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Abstract
Given a set of n points in Rd, the (monochromatic) Closest Pair problem asks to find a pair of
distinct points in the set that are closest in the `p-metric. Closest Pair is a fundamental problem in
Computational Geometry and understanding its fine-grained complexity in the Euclidean metric
when d = ω(logn) was raised as an open question in recent works (Abboud-Rubinstein-Williams
[FOCS’17], Williams [SODA’18], David-Karthik-Laekhanukit [SoCG’18]).

In this paper, we show that for every p ∈ R≥1 ∪ {0}, under the Strong Exponential Time
Hypothesis (SETH), for every ε > 0, the following holds:

No algorithm running in time O(n2−ε) can solve the Closest Pair problem in d = (logn)Ωε(1)

dimensions in the `p-metric.
There exists δ = δ(ε) > 0 and c = c(ε) ≥ 1 such that no algorithm running in time O(n1.5−ε)
can approximate Closest Pair problem to a factor of (1 + δ) in d ≥ c logn dimensions in the
`p-metric.

In particular, our first result is shown by establishing the computational equivalence of the
bichromatic Closest Pair problem and the (monochromatic) Closest Pair problem (up to nε factor
in the running time) for d = (logn)Ωε(1) dimensions.

Additionally, under SETH, we rule out nearly-polynomial factor approximation algorithms
running in subquadratic time for the (monochromatic) Maximum Inner Product problem where
we are given a set of n points in no(1)-dimensional Euclidean space and are required to find a
pair of distinct points in the set that maximize the inner product.

At the heart of all our proofs is the construction of a dense bipartite graph with low contact
dimension, i.e., we construct a balanced bipartite graph on n vertices with n2−ε edges whose
vertices can be realized as points in a (logn)Ωε(1)-dimensional Euclidean space such that every
pair of vertices which have an edge in the graph are at distance exactly 1 and every other pair of
vertices are at distance greater than 1. This graph construction is inspired by the construction
of locally dense codes introduced by Dumer-Miccancio-Sudan [IEEE Trans. Inf. Theory’03].
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1 Introduction

The Closest Pair of Points problem or Closest Pair problem (CP) is a fundamental problem
in computational geometry: given n points in a d-dimensional metric space, find a pair
of distinct points with the smallest distance between them. The Closest Pair problem for
points in the Euclidean plane [51, 11] stands at the origins of the systematic study of the
computational complexity of geometric problems [45, 40, 36, 20]. Since then, this problem
has found abundant applications in geographic information systems [28], clustering [58, 7],
and numerous matching problems (such as stable marriage [56]).

The trivial algorithm for CP examines every pair of points in the point-set and runs
in time O(n2d). Over the decades, there have been a series of developments on CP in low
dimensional space for the Euclidean metric [10, 29, 35, 51, 11], leading to a deterministic
O(2O(d)n logn)-time algorithm [11] and a randomized O(2O(d)n)-time algorithm [46, 35]. For
low (i.e., constant) dimensions, these algorithms are tight as a matching lower bound of
Ω(n logn) was shown by Ben-Or [9] and Yao [57] in the algebraic decision tree model, thus
settling the complexity of CP in low dimensions. On other hand, for very high dimensions (i.e.,
d = Ω(n)) there are subcubic algorithms [27, 31] in the `1, `2, and `∞-metrics using fast matrix
multiplication algorithms [25]. However, CP in medium dimensions, i.e., d = polylog(n),
and in various `p-metrics, have been a focus of study in machine learning and analysis of
Big Data [37], and it is surprising that, even with the tools and techniques that have been
developed over many decades, when d = ω(logn), there is no known subquadratic-time (i.e.,
O(2o(d)n2−ε)-time) algorithm, for CP in any standard distance measure [30, 4, 31] . The
absence of such algorithms was explicitly observed as early as the late nineties by Cohen and
Lewis [19] but there was not any explanation until recently.

David, Karthik, and Laekhanukit [21] showed that for all p > 2, assuming the Strong
Exponential Time Hypothesis (SETH), for every ε > 0, no algorithm running in n2−ε time
can solve CP in the `p-metric, even when d = ω(logn). Their conditional lower bound was
based on the conditional lower bound (again assuming SETH) of Alman and Williams [6]
for the Bichromatic Closest Pair problem3 (BCP) where we are given two sets of n points
in a d-dimensional metric space, and the goal is to find a pair of points, one from each
set, with the smallest distance between them. Alman and Williams showed that for all
p ∈ R≥1 ∪{0}, assuming SETH, for every ε > 0, no algorithm running in n2−ε time can solve
BCP in the ω(logn)-dimensional `p-metric space. Given that [6] show their lower bound on
BCP for all `p-metrics, the lower bound on CP of [21] feels unsatisfactory, since the `2-metric
is arguably the most interesting metric to study CP on. On the other hand, the answer to

3 We remark that BCP is of independent interest as it’s equivalent to finding the Minimum Spanning
Tree in `p-metric [3, 38]. Moreover, understanding the fine-grained complexity of BCP has lead to
better understanding of the query time needed for Approximate Nearest Neighbor search problem (see
Razenshteyn’s thesis [47] for a survey about the problem) with polynomial preprocessing time [50].

https://arxiv.org/abs/1812.00901
https://arxiv.org/abs/1812.00901
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the complexity of CP in the Euclidean metric might be on the positive side, i.e., there might
exist an algorithm that performs well in the `2-metric because there are more tools available,
e.g., Johnson-Lindenstrauss’ dimension reduction [33]. Thus we have the following question:

I Open Question 1 (Abboud-Rubinstein-Williams4 [2], Williams [55], David -Karthik-Laekha-
nukit [21]). Is there an algorithm running in time n2−ε for some ε > 0 which can solve CP
in the Euclidean metric when the points are in ω(logn) dimensions?

