge set is

EG)=EG)U{i,d+1}:ieVi}U{{j.d+2}:jeVaUld+1}}.

Proposition 3.6 [31] Let G be a bipartite graph on [d]. Then the h*-polynomial of
the reflexive polytope B is

4x
h*(Bg, x) = g —— ).
(%6, %) = (x+ 1) G<(x+1)2>
In particular, h*(%Bg, x) is y-positive.

4 h*-Polynomials of Locally Anti-Blocking Lattice Polytopes
In the present section, we prove Theorem 1.1, that is, a formula for the 2*-polynomials

of locally anti-blocking lattice polytopes in terms of that of unconditional lattice poly-
topes. Given a subset J = {ji, ..., j,} of [d], let

7 RE SR (s xa) = Ky e X))

denote the projection map. (Here my is the zero map.)
Proposition 4.1 Let &7 C Rio be an anti-blocking lattice polytope. Then we have
d
R(P*x) =Y D=0 Y @), x).
Jj=0 Jcld], [J1=j
Proof The proof is similar to the discussion in [31, proof of Prop. 3.1]. The inter-

section of 2% N R¢ and 2% N RZ/ is of dimension d — 1 if and only if ¢ — &’ €
{£2eq, ..., +2e4}. Moreover, if ¢ — &’ = 2ey, then

(7t n R?) NN R?/) = 2% n Rg N Rg/ ~ n[d]\{k}(@i) N Ri;ﬂl\{k)(s)

= wan (2)-
Hence the Ehrhart polynomial L g+ (m) satisfies the following:
d . .
Lpt(m) =Y 2/(=D"7 3" Lo, (m).
Jj=0 Jcldl, |J1=j
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Thus the Ehrhart series satisfies

’

RO Zz,( 1)d1 y )0

_ d+1 _ +1
(1 x) ctara=; 4=

as desired. O
We now prove Theorem 1.1.

Proof of Theorem 1.1 Given J = {ji, ..., j;} C [d]and ¢ € {—1, 1}, let
RY, = {x=(x,....x9) € R? 1 7;(x) e Rl and x; = O forall j ¢ J}.

It then follows that &2 ﬂR”JIVS is equal to 77 (Z,)* NRZ, where 77 (¢") = ¢. Note that,

given J = {ji,...,j,} C[dland e € {—1, 1}, we have |{&/ € {—1, 1} : 7;(¢) =
e}] = 297", Thus

d
WP, x) =Y (x=DT > > (P NRY,.x)
j=0

Jcld). Ul=j ee(—1,1}

d » h* (7 (2%), x)
= X;)(x — 1)d— Z Z %
=

ee{—1,1}4 JCld], |[J|=j

d
1 . N
=% YooY Y-t Y () x)
ee{—1,1}4 j=0 Jcldl, J1=j
— Y hN(PE X
se{ 1,1}
by Proposition 4.1. O

Combining Theorem 1.1 with Propositions 3.4 and 3.6, we have

Corollary4.2 Let & C RY be a locally anti-blocking reflexive polytope. If every
7N R‘EI is the intersection of Rf and either an enriched chain polytope or a symmetric
edge reflexive polytope of type B, then the h*-polynomial of &7 is y -positive.

Finally, we conjecture the following.

Conjecture 4.3 The h*-polynomial of any locally anti-blocking reflexive polytope is
y -positive.

Thanks to Theorem 1.1 and Proposition 3.2, in order to prove Conjecture 4.3, it
is enough to study unconditional lattice polytopes ,@jGE where 2 is the stable set
polytope of a perfect graph G.
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5 Symmetric Edge Polytopes of Type A

Let G be a finite simple graph on the vertex set [d] and the edge set E(G). The
symmetric edge polytope </ C R? of type A is the convex hull of the set

AG) = {£(e; —ej) e R? : {i, j} € E(G)).
The polytope <7 is introduced in [26,28] and called a “symmetric edge polytope
of G.”

