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Abstract

We prove that a wide range of coloring problems in graphs on sur-
faces can be resolved by inspecting a finite number of configurations.

1 Introduction

Reducible Configurations. The method of reducible configurations1 is
among the most important tools in the graph coloring theory. Indeed, the
vast majority of coloring results in graphs drawn in the plane or other sur-
faces have been proved using this method, including famously the Four Color
Theorem [1, 2, 18], as well as Grötzsch’ Theorem [10] and Borodin’s acyclic
coloring theorem [3]. At the beginning of the 1990s, one would in fact be
basically correct in stating that all known results on coloring planar graphs
can be proved using this method.

This changed with Thomassen’s ingenious proof that all planar graphs
are 5-choosable [19]. This central result in the chromatic theory of planar
graphs has received a substantial amount of attention, including several
generalizations and strengthenings [21, 8, 7, 22]. Despite this, Thomassen’s
nibbling idea remains the only known way to prove it. This led even to
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1The basic idea of this method is to show that any graph G from a considered class of
graphs contains a reducible configuration C (typically a subset of its vertices of bounded
size with prescribed adjacencies and degrees of vertices) with the property that every
coloring of G − C can be transformed into a coloring of G. One then proves that G is
colorable by a straightforward inductive argument.
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speculations that reducible configurations for 5-choosability of planar graphs
might not exist, making the result impossible to prove by the reducible
configurations method.

However, this turns out not to be the case. Recently, Postle [14] gave a
quite general distributed coloring algorithm, which in particular applies to
5-list-coloring of planar graphs. The inspection of his argument shows that
every planar graph with n vertices contains Ω(n) configurations reducible for
5-choosability, implying most of them have bounded size. The argument uses
the fact that graphs critical for 5-choosability form a hyperbolic family [12]
in the sense of the hyperbolicity theory of Postle and Thomas [17]; we give
the necessary definitions below, but for now it is sufficient to know this
is a property of 5-list-coloring (as well as many other kinds of coloring)
strengthening the fact that planar graphs are 5-choosable.

In this note, we prove more is the case: One can always establish hy-
perbolicity by examining a finite number of configurations. Thus, although
proving that planar graphs are colorable for a particular kind of coloring is
often a very challenging problem, if the critical graphs for this kind of color-
ing turn out to form a hyperbolic family, this proof can (at least in theory)
be obtained completely mechanically. As a bonus, Postle and Thomas [17]
demonstrated the hyperbolicity has a number of interesting structural and
algorithmic consequences, which we thus gain for free.

Critical Graphs. Let us now give the definitions necessary to make our
statements precise. We say that a graph G is critical for k-coloring if every
proper subgraph of G is k-colorable but G itself is not. Similarly, a graph
G is critical for k-choosability if for some assignment L of lists of size k
to vertices of G, every proper subgraph of G is L-colorable but G itself is
not. The importance of critical graphs stems from the obvious observation
that a graph is k-colorable if and only if it does not contain any subgraph
critical for k-coloring, and k-choosable if and only if it does not contain any
subgraph critical for k-choosability.

We mostly focus on graphs embedded in a fixed surface. It is convenient
to allow oneself to cut out parts of the surface and to consider the subgraph
drawn in the resulting surface with a boundary. Throughout the paper, we
implicitly allow the surfaces to have a non-empty boundary, but we require
that each graph G drawn in a surface Σ intersects the boundary only in
vertices; we let ∂GΣ denote the number of vertices of G contained in the
boundary of Σ. For a graph G drawn in a surface with boundary B and
a list assignment L, we say G is critical for L-coloring if for every proper
subgraph H of G containing all vertices of V (G) ∩ B, there exists an L-
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coloring of V (G) ∩ B that extends to an L-coloring of H, but does not
extend to a k-coloring of G. We say G is critical for k-choosability if there
exists an assignment L of lists of size k to vertices of G such that G is critical
for L-coloring, and we say it is critical for k-coloring if the same holds with
L giving each vertex the same list {1, . . . , k}. The definition is motivated by
the following observation: Suppose G is a graph embedded in a surface Σ
and G is critical for k-choosability. If Σ′ is a subsurface of Σ, the boundary
of Σ′ intersects G only in vertices, and G′ = G ∩ Σ′, then G′ is critical for
k-choosability.