Even if the answer to the above question is negative, this does not rule out strong approx-
imation algorithms for CP in the Euclidean metric, which might suffice for all applications.
Indeed, we do know of subquadratic approximation algorithms for CP. For example, LSH
based techniques can solve (1 + δ)-CP (i.e., (1 + δ) factor approximate CP) in n2−Θ(δ) time
[32], but cannot do much better [42, 43]. In a recent breakthrough, Valiant [52] obtained an
approximation algorithm for (1 + δ)-CP with runtime of n2−Θ(√δ). The state of the art is
an n2−Θ̃(δ1/3)-time algorithm by Alman, Chan, and Williams [5]. Can the dependence on
δ be improved indefinitely? For the case of (1 + δ)-BCP, assuming SETH, Rubinstein [50]
answered the question in the negative. Does (1 + δ)-CP also admit the same negative answer?

I Open Question 2. Is there an algorithm running in time n2−ε for some ε > 0 which can
solve (1 + δ)-CP in the Euclidean metric when the points are in ω(logn) dimensions for every
δ > 0?

Another important geometric problem is the Maximum Inner Product problem (MIP):
given n points in the d-dimensional Euclidean space, find a pair of distinct points with
the largest inner product. This problem along with its bichromatic variant (Bichromatic
Maximum Inner Product problem, denoted BMIP) is extensively studied in literature (see
[2] and references therein). Abboud, Rubinstein, and Williams [2] showed that assuming
SETH, for every ε > 0, no 2(logn)1−o(1)-approximation algorithm running in n2−ε time can
solve BMIP when d = no(1). It is a natural question to ask if their inapproximability result
can be extended to MIP:

I Open Question 3. Is there an algorithm running in time n2−ε for some ε > 0 which can
solve γ-MIP in no(1) dimensions for even γ = 2(logn)1−o(1)?

1.1 Our Results
In this paper we address all three previously mentioned open questions. First, we almost
completely resolve Open Question 1. In particular, we show the following.

I Theorem 4 (Subquadratic Hardness of CP). Let p ∈ R≥1 ∪ {0}. Assuming SETH, for
every ε > 0, no algorithm running in n2−ε time can solve CP in the `p-metric, even when
d = (logn)Ωε(1).

In particular we would like to emphasize that the dimension for which we show the lower
bound on CP depends on ε. We would also like to remark that our lower bound holds even
when the input point-set of CP is a subset of {0, 1}d. Finally, we note that the centerpiece
of the proof of the above theorem (and also the proofs of the other results that will be
subsequently mentioned) is the construction of a dense bipartite graph with low contact
dimension, i.e., we construct a balanced bipartite graph on n vertices with n2−ε edges whose

4 Please see the erratum in [1].
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vertices can be realized as points in a (logn)Ωε(1)-dimensional `p-metric space such that
every pair of vertices which have an edge in the graph are at distance exactly 1 and every
other pair of vertices are at distance greater than 1. This graph construction is inspired by
the construction of locally dense codes introduced by Dumer, Miccancio, and Sudan [23] and
uses special density properties of Reed Solomon codes. A detailed proof overview is given in
Section 2.1.

Next, we improve our result in Theorem 4 in some aspects by showing 1 + o(1) factor
inapproximability of CP even in Oε(logn) dimensions, but can only rule out algorithms
running in n1.5−ε time (as opposed to Theorem 4 which rules out exact algorithms for CP
running in n2−ε time). More precisely, we show the following.

I Theorem 5 (Subquadratic Hardness of gap-CP). Let p ∈ R≥1 ∪ {0}. Assuming SETH, for
every ε > 0, there exists δ(ε) > 0 and c(ε) > 1 such that no algorithm running in n1.5−ε time
that can solve (1 + δ)-CP in the `p-metric, even when d = c logn.

We remark that the n1.5−ε lower bound on approximate CP is an artifact of our proof
strategy and that a different approach or an improvement in the state-of-the-art bound on
the number of minimum weight codewords in algebraic geometric codes (which are used in
our proof), will lead to the complete resolution of Open Question 2.

It should also be noted that the approximate version of CP and the dimension are closely
related. Namely, using standard dimensionality reduction techniques [33]5 for (1 + δ)-CP, one
can always assume that d = Oδ(logn). In other words, hardness of (1 + δ)-CP immediately
yields logarithmic dimensionality bound as a byproduct.

Finally, we completely answer Open Question 3 by showing the following inapproximability
result for MIP, matching the hardness for BMIP from [2].

I Theorem 6 (Subquadratic Hardness of gap-MIP). Assuming SETH, for every ε > 0,
no algorithm running in n2−ε time can solve γ-MIP for any γ ≤ 2(logn)1−o(1) , even when
d = no(1).