Example 5.1 Let G be a tree on [d]. Then <75 is unimodularly equivalent to a (d — 1)-
dimensional cross polytope. Hence we have h* (5, x) = (x + 141,

It is known [26, Prop. 4.1] that the dimension of .o7; is d — 1 if and only if G is
connected. Higashitani [20] proved that «7; is simple if and only if «7; is smooth
Fano if and only if G contains no even cycles. It is known [26,28] that <75 is unimod-
ularly equivalent to a reflexive polytope having a regular unimodular triangulation.
In particular, the 2*-polynomial of <7 is palindromic and unimodal. For a complete
bipartite graph Ky j, it is known [21] that the ~*-polynomial of @/, is real-rooted
and hence y-positive.

5.1 Recursive Formulas for h*-Polynomials

In this section, we give several recursive formulas of 4*-polynomials of .27z when G
belongs to certain classes of graphs. By the following fact, we may assume that G is
2-connected if needed.

Proposition 5.2 Let G be a graph and let G1, ..., Gg be 2-connected components of
G. Then the h*-polynomial of <7 satisfies

h*(%G9 x) = h*(%Gl ) x) o 'h*(%Gsv x)'

Proof Since o7 is the free sum of reflexive polytopes %7z, , ..., #g,, a desired con-
clusion follows from [4, Thm. 1]. |

The suspension Gofa graph G is the graph on the vertex set [d + 1] and the edge
set

EG)U{{i,d+1}:i e[d]}.
We now study the /4*-polynomial of <7;. Given a subset S C [d],
Es:={ec E(G):lenS| =1}
is called a cut of G. For example, we have Ey = E|4) = . In general, it follows that

Es = Eyps. We identify Eg with the subgraph of G on the vertex set [d] and the
edge set Eg. By definition, E is a bipartite graph. Let Cut(G) be the set of all cuts of
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G. Note that |Cut(G)| = 2¢-!. From Theorem 1.1 and Proposition 3.6, we have the
following.

Theorem 5.3 Let G be a finite graph on [d]. Then </ is unimodularly equivalent to
a locally anti-blocking reflexive polytope whose h*-polynomial is

1 4
W =g Y W0 =640 o )

2
HeCut(G) @+ 1)

where

1
fo) =1 Do 1.

HeCut(G)

In particular, h* (27, x) is y-positive. Moreover, h* (g, x) is real-rooted if and only
if fc(x) is real-rooted.

Proof Let 22 C RY be the convex hull of
{er, ..., e} U {E(e; —e)): {i, j} € E(G)).

Then 7 is lattice isomorphic to 2. Given ¢ = (e1,...,84) € {—1, 1}d, let S, =
{i €[d]:& = 1}. Then &Z N Rg’ is the convex hull of

{0} U{cie; ;i € [d]} U {e; —ej: {i,jleEs,,ieS:}

Hence &2 N ]Rg = B, N Rg. Thus &7 is a locally anti-blocking polytope and

1
h*(%A,x) = 2dj Z h*(f@[{,x)
HeCut(G)

by Theorem 1.1. O

Let G be a graph and let e = {i, j} be an edge of G. Then the graph G /e obtained
by the procedure

(i) Delete e and identify the vertices i and j
(i1) Delete the multiple edges that may be created while (i)

is called the graph obtained from G by contracting the edge e. Next, we will show
that, for any bipartite graph G and e € E(G), h* (o7, x) is y-positive if and only if so
is h* (275 /e, x). In order to show this fact, we need the theory of Grobner bases of toric
ideals. Given a graph G on the vertex set [d] and the edge set E(G) = {e1, ..., ex},
let