Hyperbolicity. A key idea of hyperbolicity theory is that it suffices to focus
on subgraphs drawn in subsurfaces homeomorphic to the disk or the cylinder;
more precisely, a slightly more general notion of surface containment which
we are about to introduce is needed. A face of a graph H drawn in a surface
Σ is a connected component of the space obtained from Σ by deleting the
points of the drawing of G. For another graph G drawn in Σ, we say that
the drawing of H is G-normal if the drawings of G and H intersect exactly
in V (G) ∩ V (H).

Definition 1. An open subset ∆ ⊆ Σ is a G-slice if ∆ is a face of some
G-normal graph H and the closure of ∆ contains at least one vertex of G;
by ∂G∆, we denote number of times the facial walks of the face ∆ intersect
G (which may be larger than the number of vertices of G contained in the
boundary of ∆, in case the walks pass through the same vertex several
times). A G-slice is a G-disk if it is homeomorphic to an open disk, and a
G-cylinder if it is homeomorphic to an open cylinder.

Hyperbolic Families of Graphs: Definitions and Examples. For a
real number c > 0, we say that a graph G drawn in a surface Σ is c-hyperbolic
if every G-disk ∆ satisfies

|V (G) ∩∆| ≤ c(∂G∆− 1). (1)

Consider a class G of graphs embedded in surfaces. We say that G is hy-

perbolic if there exists a constant cG > 0 such that every graph in G is
cG -hyperbolic. In this case, we say that cG is a Cheeger constant of G. The
class G is strongly hyperbolic if it is hyperbolic and furthermore, there exists
a function fG : N → N such that that for every G ∈ G, every G-cylinder2 ∆

2Note that here we deviate slightly from the notation of Postle and Thomas [17], who
only constrain G-cylinders whose boundaries trace disjoint cycles in G; it is easy to see
that the two definitions are (up to the choice of the function fG) equivalent, and the one
we chose slightly simplifies some of the arguments.
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satisfies
|V (G) ∩∆| ≤ fG(∂G∆).

In many important cases, the classes of critical graphs are strongly hy-
perbolic:

• For every k ≥ 5, the class of all graphs drawn in a surface and criti-
cal for k-coloring is strongly hyperbolic [15], even in the list coloring
setting [12].

• For every k ≥ 4, the class of all triangle-free graphs drawn in a surface
and critical for k-coloring is strongly hyperbolic even in the list coloring
setting, as shown by a straightforward density argument [9].

• For every k ≥ 3, the class of all graphs of girth at least five drawn in
a surface and critical for k-coloring is strongly hyperbolic [6], even in
the list coloring setting [13].

Results for Hyperbolic Families. Let us now summarize some of the
results on strongly hyperbolic classes.

• Strong hyperbolicity implies that there are only finitely many graphs
from the class embedded in any surface without the boundary [17], or
more generally, that the size of each graph G in the class embedded
in a surface Σ is bounded by a linear function of ∂GΣ and the genus
of Σ. In the coloring setting, this implies that colorability or even
extendability of a precoloring of a bounded number of vertices can be
decided in polynomial time by testing only finitely many obstructions.

• In fact, a slightly more involved argument shows that only hyperbolic-
ity is needed to ensure the existence of polynomial-time algorithms [4].

• Recently, Postle [14] gave an efficient distributed coloring algorithm
assuming strong hyperbolicity.