Recently, there have been a lot of results connecting BCP or (1 + o(1))-BCP to other
problems (see [50, 15, 16, 17]). Now such connections can be extended to CP as well. For
example, the following conditional lower bound follows from [50] for gap-CP in the edit
distance metric.

I Theorem 7 (Subquadratic Hardness of gap-CP in edit distance metric). Assuming SETH,
for every ε > 0, there exists δ(ε) > 0 and c(ε) > 1 such that no algorithm running in n1.5−ε

time can solve (1 + δ)-CP in the edit distance metric, even when d = c logn log logn.

2 Proof Overview

In this section, we provide an overview of our proofs and the formal proofs may be found
in the full version of the paper. For ease of presentation, we will sometimes be informal
here; all notions and proofs are formalized in subsequent sections. Our overview is organized
as follows. First, in Subsection 2.1, we outline our proof of running time lower bounds for
exact CP (Theorem 4). Then, in Subsection 2.2, we abstract part of our reduction using
error-correcting codes, and relate them back to the works on locally dense codes [23, 18, 41]
that inspire our constructions. Finally, in Subsection 2.3, we briefly discuss how to modify
the base construction (i.e. code properties) to give conditional lower bounds for approximate
CP and MIP (Theorems 5 and 6).

5 In fact, since our results applies to {0, 1}-vectors, simply subsampling coordinates would also work.
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2.1 Conditional Lower Bound on Exact Closest Pair
In this subsection, we provide a proof overview of a slightly weaker version of Theorem 4,
i.e., we show that assuming SETH, for every p ∈ R≥1 ∪ {0}, no subquadratic time algorithm
can solve CP in the `p-metric when d = (logn)ω(1). We prove such a result by reducing BCP
in dimension d to CP in dimension d + (logn)ω(1), and the subquadratic hardness for CP
follows from the subquadratic hardness of BCP established by [6]. Note that the results in
this paper remain interesting even if SETH is false, as our reduction shows that BCP and CP
are computationally equivalent6 (up to no(1) factor in the running time) when d = (logn)ω(1).
The conditional lower bound on CP is merely a consequence of this computational equivalence.
Finally, we note that a similar equivalence also holds between MIP and BMIP.

Understanding an obstacle of [21]. Our proof builds on the ideas of [21] who showed
that assuming SETH, for every p > 2, no subquadratic time algorithm can solve CP in the
`p-metric when d = ω(logn). They did so by connecting the complexity of CP and BCP via
the contact dimension of the balanced complete bipartite graph (biclique), denoted by Kn,n.
We elaborate on this below.

To motivate the idea behind [21], let us first consider the trivial reduction from BCP to
CP: given an instance A,B of BCP, we simply output A ∪ B as an instance of CP. This
reduction fails because there is no guarantee on the distances of a pair of points both in A
(or both in B). That is, there could be two points a,a′ ∈ A such that ‖a − a′‖p is much
smaller than the optimum of BCP on A,B. If we simply solve CP on A ∪B, we might find
such a,a′ as the optimal pair but this does not give the answer to the original BCP problem.
In order to circumvent this issue, one needs a gadget that “stretch” pairs of points both in
A or both in B further apart while keeping the pairs of points across A and B close (and
preserving the optimum of BCP on A,B). It turns out that this notion corresponds exactly
to the contact dimension of the biclique, which we define below.

I Definition 8 (Contact Dimension [44]). For any graph G = (V,E), a mapping τ : V → Rd
is said to realize G (in the `p-metric) if for some β > 0, the following holds for every distinct
vertices u, v:

‖τ(u)− τ(v)‖p = β if {u, v} ∈ E, and, (1)
‖τ(u)− τ(v)‖p > β otherwise. (2)

The contact dimension (in the `p-metric) of G, denoted by cdp(G), is the minimum d ∈ N
such that there exists τ : V → Rd realizing G in the `p-metric.

In this paper, we will be mainly interested in the contact dimension of bipartite graphs.
Specifically, [21] only consider the contact dimension of the biclique Kn,n. Notice that
a realization of biclique ensures that vertices on the same side are far from each other
while vertices on different sides are close to each other preserving the optimum of BCP;
these are exactly the desired properties of a gadget outlined above. Using this, [21] give a
reduction from BCP to CP which shows that the two are computationally equivalent whenever
d = Ω(cdp(Kn,n)), as follows.

6 We can reduce an instance of CP to an instance of BCP by randomly partitioning the input set of CP
instance into two, and the optimal closest pair of points will be in different sets with probability 1/2
(and this reduction can be made deterministic).

ITCS 2019
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Let A,B ⊆ Rd each of cardinality n be an instance of BCP and let τ : A∪̇B → Rcdp(Kn,n)

be a map realizing the biclique (A∪̇B,A×B) in the `p-metric; we may assume w.l.o.g. that
β = 1. Let δ be the distance between any point in A and any point in B (i.e., δ is an
upper bound on the optimum of BCP). Let ρ > 0 be such that ‖τ(a)− τ(b)‖p > 1 + ρ for
all a ∈ A,b ∈ B (and this is guaranteed to exist by (2)). Moreover, let k > δ/ρ be any
sufficiently large number. Consider the point-sets Ã, B̃ ⊆ Rd+cdp(Kn,n) of cardinality n each
defined as

Ã = {a ◦ (k · τ(a)) | a ∈ A}, B̃ = {b ◦ (k · τ(b)) | b ∈ B},

where ◦ denotes the concatenation between two vectors and k · x denotes the usual scalar-
vector multiplication (i.e. scaling x up by a factor of k). For brevity, we write ã and b̃ to
denote a ◦ (k · τ(a)) and b ◦ (k · τ(b)) respectively.