B =Kt 1] gty 5]
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be the Laurent polynomial ring over a field K and let
yzK[xls"'7-xn7yla"'7ynsz]

be the polynomial ring over K. We define the ring homomorphism 7 : . — Z by
setting w(z) = s, w(xx) = t,-t;ls and w(yr) = tfltjs ifex = {i,j} € E(G) and
i < j.Thetoricideal I, of g is the kernel of 7. (See, e.g., [14] for details on toric
ideals and Grobner bases.) We now recall the notation given in [21]. For any oriented
edge ¢;, let p; denote the corresponding variable, i.e., p; = x; or p; = y; depending
on the orientation, and let {p;, ¢;} = {x;, y;}. Let 4(G) be the set of all binomials f
satisfying one of the following:

r=11r- 11 (1

eiel e;eC\I

where C is an even cycle in G of length 2k with a fixed orientation, and / is a k-subset
of C suchthatey, ¢ I for =min{i : ¢; € C};

f=1Iri-2z1] @ 2

ejel e,-eC\I

where C is an odd cycle in G of length 2k 4+ 1 and [ is a (k + 1)-subset of C;
f=xiyi =2, 3)

where 1 < i < n. Then ¥4(G) is a Grobner basis of o/ With respect to a reverse
lexicographic order < induced by the ordering z < x; < y; < --- < x, < y, [21,
Prop. 3.8]. Here the initial monomial of each binomial is the first monomial. Using
this Grobner basis, we have the following.

Proposition 5.4 Let G be a bipartite graph on [d] and let e € E(G). Then we have
h* (oG, x) = (x + D) h* (g e, X).

Proof Let E(G) = {ey,...,e,} with e = e; = {i, j}. Since G is a bipartite graph,
the Grobner basis ¢4 (G) above consists of the binomials of the form (1) and (3).

Since G has no triangles, the procedure (ii) does not occur when we contract e of
G.Hence E(G/e) = {é, ..., e} where ¢, is obtained from e; by identifying i with
Jj. Let G’ be a graph obtained by adding an edge ¢ = {d + 1,d + 2} to the graph
G /e. Then ¢ (G’) consists of all binomials f satisfying one of the following:

f=11r- 11 @

eiel e,'GC\I
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where C is an even cycle in G of length 2k with a fixed orientation and e; ¢ C, and 1
is a k-subset of C such thatey ¢ I for £ = min{i : ¢; € C};

f=1Ir-211 @

e;el e;eC\I

where C U {e1} is an even cycle in G of length 2k 4+ 2 and [ is a (k + 1)-subset of C;
f=xiyi — 2%,

where 1 < i < n.Hence {in.(f) : f € 9(G)} = {in(f) : f € 9(G")}.Bya
similar argument as in the proof of [19, Thm. 3.1], it follows that

(g x) = h* (g1, x) = W (), ) ( g e, %) = (x + DI (A e, x),

as desired. O
From Theorem 5.3, Propositions 5.2 and 5.4 we have the following immediately.

Corollary 5.5 Let G be a bipartite graph on [d]. Then we have that:

(@) The h*-polynomial h* (g, x) = (x + 1)h* (g, x) is y -positive.
(b) If G is obtained by gluing bipartite graphs G| and G, along with an edge e, then

h* (G, x) = (x + DI (G /e, X)
= (x + DA™ (G, /e, X)W (G, e, X)
= h*(ﬂcl, x)h*(;zf(;z, x)/(x + 1).

Remark Corollary 5.5 (b) was recently generalized in [8, Thm. 4.17].

5.2 Pseudo-Symmetric Simplicial Reflexive Polytopes

A lattice polytope & C R is called pseudo-symmetric if there exists a facet .% of
& such that —.7 is also a facet of Z2. Nill [27] proved that any pseudo-symmetric
simplicial reflexive polytope & is a free sum of &, ..., ¥, where each &; is one
of the following:

e cross polytope;
e del Pezzo polytope V2, = conv (feq, ..., Tey,, (e + -+ exyy));
e pseudo-del Pezzo polytope Vo, = conv (*ey, ..., ey,, —€] — - - — exy).