• Hyperbolicity is also sufficient to ensure that graphs in the class em-
bedded in a surface of genus g without boundary have edgewidth
O(log g); in the coloring setting, this ensures that all graphs drawn
with edgewidth Ω(log g) are colorable [17].

• If the class is strongly hyperbolic, one can furthermore enforce a pre-
coloring of any number of vertices that are sufficiently far apart [17].
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Coming back to the proof perspective, establishing strong hyperbolicity
of the considered class of graphs (rather than say trying to directly show
that there are only finitely many graphs in the class drawn in any fixed
surface) already simplifies the matters somewhat, since instead of consid-
ering all surfaces, one only needs to deal with graphs drawn in the disk or
in the cylinder. This still is a non-trivial task often requiring use of intri-
cate techniques, typically either the method of reducible configurations or
Thomassen’s nibbling method combined with detailed accounting. However,
building upon the ideas of [14], we prove that to establish hyperbolicity or
strong hyperbolicity with a given Cheeger constant, it actually suffices to
inspect a finite number of graphs!

Main Results. For a real number c > 0 and a positive integer t, we say that
the class G is hyperbolic with Cheeger constant c up to size t if the condition
(1) holds for every G ∈ G and every G-disk ∆ such that |V (G)∩∆|+∂G∆ ≤ t.
Our first main result is that hyperbolicity up to sufficient (but bounded) size
implies hyperbolicity (with a slightly worse Cheeger constant).

Theorem 1. Let G be a class of graphs drawn on surfaces and let c and ε be

positive real numbers. Let t = ⌈2b log b⌉, where b = 2(c+1)(c+1+ε)(45c+45ε+81)
ε

.

If G is hyperbolic with Cheeger constant c up to size t, then G is hyperbolic

with Cheeger constant c+ ε.

Note that as a special case, hyperbolicity implies that there is no graph
from the class embedded in the sphere. Consequently, Theorem 1 implies
that the fact that planar graphs are 5-choosable [19] can be proven by in-
specting a finite number of graphs. Similarly Theorem 1 implies the fact
that planar graphs of girth at least five are 3-choosable [20] can be proven
by inspecting a finite number of graphs.

For strong hyperbolicity of hyperbolic classes, we have the following
analogous result, which is essentially implicit in [4, 17]. For a function
f : N → N and a positive integer t, we say that the class G is strongly

f -hyperbolic up to size t if for every G ∈ G, every G-cylinder ∆ such that
|V (G) ∩∆|+ ∂G∆ ≤ t satisfies |V (G) ∩∆| ≤ f(∂G∆).

Theorem 2. Let G be a hyperbolic class of graphs on surfaces with Cheeger

constant c. For a non-decreasing function f : N → N, let t = f(⌈8c+ 4⌉) +
16c2 + 24c + 8. If G is strongly f -hyperbolic up to size t, then G is strongly

g-hyperbolic for the function g : N → N defined by g(k) = ⌈2ck+8c2+16c⌉+
6 + f(⌈8c+ 4⌉).

Before we proceed with the proofs, let us introduce another bit of a
notation. Suppose G is a graph drawn in a surface and ∆ is a G-slice.
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We would like to view the subgraph of G drawn in the closure of ∆ as a
graph drawn in a surface; to do so, we split in the natural way the vertices
of G that appear in the facial walks of ∆ multiple times. More precisely,
note that there is a unique surface Π whose interior is homeomorphic to
∆. Let θ : Π → ∆ be a continuous function such that the restriction of
θ to the interior of Π is a homeomorphism to ∆. For a G-slice ∆, let
G∆ = f−1(G ∩∆). Let us remark that if G is critical for k-coloring, then
G∆ drawn in Π is also critical for k-coloring. A G-slice is simple if Π is
homeomorphic to ∆; in this case, we implicitly take Π = ∆ and f to be the
identity function, and thus G∆ is just the subgraph of G consisting of the
vertices and edges drawn in ∆.