We now argue that, if we can find the closest pair of points in Ã ∪ B̃, then we also
immediately solve BCP for (A,B). More precisely, we claim that (a∗,b∗) ∈ A × B is a
bichromatic closest pair of (A,B) if and only if (ã∗, b̃∗) is a closest pair of Ã ∪ B̃.

To see that this is the case, observe that, for cross pairs (ã, b̃) ∈ Ã × B̃, (1) implies
that the distance ‖ã − b̃‖p is exactly (kp + ‖a − b‖pp)1/p; hence, among these pairs, (ã∗, b̃∗)
is a closest pair iff (a∗,b∗) is a bichromatic closest pair in A,B. Notice also that, since
the bichromatic closest pair in A,B is of distance at most δ, the closest pair in Ã ∪ B̃ is of
distance at most (kp + δp)1/p ≤ k + δ.

On the other hand, for pairs both from Ã or both from B̃, the distance must be at least
k(1 + ρ), which is more than k + δ from our choice of k. As a result, these pairs cannot be a
closest pair in Ã ∪ B̃, and this concludes the sketch of the proof.

There are a couple of details that we have glossed over here: one is that the gap ρ cannot
be too small (e.g., ρ cannot be as small as 1/2n) and the other is that we should be able to
construct τ efficiently. Nevertheless, these are typically not an issue.

[21] show that cdp(Kn,n) = Θ(logn) when p > 2 and that the realization can be
constructed efficiently and with sufficiently large ρ. This implies the subquadratic hardness
of CP (by reduction from BCP) in the `p-metric for all p > 2 and d = ω(logn). However,
it was known that cd2(Kn,n) = Θ(n) [24]. Thus, they could not extend their conditional
lower bound to CP in the Euclidean metric7 even when d = o(n). In fact, this is a serious
obstacle as it rules out many natural approaches to reduce BCP to CP in a black-box manner.
Elaborating, the lower bound on cd2(Kn,n) rules out local gadget reductions which would
replace each point with a composition of that point and a gadget with a small increase in the
number of dimensions, as such gadgets can be used to construct a realization of Kn,n in the
Euclidean metric in a low dimensional space, contradicting the lower bound on cd2(Kn,n).

Overcoming the Obstacle: Beyond Biclique. We overcome the above obstacle by consid-
ering dense bipartite graphs, instead of the biclique. More precisely, we show that there
exists a balanced bipartite graph G∗ = (A∗∪̇B∗, E∗) on 2n vertices such that |E∗| ≥ n2−o(1)

and cdp(G∗) is small (i.e. cdp(G∗) ≤ (logn)ω(1)). We give a construction of such a graph
below but before we do so, let us briefly argue why this suffices to show that BCP and CP
are computationally equivalent (up to no(1) multiplicative overhead in the running time) for
dimension d = Ω(cdp(G∗)).

7 Note that plugging in the bound on cd2(Kn,n) in the result of [21] yields that assuming SETH, no
subquadratic in n running time algorithm can solve CP when d = Ω(n). This is not a meaningful lower
bound as just the input size of CP when d = Ω(n) is Ω(n2).
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Let us consider the same reduction which produces Ã, B̃ as before, but instead of using
a realization of the biclique, we use a realization τ of G∗. This reduction is of course
incorrect: if (a∗,b∗) is not an edge in G∗, then ‖τ(a∗)− τ(b∗)‖p could be large and, thus the
corresponding pair of points (ã∗, b̃∗) ∈ Ã× B̃, may not be the closest pair. Nevertheless, we
are not totally hopeless: if (a∗,b∗) is an edge, then we are in good shape and the reduction
is correct.

With the above observation in mind, consider picking a random permutation π of A ∪B
such that π(A) = A and π(B) = B and then initiate the above reduction with the map (τ ◦π)
instead of τ . Note that τ ◦ π is simply a realization of an appropriate permutation G′ of G∗
(i.e., G′ is isomorphic to G∗). Due to this, the probability that we are “lucky” and (a∗,b∗)
is an edge in G′ is p := |E|/n2; when this is the case, solving CP on the resulting instance
would give the correct answer for the original BCP instance. If we repeat this logn/p = no(1)

times, we would find the optimum of the original BCP instance with high probability.
To recap, even when G∗ is not a biclique, we can still use it to give a reduction from

BCP to CP, except that the reduction produces multiple (i.e. Õ(n2/|E∗|)) instances of CP.
We remark here that the reduction can be derandomized: we can deterministically (and
efficiently) pick the permutations so that the permuted graphs covers Kn,n. As a minor
digression, we would like to draw a parallel here with a recent work of Abboud, Rubinstein,
and Williams [2]. The obstacle raised in [21] is about the impossibility of certain kinds of
many-one gadget reductions. We overcame it by designing a reduction from BCP to CP which
not only increased the number of dimensions but also the number of points (by creating
multiple instances of CP). This technique is also utilized in [2] where they showed the
impossibility of Deterministic Distributed PCPs (Theorem I.2 in [2]) but then overcame that
obstacle by using an advice (which is then enumerated over resulting in multiple instances)
to build Non-deterministic Distributed PCPs.