Note that a del Pezzo polytope is unimodularly equivalent to <7c,,, ., where Ca;, 11 is
an odd cycle of length 2m + 1 (see [20]). The 2*-polynomial of <7, was essentially
studied in the following papers (see also the OEIS sequence A204621):

e Conway and Sloane [6, p.2379] computed h*(/c,, x) for small d by using results
of O’Keeffe [32] and gave a conjecture on the y-polynomial of h*(/c,, x) (coin-
cides with the y-polynomial in Proposition 5.7 below).
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e General formulas for the coefficients of A*(2/c,, x) were given in Ohsugi—-Shibata
[29] and Wang—Yu [40].

In order to give the A*-polynomial of Vo, we need the following lemma.

Lemma 5.6 Let G be a connected graph. Suppose that an edge e = {i, j} of G is not
a bridge. Let &, be the convex hull of A(G) \ {e; — e;}. Then we have

(o, ) + 1 (e,
W (P ) = IO D),

where G \ e is the graph obtained by deleting e from G.

Proof Note that &G\, C &, C . Since G is connected and e is not a bridge of
G, the dimension of both <7/ and %75\, is d — 1. Let &7, denote the convex hull of
A(G) \ {—e; + e;}, which is unimodularly equivalent to &,. Then </ and &, are
decomposed into the following disjoint union:

A = de\e U (P \ Hi\e) U (P \ Ai\e)
Do = d\e U (P \ DG\e)-

Since &, \ G\, is unimodularly equivalent to &7, \ </;\., we have a desired con-
clusion. O

The h*-polynomials of V,,, and \72m are as follows:

Proposition 5.7 Let C4 denote a cycle of length d > 3 and let 1 < m € Z. Then we
have

L@=D/2] iy '
h*(%cd’x): Z <i)x1(x+1)d211’

i=0
m .

W (Vo x) = ) 2wl e 4 12,
i

i=0

m
U 2i — 1\ . )
h*(Vom, x) = (x + D> + ,-2_1 (l,l_ | )x’(x 4 1)2m2i,

In particular, the h*-polynomials of </c,;, Vo, and Vo are y -positive.

Proof The proof for C, is by induction on d. First, we have h*(/c;, x) = X2 4dx+1 =
(x+ D2+ (?)x If d > 4 is even, then

h*(ﬂfcd, x)=(x+ l)h*(ﬂcdq , X)

(d-2)/2 2%\ ' Ld—-1)/2] 2%\ _
— Z < .>.Xl(x+1)d_2l_l — Z < _)Xl(.X“r‘ 1)d—21—1.
i=0 ! i=0 !
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Moreover, if d = 2m + 1,2 < m € Z, then the coefficient of x in

d-1/2

) <2ii)x"(x + DT = e DI ey ) + (me)xm

i=0

is

i (2i) <2m —~ Zi) _ g — i
o\ m—i
and the other coefficient is arising from (x + 1)h*(#/c,_,, x). By a recursive formula
in [29, Thm. 2.3], we have
d-1/2 2i
i d—2i—1
h* (e, x) = Z <i>xl(x+l) L

i=0

Since V3, isunimodularly equivalentto </c,,, , , , we have h* (Vo,, x) = h* (@, ., X).
By Lemma 5.6, it follows that

(s, 0 X) + W (Apy, 0 X)

h* (Vo x) = >
1 & <2i> ; om_ni . (x+ 1"
=—Z )X+ DT ——
2i=0 I 2
220 =1\ . ,
:(x+1)2m+z<l_l)xl(x+l)2m21 |:|
i=1

Thus it turns out that any pseudo-symmetric simplicial reflexive polytope is a free
sum of reflexive polytopes whose /4 *-polynomials are y-positive. By [4, Thm. 1], we
have the following.

Theorem 5.8 The h*-polynomial of any pseudo-symmetric simplicial reflexive poly-
tope is y -positive.