2 Hyperbolicity

In this section, we prove Theorem 1 on hyperbolic classes. We need the
following result, a variation on the well-known separator theorem of Lipton
and Tarjan [11]. We say that a graph G drawn in a disk Σ is internally

c-hyperbolic if the condition (1) holds for all simple G-disks ∆ ⊂ Σ such
that V (G∆) 6= V (G).

Lemma 3. Let G be a graph with n vertices drawn in a disk Σ, and let

c > 0 be a real number. If G is internally c-hyperbolic, then there exists a

simple G-disk ∆ such that 1
3n ≤ |G∆| ≤

2
3n+ 2(c+ 1) log n+ 4 and

∂G∆

|G∆|
≤

∂GΣ+ 6(c+ 1) log n+ 9

n
.

Proof. We say a face of G is internal if it does not intersect the boundary
of Σ. Without loss of generality, we may assume that G is 2-connected and
all internal faces are triangles, and the boundary of Σ intersects G exactly
in vertices of a cycle K such that all other vertices and edges are contained
in the open disk bounded by K. To accomplish this, we suppress internal
faces of length at most 2 (bounded by loops or bigons) and then add edges
to connect G and triangulate the internal faces.

Let G′ be the plane triangulation obtained by pasting Σ together with
the drawing of G in the plane and adding a vertex u adjacent to all vertices
of K. For a positive integer i, let ni and n+

i denote the number of vertices of
G′ at distance exactly i and more than i from u, respectively. We claim that
for i ≥ 2, we have n+

i ≤ max(0, c(ni − 1)). Indeed, consider the graph Gi

obtained from G′ by deleting all vertices at distance less than i from u. Note
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that for each 2-connected block B of Gi with the outer face bounded by a
cycle CB , there exists a simple G-disk Λ ⊆ Σ with GΛ = B and containing
exactly V (CB) in the boundary. Since G is internally c-hyperbolic, we have
|B|−|CB| ≤ c(|CB |−1); and if B1, . . . , Bm are the 2-connected blocks of Gi

bounded by cycles, we have n+
i =

∑m
i=1(|Bi| − |CBi

|) ≤ c
∑m

i=1(|CBi
| − 1) ≤

c(ni − 1); the last inequality holds unless ni = 0, in which case we have
n+
i = 0 since G is connected.
Therefore, for i ≥ 2, if ni 6= 0, then ni > n+

i /c, and thus n+
i−1 =

n+
i + ni > (1 + 1/c)n+

i . Hence, if n+
i−1 6= 0, then n+

i <
(

1 − 1
c+1

)

n+
i−1. Let

d = ⌈(c+1) log n⌉+1. Since n+
1 < n, we have n+

d <
(

1− 1
c+1

)d−1
n ≤ 1, and

thus every vertex of G′ is at distance at most d from u.
Let T be a BFS spanning tree of G′ rooted in u. Note that the dual

of G′ has a spanning tree T ⋆ whose edges cross exactly the edges of G′ not
belonging to T . Consider any edge e ∈ E(G′) \ E(T ), and let Ce denote
the unique cycle in T + e. The graph T + e has two faces, let fe denote
the one incident with fewer vertices of G and let Ae denote the set of these
vertices, let Be denote the set of vertices incident with the other face of
Te, and direct the corresponding edge e⋆ of T ⋆ into fe. Note that (Ae, Be)
is a separation of G and Ae ∩ Be = V (Ce) \ {u}. The directed tree T ⋆

contains a source, corresponding to a face f of G′. Letting F denote the
set of edges of E(G′) \ E(T ) incident with f , we have V (G) =

⋃

e∈F Ae.
Since G′ is a triangulation, we have |F | ≤ 3, and thus there exists an edge
e ∈ F ⊆ E(G′) \ E(T ) such that |Ae| ≥

n
3 ; let us fix such an edge e. Note

that |Be| ≥ |Ae| ≥
n
3 .