Constructing a dense bipartite graph with low contact dimension. We now proceed to
construct the desired graph G∗ = (A∗ ∪ B∗, E∗). Note that any construction of a dense
bipartite graph with contact dimension no(1) is non-trivial. This is because it is known that
a random graph has contact dimension Ω(n) in the Euclidean metric with high probability
[49, 13], and therefore our graph construction must be significantly better than a random
graph.

Our realization τ∗ of G∗ will map into a subset of {0, 1}(logn)ω(1) . As a result, we can
fix p = 0, since a realization of a graph with entries in {0, 1} in the Hamming-metric also
realizes the same graph in every `p-metric for any p 6=∞.

Fix g = ω(1). We associate [n] with Fhq where q = Θ ((logn)g) is a prime and
h = Θ

(
logn

g·log logn

)
. Let P be the set of all univariate polynomials (in x) over Fq of

degree at most h− 1. We have that |P| = qh = n and associate P with A∗. Let Q be the set
of all univariate monic polynomials (in x) over Fq of degree h, i.e.,

Q = {xh + p(x) | p(x) ∈ P}.

We associate the polynomials in Q with the vertices in B∗ (note that |Q| = n). In fact,
we view the vertices in A∗ and B∗ as being uniquely labeled by polynomials in P and Q
respectively. For notational clarity, we write pa (resp. pb) to denote the polynomial in P
(resp. Q) that is associated to a ∈ A∗ (resp. b ∈ B∗).

For every a ∈ A∗ and b ∈ B∗, we include (a, b) as an edge in E∗ if and only if the polynomial
pb − pa (which is of degree h) has h distinct roots. This completes the construction of G∗.
We have to now show the following two claims about G∗: (i) |E∗| = n2−O(1/g) = n2−o(1) and
(ii) there is τ : A∗∪̇B∗ → {0, 1}(logn)O(g) = {0, 1}(logn)ω(1) that realizes G∗.

ITCS 2019



17:8 On Closest Pair in Euclidean Metric

To show (i), let R be the set of all monic polynomials of degree h with h distinct roots.
We have that |R| =

(
q
h

)
. Fix a vertex a ∈ A∗. Its degree in G∗ is exactly |R| =

(
q
h

)
. This is

because, for every polynomial r ∈ R, r + a belongs to Q, and therefore (a, r + a) ∈ E∗. This
implies the following bound on |E∗|:

|E∗| = qh ·
(
q

h

)
≥ qh · q

h

hh
>

n2

(logn)Θ((logn)/(g·log logn))
= n2−O(1/g).

Next, to show (ii), we construct a realization τ∗ : A∗∪̇B∗ → Fqq of G∗. We note that, it
is simple to translate the entries to {0, 1} instead of Fq, by replacing i ∈ Fq with the i-th
standard basis ei ∈ {0, 1}q. This would result in a realization τ∗ : A∗∪̇B∗ → {0, 1}q2 of G∗;
notice that the dimension of τ∗ is q2 = Θ((logn)2g) as claimed.

We define τ∗ as follows.
For every a ∈ A∗, τ∗(a) is simply the vector of evaluation of pa on every element in Fq.
More precisely, for every j ∈ [q], the j-th coordinate of τ∗(a) is pa(j − 1).
Similarly, for every b ∈ B∗ and j ∈ [q], the j-th coordinate of τ∗(b) is pb(j − 1).

We now show that τ∗ is indeed a realization of G∗; specifically, we show that τ∗ satisfies (1)
and (2) with β = q − h.

Consider any edge (a, b) ∈ E∗. Notice that ‖τ∗(a)− τ∗(b)‖0 is the number of x ∈ Fq such
that pb(x)− pa(x) 6= 0. By definition of E∗, pb − pa is a polynomial with h distinct roots
over Fq. Thus, ‖τ∗(a)− τ∗(b)‖0 = q − h = β as desired.

Next, consider a non-edge (a, b) ∈ (A∗ ×B∗) \ E∗ . Then, we know that pb − pa has at
most h− 1 distinct roots over Fq. Therefore, the polynomial pb − pa is non-zero on at least
q − h+ 1 coordinates. This implies that ‖τ∗(a)− τ∗(b)‖0 ≥ q − h+ 1 > β.

Finally, for any distinct a, a′ ∈ A∗, we have ‖τ∗(a)− τ∗(a′)‖0 ≥ q−h+ 1 because pa−pa′
is a non-zero polynomial of degree at most h− 1 and thus can be zero over Fq in at most
h− 1 locations. Similarly, ‖τ∗(b)− τ∗(b′)‖0 ≥ q − h+ 1 for any distinct b, b′ ∈ B∗.

This completes the proof sketch for both the claims about G∗ and yields Theorem 4
for d = (logn)ω(1). Finally we remark that in the actual proof of Theorem 4, we will set
the parameters in the above construction more carefully and achieve the bound cdp(G∗) =
(logn)Oε(1).