Proof From results by Nill [27], any pseudo-symmetric simplicial reflexive polytope is
a free sum of cross polytopes, del Pezzo polytopes, and pseudo-del Pezzo polytopes.
On the other hand, by [4, Thm. 1], the A*-polynomial of a free sum of reflexive
polytopes &1, ..., & is equal to the product of h*-polynomials of &7y, ..., ;.
Hence, by Example 5.1 and Proposition 5.7, it follows that the 4*-polynomial of any
pseudo-symmetric simplicial reflexive polytope is y-positive. O

5.3 Classes of Graphs with h* (<5, x) Being y-Positive

With the results of the present section one can show that, for example, 2* (27, x) is
y-positive if one of the following holds:
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G= I:I’: for some graph H (e.g., G is a complete graph, a wheel graph);

G = H for some bipartite graph H (e.g., G is a complete bipartite graph);
G is acycle;

G is an outerplanar bipartite graph.

Moreover, one can compute h* (o7, x) explicitly in some cases. We give such cal-
culations for some known formulas (for complete [1] and complete bipartite graphs

[21]).

Example 5.9 [1] By Theorem 5.3, we have

; " (@ + ! 4x
W (g0 = Wy, o0 = “m— > i o)
2 x+1
HeCut(Ky_1)

If the edge set of H € Cut(Ky—1) is Eg with S C [d — 1], then H is a complete
bipartite graph K| 4—1—|s| and

SN\ [d—1S]—1
-2
i>0

(Here Ko 4—1 denotes an empty graph.) It then follows that

1 L(d-1)/2] ]
b et 1) = 2“2( ) Sy

i=0

X (X + 1)d-l—2i

()
()57)
)

| l@=nar _ i1
— Zd_l Z 4lxl(x + l)d1212d121( < )

i=0
[d—1)/2]
Z d—1\/[2i
5 2i i
i=0

Example5.10 [21] Let G = K, ,. Then G = K, 41.,+1 and

- i d—1-2i
= = ZO Axt(x+1) L
L(d-1)/2]

1 d S d—1
— a1 Z 4le(x+ )d 1-2i (
i=0

1 [(d—1)/2] d—i— l(d 1)

h*(JZ{Km_H,,H_]’x) = (x + l)h*(ﬂk\mn,X)
_ G+ pmt ,N< hal )

m+n—1 2
2 HeCut(Kp.,) @ +1)
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Let V; U V; be the partition of the vertex set of K, ,, where |Vi| = m and | V2| = n. If
the edge set of H € Cut(K,, ) is Es with § C [m + n], then H is the disjoint union
of two complete bipartite graphs Ky ¢ and K, »—¢, and hence

=502

Jj=0
where k = |Vi N S| and £ = n — |V, N S|. It then follows that

x +1 min (k,£) k ) . ‘
h*(%K;71+1,n+l R 2m+n Z Z ( )( ) Z 4! (l> <i>xl (x + 1)k+€—21
k=0 ¢=0 i=0
min (m—k,n—=)

o Z 4] (m — k) (I’l — E)x](x + 1)m+n7k7€*2j
J

j=0 /
= S 4 (2
i,j=0

FHOOCHZOO0)

Since
SOOC -2
— k) \i j — i+J i k—1i
_om—titp( M O\ (P T
i+ i)
we have

. .\ 2 +
1+ m n i+ +n=23i+j)+1
W (o ,X) = X (x 4 1y =2GED
(DK i1 041> X) el 0( i )<l+]>(l ]) ( :

120 j=

) o 2
<a> (m) <n>x°‘(x+ Jynn—2a+l
—\i o)\«

1=l

<20l)< )(n)xot(x + l)m+7172a+1.
o o o

Finally, we conjecture the following:

min(

3

mi

1M; 10
(=} o

Conjecture 5.11 The h*-polynomial of any symmetric edge polytope of type A is y -
positive.
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6 Twinned Chain Polytopes

In this section, we will apply Theorem 1.1 to twinned chain polytopes. For two lattice
polytopes &, 2 C R?, we set

['(Z,2) :=conv(ZU(-2)) C RY.