Suppose that u ∈ V (Ce); then Ce − u is a path in G with both ends in
K and otherwise disjoint from K, and Ce − u has at most 2d vertices. Let
∆A and ∆B be simple G-disks in Σ tracing the cycles in K + (Ce −u), such
that Ae = V (G∆A

) and Be = V (G∆B
). Note that

∂G∆A + ∂G∆B ≤ ∂GΣ+ 4d ≤
∂GΣ+ 4d

n
(|Ae|+ |Be|).

By symmetry, we may assume without loss of generality that ∂G∆A ≤
∂GΣ+4d

n
|Ae|. Now let ∆ = ∆A. We have |G∆| = |Ae| ≥ 1

3n, |G∆| ≤
n− |Be|+ |V (Ce − u)| ≤ 2

3n+ 2d, and

∂G∆

|G∆|
=

∂G∆A

|Ae|
≤

∂GΣ+ 4d

n
.

Similarly, if u 6∈ V (Ce), then |Ce| ≤ 2d − 1 and Ce is a cycle in G, and
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we may let ∆ be a simple G-disk in Σ tracing Ce. In this case,

∂G∆

|G∆|
≤

2d− 1

n/3
≤

∂GΣ+ 6d− 3

n
.

We now iterate Lemma 3 in order to further decrease the size of the
graph.

Corollary 4. Let G be a graph with n vertices embedded in a disk Σ, and let

c > 0 and t be real numbers such that t ≥ 24(c+1) log t+48. If G is internally

c-hyperbolic, then there exists a simple G-disk ∆ such that |G∆| ≤ t and

∂G∆

|G∆|
≤

∂GΣ

n
+

21c + 57 + 24(c + 1) log t

t
.

Proof. The claim is trivial if n ≤ t, as then we can select ∆ = Σ. Hence,
suppose that n > t. We repeatedly apply Lemma 3 until the graph G∆ we
obtain has at most t vertices. Each time, when applied to a graph of size
k > t, the number of the vertices of the considered graph decreases by a
factor of at most

2

3
+

2(c + 1) log k + 4

k
≤

2

3
+

2(c+ 1) log t+ 4

t
≤

3

4
.

Thus, for each integer m ≥ 0, Lemma 3 is applied during the process to
at most one graph with at least (4/3)mt but less than (4/3)m+1t vertices.
Consequently,

∂G∆

|G∆|
−

∂GΣ

n
≤

∑

m≥0

6(c + 1) log((4/3)mt) + 9

(4/3)mt

=
6(c + 1) log(4/3)

t

∑

m≥0

m(3/4)m +
6(c+ 1) log t+ 9

t

∑

m≥0

(3/4)m.

Since
∑

m≥0 m(3/4)m = 12 and
∑

m≥0(3/4)
m = 4, we have that

∂G∆

|G∆|
−

∂GΣ

n
≤

6(c+ 1) log(4/3)

t
· 12 +

6(c + 1) log t+ 9

t
· 4

≤
21c+ 57 + 24(c + 1) log t

t
.
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We are now ready to prove our first main result.

Proof of Theorem 1. Let c′ = c + ε and β = ε
2(c+1)(c′+1) . The choice of t

implies

21c′ + 57 + 24(c′ + 1) log t

t
≤

(45c′ + 81) log t

t
≤

45c′ + 81

b
= β;

since β < 1
2(c+1) < 1/2, this also ensures t ≥ 24(c′ + 1) log t+ 48.

Suppose for a contradiction that G is not hyperbolic with Cheeger con-
stant c′. Hence, there exists G ∈ G and a G-disk Σ such that |V (G) ∩ Σ| >
c′(∂GΣ−1). Choose such a graph G and a disk Σ with |GΣ| minimum. Note
that |GΣ| = |V (G) ∩ Σ|+ ∂GΣ > (c′ + 1)∂GΣ− c′. Because G is hyperbolic
up to size t, we have that |GΣ| > t, and thus

∂GΣ

|GΣ|
<

(|GΣ|+ c′)/(c′ + 1)

|GΣ|
<

1

c′ + 1
+

1

|GΣ|
<

1

c′
+

1

t
.