2.2 Abstracting the Construction via Error-Correcting Codes

Before we move on to discuss the proofs of Theorems 6 and 5, let us give an abstraction
of the construction in the previous subsection. This will allow us to easily generalize the
construction for the aforemention theorems, and also to explain where our motivation behind
the construction comes from in the first place.

Dense Bipartite Graph with Low Contact Dimension from Codes. In order to construct
a balanced bipartite graph G∗ on 2n vertices with n2−o(1) edges such that cdp(G∗) ≤ d∗, it
suffices to have a code C∗ with the following properties:

C∗ ⊆ F`q of cardinality n is a linear code with block length ` over alphabet Fq, and
minimum distance ∆.
There exists a center s∗ ∈ F`q and r∗ < ∆ such that |C∗|1−o(1) codewords are at Hamming
distance exactly r∗ from s∗ and no codeword is at distance less than r∗ from s∗.
q · ` = d∗.
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We also require that C∗ and s∗ can be constructed in poly(n) time but we shall ignore this
requirement for the ease of exposition.

We describe below how to construct G∗ from C∗, but first note that the construction of
G∗ we saw in the previous subsubsection was just showing that Reed Solomon codes [48] of
block length q = Θ((logn)g) and message length h = Θ

(
logn

g·log logn

)
over alphabet Fq with

minimum distance q − h+ 1 has the above properties. The center s∗ in that construction
was the evaluation of the polynomial xh over Fq, and r∗ was q − h.

In general, to construct G∗ from C∗, we first define a subset S∗ ⊆ F`q of cardinality n as
follows:

S∗ = {s∗ + c | c ∈ C∗}.

We associate the vertices in A∗ with the codewords of C∗ and vertices in B∗ with the
strings in S∗. For any (a,b) ∈ A∗ ×B∗, let (a,b) ∈ E∗ if and only if ‖b− a‖0 = r∗. This
completes the construction of G∗. We have to now show the following claims about G∗: (i)
|E∗| = n2−o(1) and (ii) there is τ : A∗∪̇B∗ → {0, 1}q·` that realizes G∗.

Item (i) follows rather easily from the properties of C∗ and s∗. Let T ∗ be the subset of
C∗ of all codewords which are at distance exactly equal to r∗ from s∗. From the definition
of s∗, we have |T ∗| = |C∗|1−o(1). Fix a ∈ A∗. Its degree in G∗ is |T ∗| = |C∗|1−o(1). This is
because for every codeword t ∈ T ∗ we have that t−a is a codeword in C∗ (from the linearity
of C∗) and thus s∗ − t + a is in S∗, and therefore (a, s∗ − t + a) ∈ E∗.

For item (ii), consider the identity mapping τ∗ : A∗∪̇B∗ → F`q that maps each string to
itself. It is simple to check that τ∗ realizes G∗ in the Hamming metric (with β = r∗).

Recall from the previous subsection that given τ∗ : A∗∪̇B∗ → F`q that realizes G∗ in
the Hamming metric, it is easy to construct τ : A∗∪̇B∗ → {0, 1}q·` that realizes G∗ in the
Hamming metric with a q multiplicative factor blow-up in the dimension. This completes
the proof of both the claims about G∗ and gives a general way to prove Theorem 4 given the
construction of C∗ and s∗.

Finding Center from Another Code. One thing that might not be clear so far is: where
does the center s∗ come from? Here we provide a systematic way to produce such an s∗, by
looking at another code that contains C∗. More precisely, let C∗ ⊆ C̃∗ ⊆ F`q be two linear
codes with the same block length and alphabet. Suppose that the distance of C∗ is ∆, the
distance of C̃∗ is r∗ and that r∗ < ∆. It is easy to see that, by taking s∗ to be any element
of C̃∗ \ C∗, it holds that every codeword in C∗ is at distance at least r∗ from s∗, simply
because both s∗ and the codewords of C∗ are codewords of C̃∗.

Hence, we are only left to argue that there are many codewords of C∗ that is of distance
exactly r∗ from s∗. While this is not true in general, we can show by an averaging argument
that this is true (for some s∗ ∈ C̃∗) if a large fraction (e.g. |C∗|−o(1) fraction) of codewords
of C̃∗ has Hamming weight exactly r∗.

Indeed, viewing in this light, our previous choice of center for Reed-Solomon code (i.e.
evaluation of xh) is not coincidental: we simply take C̃∗ to be another Reed-Solomon code
with message length h+ 1 (whereas the base code C∗ is of message length h).

Comparison to Locally Dense Codes. We end this subsection by remarking that the
codes that we seek are very similar to locally dense codes [23, 18, 41], which is indeed our
inspiration. A locally dense code is a linear code of block length ` and large minimum distance
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∆, admitting a ball centered at s of radius8 r < ∆ and containing a large (i.e. exp(poly(`)))
number of codewords9. Such codes are non-trivial to construct and in particular all known
constructions of locally dense codes are using codes that beat the Gilbert-Varshamov (GV)
bound [26, 53]; in other words we need to do better than random codes to construct them.
This is because (as noted in [23]), for a random code C ⊆ F`q (or any code that does not
beat the GV bound), a random point in F`q acting as the center contains in expectation less
than one codeword in a ball of radius ∆. Of course, this is simply an intuition and not a
formal proof that a locally dense code needs to beat the GV bound, since there may be more
sophisticated ways to pick a center.