Let P and Q be two finite posets on [d]. The twinned chain polytope of P and Q is the
lattice polytope defined by €p ¢ 1= I'(¥p, €p). Then €p ¢ is reflexive. Moreover,
©p,o has a flag, regular unimodular triangulation all of whose maximal simplices
contain the origin [16, Prop. 1.2]. Hence we obtain

Corollary 6.1 Let P and Q be two finite posets on [d]. Then the h*-polynomial of €p ¢
coincides with the h-polynomial of a flag triangulation of a sphere.

In [39, Prop. 2.2] it was shown that €p ¢ is locally anti-blocking. In general, for
two finite posets (P, <p) and (Q, <) with P N Q = ), the ordinal sum of P and
Q is the poset (P @ Q, <pgg)on P @ Q = P U Q suchthati <pgg j if and only
if(a)i,j € Pandi <p j,or(b)i,j € Qandi <g j,or(c)i € Pand j € Q.
Given a subset [ of [d], we define the induced subposet of P on I to be the finite poset
(Pr,<p;)onl suchthati <p, jifandonlyifi <p j.ForI C [d], let T := [d] \ 1.

Proposition 6.2 [39, Prop. 2.2] Let P and Q be two finite posets on [d]. Then for each
e € {—1, 1}, it follows that

d +
€pr,0o NRE = %PISEBQE

d
NRE,
where I, = {i € [d] : &; = 1}.

From this result, Theorem 1.1, and Proposition 3.4 we obtain the following:

Theorem 6.3 Let P and Q be two finite posets on [d]. Then one has

1 e 4x
W (Cpo.x) =55 Y WGP ) =+ frol —— ).
2 ee{—1,1}4 (X * 1)

where I, = {i € [d] : ¢; = 1} and R is a naturally labeled poset that is obtained
from Pj, @ 07, by reordering the label and

1
fP,Q(x)=2—d Z W,(é)(x).

ee{—1,1}4

In particular, h*(6p g, x) is y-positive. Moreover, h*(€p, g, x) is real-rooted if and
only if fp, o(x) is real-rooted.
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On the other hand, it is known that from 2*(6p, g, x) we obtain h*-polynomials of
several non-locally anti-blocking lattice polytopes arising from the posets P and Q.
The order polytope O'p [37] of P is the (0, 1)-polytope defined by

Op = {xe[0, 117 :x; <x;ifi <p j).
Given two lattice polytopes &2, 2 C R?, we define
P x 2= conv ((Z x {0H U (2 x {1})) c R4,
which is called the Cayley sum of &2 and 2, and define
Q(P, 2) :=conv (P x {1}) U (=2 x {—1})) C R4,
Proposition 6.4 [16, Thm. 1.1] Let P and Q be two finite posets on [d]. Then
h*(€p,o.x) = h*(T'(Op, €p), x).
Furthermore, if P and Q have a common linear extension, then
h*(€p,g,x) =h"(C(Op, Op), x).
Proposition 6.5 [18, Thm. 1.4] Let P and Q be two finite posets on [d]. Then
(1 +x)h*(€p,0.x) =h"(2(Op, 6p), x).
Furthermore, if P and Q have a common linear extension, then
(1 +x)h*(€p,g,x) =h"(Q2Op, Op), x).
Proposition 6.6 [17, Thm. 4.1] Let P and Q be two finite posets on [d]. Then
h*(€p,0.x) =h*(Op * 6. x).
From these propositions and Theorem 6.3, we obtain the following:

Corollary 6.7 Let P and Q be two finite posets on [d]. Then the h*-polynomials of
['(Op,€p), QOp, o), Op xCp, and Q(Ep, €p) are y-positive. Furthermore, if
P and Q have a common linear extension, then the h*-polynomials of T'(Op, Op)
and Q(Op, Op) are also y-positive.

In the rest of this section, we introduce enriched (P, Q)-partitions and we show
that the Ehrhart polynomial of €p, ¢ coincides with a counting polynomial of enriched
(P, Q)-partitions. Assume that P and Q are naturally labeled. We say that a map
f:[d] — Zis an enriched (P, Q)-partition if, for all x, y € [d], it satisfies

@ Springer



720 Discrete & Computational Geometry (2021) 66:701-722

e x <py, f(x) >0,and f(y) > 0= f(x) < f(»);
e x <py, f(x) <0,and f(y) <0= f(x) > f(y).

Foramap f: [d] — Z, we set
m(f) =min{{0} U{f(x):x €[d]}} and M(f)=max{{0}U f(x):x € [d]}}.

Foreach0 < m € Z, let ng,)Q (m) denote the number of enriched (P, Q)-partitions
f:ld]l = Zwith M(f) —m(f) < m.

Theorem 6.8 Let P and Q be two finite posets on [d]. Then one has
Lig,, o (m) = Q5 (m).

Proof Let F(m) stand for the set of enriched (P, Q)-partitions with M (f) —m(f) <
m. We show that there exists a bijection from m%p o N 7% to F(m). Take f € F(m)
and set m(f) =a and M(f) = b. We set

I'={ield]: f@i) =0}

Let
S ifi € I is minimal in P,
min {f (i) — f(j) : i covers j in Py} if i € I is not minimal in Py,
Xi = —
N O] if i €7 is minimal in Q7.

—min{|f@)| — | f(j)| :icovers jin Q7} ifi € T is not minimal in 07.

Assume that I = {1, ..., k} and I = {k+1,...,d}. Then we have (xq,...,x¢) €
b%6p, and (Xg41,...,%4) € a‘KQ7 by a result of Stanley [37, Thm. 3.2]. Hence one
obtains (xy,...,xq) € b%6p, ® aCKQ7 C m%p,g, Where b6p, ® a‘fQ7 is the free
sum of b6p, and a‘gQT. Similarly, in general, it follows that (x1, ..., x7) € mép g.
Therefore, the map ¢: F(m) — m%p.o NZ4, ¢(f) = (x1,...,xq) for each f €
F(m), is well defined.

Take (x1,...,xq) € mEp,o NZ4 Weset] = {i € [d] : x; > 0} and define a map
f:1d] — Zby

. max{le—i—---—i—xjk:jl <P]--~<p1jk=i} ifi el,
f@ = : .
—max {[x; |+ +|xil: 1 < - <ok =i} i€l

Assume that / = {1,...,k}and T = {k + 1,...,d}. Then one has (x|, ..., xg) €
m(€p, ® (—‘KQT)) N Z4. Moreover, for some integers a and b with a < 0 < b and
b —a < m, it follows that (x1,...,xr) € b%p, and (Xgy1,...,Xq) € a%QT. We
define fi: I — Zby f1(i) = f(i),and fo: I — Zby f>(i) = —f(i). From [37,
proof of Thm. 3.2], it follows that 0 < f;(i) < b foranyi € I and fi(x) < f1(y)
if X<p, Vs and 0 > f>(i) > aforanyi € I and fo(x) < fo(y) if X<g V- Therefore,
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f:1d] — Z is an enriched (P, Q)-partition with M(f) — m(f) < b —a < m,
namely, f € F(m). Similarly, in general, it follows that f € F(m). Thus, the map
/N m‘fp,QﬂZd — F(m),yx)(i) = f(@i)foreachx = (x1,...,xq) € m%p,QﬁZd,
is well defined.

Finally, we show that ¢ is a bijection. However, this immediately follows by the
above and the argument in [37, proof of Thm. 3.2]. O

Since €p, ¢ is reflexive, we obtain

Corollary 6.9 Let P and Q be two finite naturally labeled posets on [d]. Then QE:,?Q (m)
is a polynomial in m of degree d and one has

Qo (m) = (=1)'Q%) ,(—m — 1).
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