Although the codes we require are similar to locally dense codes, there are differences
between the two. Below we list four such differences: the first two makes it harder for us to
construct our codes whereas the latter two makes it easier for us.

We seek a center s∗ so that no codewords in C∗ lies at distance less than r∗, as opposed
to locally dense codes which allows codewords to be close to s∗. This is indeed where our
idea of using another code C̃∗ ⊇ C∗ comes in, as picking s∗ from C̃∗ \C∗ ensures us that
no codeword of C∗ is too close to s∗.
Another difference is that we need the number of codewords at distance r∗ from s∗ to be
very large, i.e., |C∗|1−o(1), whereas locally dense codes allow for much smaller number of
codewords. Indeed, the deterministic constructions from [18, 41] only yield the bound of
2O(
√

log |C∗|). Hence, these do not directly work for us.
Locally dense codes requires r to be at most (1− ε)∆ for some constant ε > 0, whereas
we are fine with any r∗ < ∆. In fact, our Reed-Solomon code based construction above
only yields r∗ = ∆− 1 which would not suffice for locally dense codes. Nevertheless, as
we will see later for inapproximability of CP, we will also need the ratio r∗/∆ to be a
constant bounded away from 1 as well and, since we need a code with these extraordinary
properties, they are very hard to find. Indeed, in this case we only manage to prove a
weaker lower bound on gap-CP.
Finally, we remark that locally dense codes are required to be efficiently constructed in
poly(log |C∗|) time, which is part of why it is hard to find. Specifically, while [23] shows
that an averaging argument works for a random center, derandomizing this is a big issue
and a few subsequent works are dedicated solely to this issue [18, 41]. (We also note that
it remains open whether a center can be deterministically found for a variant of locally
dense codes used in hardness of parameterized version of the minimum distance problem.
See [12] for more details.) On the other hand, brute force search (over all codewords in
C̃∗) suffices to find a center for us, as we are allowed construction time of poly(|C∗|).

2.3 Inapproximability of Closest Pair and Maximum Inner Product
In this subsection, we sketch our inapproximability results for MIP and CP. Both these results
use the same reduction that we had from BCP to CP, except that we now need stronger
properties from the gadget, i.e., the previously used notions of contact dimension does not
suffice anymore. Below we sketch the required strengthening of the gadget properties and
explain how to achieve them.

8 Clearly, for the ball to contain more than a single codeword, it must be r ≥ ∆/2. Here we are interested
in balls with radius not much bigger than that, say r < γ ·∆ for some constant 1/2 < γ < 1.

9 Strictly speaking, a locally dense code also requires an auxiliary matrix T used to index these codewords.
However, in previous works, finding T is typically not hard given the center s. Hence, we ignore T in
our discussion here for the ease of exposition.
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2.3.1 Approximate Maximum Inner Product
Observe that the gadget we construct for CP in Subsection 2.2 can also be written in terms
of inner product as follows: there exists a dense balanced bipartite graph G∗ = (A∗∪̇B∗, E∗),
a mapping τ : A∗∪̇B∗ → {0, 1}q·` such that the following holds.
(i) For all edges (a, b) ∈ E∗, 〈τ(a), τ(b)〉 = `− r∗.
(ii) For all edges (a, b) ∈ (A∗ ×B∗) \ E∗, 〈τ(a), τ(b)〉 < `− r∗.
(iii) For all distinct a, b both from A∗ or both from B∗, 〈τ(a), τ(b)〉 ≤ `−∆.
Notice that we wrote the conditions above in a slightly different way than in previous
subsections; previously in the contact dimension notation, (ii) and (iii) would be simply
written together as: for all non-edge (a, b), 〈τ(a), τ(b)〉 < `− r∗. This change is intentional,
since, to get gap in our reductions, we only need a gap between the bounds in (i) and (iii)
(but not in (ii)). In particular, to get hardness of approximating MIP, we require `−r∗

`−∆ to be
at least (1 + ε) for some ε > 0.

From our Reed-Solomon construction above, `−∆ and `− r∗ are exactly the message
length of C∗ minus one and the message length of C̃∗ minus one respectively. Previously, we
selected these two to be h and h + 1. Now to obtain the desired gap, we simply take the
larger code C̃∗ to be a Reed-Solomon code with larger (i.e. (1 + ε)h) message length10.

Finally, we note that even with the above gadget, the reduction only gives a small (i.e.
1 + o(1)) factor hardness of approximating MIP. To boost the gap to near polynomial, we
simply tensor the vectors with themselves.

2.3.2 Approximate Closest Pair
Once again, recall that we have the following gadget from Subsection 2.2: there exists a
dense balanced bipartite graph G∗ = (A∗∪̇B∗, E∗), a mapping τ : A∗∪̇B∗ → {0, 1}q·` such
that the following holds.
(i) For all edges (a, b) ∈ E∗, ‖τ(a)− τ(b)‖0 = r∗.
(ii) For all edges (a, b) ∈ (A∗ ×B∗) \ E∗, ‖τ(a)− τ(b)‖0 > r∗.
(iii) For all distinct a, b both from A∗ or both from B∗, ‖τ(a)− τ(b)‖0 ≥ ∆.
Once again, we need an (1+ε) gap between the bounds in (iii) and (i), i.e., ∆

r∗ . Unfortunately,
we cannot construct such codes using any of the Reed-Solomon code families. We turn to
another type of codes that beat the Gilbert-Varshamov bound: Algebraic- Geometric (AG)
codes. Similar to the Reed-Solomon code based construction, we take C∗ as an AG code and
C̃∗ to be a “higher degree” AG code; getting the desired gap simply means that the distance
of C∗ must be at least (1 + ε) times the distance of C̃∗.

Recall from Subsection 2.2 also that, to bound the density of G∗, we need a lower bound on
the number of minimum weight codewords of C̃∗. Such bounds for AG codes are non-trivial
and we turn to the bounds from [8, 54]. Unfortunately, this only gives G∗ with density
|C∗|−1/2−o(1), instead of |C∗|−o(1) as before. This is indeed the reason that our running time
lower bound for approximate CP is only n1.5−ε.

We are not aware of any result on the (asymptotic) tightness of the bounds from [8, 54]
that we use. However, improving upon such bounds would have other consequences, such as
a better bound on the kissing numbers of lattices constructed in [54]. As a result, it seems
likely that more understanding of AG codes (and perhaps even new constructions) are needed
in order to improve these bounds.

10This approach can in fact give not just (1 + ε) but arbitrarily large constant gap between the two cases.
In the actual reduction, we take this gap to be 3, which makes some computations simpler.
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3 Discussion and Open Questions

It remains open to completely resolve Open Questions 1 and 2. It is still possible that our
framework can be used to resolve these problems: we just need to construct gadgets with
better parameters! In particular, to resolve Question 2, it suffices to obtain codes which
have a much larger fraction of minimum weight codewords than the state-of-the-art algebraic
geometric codes while having the desirable properties of algebraic geometric codes (formalized
below). This motivates us to ask the following purely coding theoretic question:

I Open Question 9. For every 0 < δ < 1, are there linear codes C1 ⊆ C2 ⊆ FNq both of block
length N over alphabet Fq such that the following holds:

∆(C1) ≥ (1 + f(δ)) ·∆(C2), for some f : (0, 1)→ (0, 1).
|A∆(C2)(C2)|/|C2| ≥ |C1|−δ.

Apart from the aforementioned questions, Rubinstein [50] pointed out an interesting
obstacle, aptly dubbed the “triangle inequality barrier”, to obtain fine-grained lower bounds
against 3-approximation algorithms for BCP (see Open Question 3 in [50]). In the case of
CP, this barrier turns out to be against 2-approximation algorithms as noted in [21]. We
reiterate this below as an open problem to be resolved:

I Open Question 10. Can we show that assuming SETH, for some constant ε > 0, no
algorithm running in time n1+ε can solve 2-CP in any metric when the points are in ω(logn)
dimensions?

Another interesting direction is to extend the hardness of MIP to the k-vector generaliza-
tion of the problem, called k-MIP. In k-MIP, we are given a set of n points P ⊆ Rd and we
would like to select k distinct points a1, . . . ,ak ∈ P that maximizes

〈a1, . . . ,ak〉 :=
∑
j∈[d]

(a1)j · · · (ak)j .

It is known that the k-chromatic variant of k-MIP is hard to approximate (see Appendix
B of [34]) but this is not known to be true for k-MIP itself. Our approach seems quite
compatible to tackling this problem as well; in particular, if we can construct a certain
(natural) generalization of our gadget for MIP, then we would immediately arrive at the
inapproximability of k-MIP even for {0, 1}-entries vectors. The issue in constructing this
gadget is that we are now concerned about agreements of more than two vectors, which does
not correspond to error-correcting codes anymore and some additional tools are needed to
argue for this more general case.

It should be noted that the hardness of approximating k-MIP for {0, 1}-entry vectors
is equivalent to the one-sided k-biclique problem [39], in which a bipartite graph is given
and the goal is to select k vertices on the right that maximize the number of their common
neighbors. The equivalence can be easily seen by viewing the coordinates as the left-hand-side
vertices and the vectors as the right-hand-side vertices. The one-sided k-biclique is shown
to be W[1]-hard to approximate by Lin [39] who also showed a lower bound of nΩ(

√
k) for

the problem assuming ETH. If the generalization of our gadget for k-MIP works as intended,
then this lower bound can be improved to nΩ(k) under ETH and even nk−o(1) under SETH.

The one-sided k-biclique is closely related to the (two-sided) k-biclique problem, where
we are given a bipartite graph and we wish to decide whether it contains Kk,k as a subgraph.
The k-biclique problem was consider a major open problem in parameterized complexity (see
e.g., [22]) until it was shown by Lin to be W[1]-hard [39]. Nevertheless, the running time
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lower bound known is still not tight: currently, the best lower bound known for this problem
is nΩ(

√
k) both for the exact version (under ETH) [39] and its approximate variant (under

Gap-ETH) [14]. It remains an interesting open question to close the gap between the above
lower bounds and the trivial upper bound of nO(k). Progresses on the one-sided k-biclique
problem could lead to improved lower bounds for k-biclique problem too, although several
additional steps have to be taken care of.
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