The minimality of |GΣ| implies that GΣ is internally c′-hyperbolic. By Corol-
lary 4, there exists a simple GΣ-disk ∆ such that |G∆| ≤ t and

∂G∆

|G∆|
≤

∂GΣ

|GΣ|
+ β <

1

c′ + 1
+

1

t
+ β <

1

c′ + 1
+ 2β =

1

c+ 1
.

Now, we view ∆ as a G-disk rather than a GΣ-disk. But then we have

|G ∩∆| = |G∆| − ∂G∆ > (c+ 1)∂G∆− ∂G∆ > c(∂G∆− 1),

contradicting the assumption that G is hyperbolic with Cheeger constant c
up to size t.

3 Strong hyperbolicity

Suppose ∆ is a G-cylinder and let S1 and S2 be the sets of vertices of G
contained in the two components of the boundary of the cylinder Π in which
G∆ is embedded. Let d be the distance between S1 and S2 in G∆. For a
real number a > 0, we say that ∆ is a-fat if S1 6= ∅ 6= S2, the distance d
between S1 and S2 in G is finite, and for i = 1, . . . , d − 1, G∆ contains at
least a vertices at distance exactly i from S1. To prove Theorem 2, we need
the following observation on fat cylinders.

Lemma 5. Suppose a graph G embedded in a surface is c-hyperbolic for

some real number c > 0. Then every (4c + 2)-fat G-cylinder ∆ satisfies

|V (G) ∩∆| < 2c∂G∆+ 4c+ 2.
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Proof. Without loss of generality, we may assume that G is embedded in a
cylinder Π and ∆ is the interior of Π. Let S1 and S2 be the sets of vertices
of G contained in the two components of the boundary of Π, and let P be a
shortest path from S1 to S2 in G, of length d. Note that there exists a G-disk
Λ whose boundary traces the boundary of Π and passes twice along P ; we
have ∂GΛ = ∂G∆+2d. SinceG is c-hyperbolic, we have |V (G)∩∆|−(d−1) =
|V (G)∩Λ| < c∂GΛ, and thus |V (G)∩∆| < c∂G∆+(2c+1)d. On the other
hand, since ∆ is (4c+2)-fat, we have |V (G)∩∆| ≥ 2(2c+1)(d−1), and thus
(2c+1)d ≤ |V (G)∩∆|/2+2c+1. Combining the inequalities, we conclude
that |V (G) ∩∆| < 2c∂G∆+ 4c+ 2.

The proof of the strong hyperbolicity result is now straightforward.

Proof of Theorem 2. Consider a G-cylinder ∆ for a graph G ∈ G; we need
to argue that |V (G) ∩ ∆| ≤ g(∂G∆). Without loss of generality, we may
assume that G is embedded in a cylinder Π and ∆ is the interior of Π, and
thus G∆ = G. Let S1 and S2 be the sets of vertices of G contained in the
two components of the boundary of Π; for i ∈ {1, 2}, let ei = 1 if Si is
non-empty and ei = 0 otherwise. We will actually show that |V (G) ∩∆| ≤
g(∂G∆−e1−e2)−e1−e2. Thus, we may without loss of generality shift the
boundary of Π to ensure that S1 6= ∅ 6= S2. Furthermore, we can add edges
to G to ensure it is connected. Let d be the distance between S1 and S2 in
G. Let I ⊆ {1, . . . , d−1} be the set of distances i such that G contains fewer
than 4c+ 2 vertices at distance exactly i from S1. Let i1 < . . . < ik be the
elements of I in increasing order. For j = 1, . . . , k, note that there exists a
simple closed curve γj intersecting G only in vertices at distance exactly ij
from S1 and separating S1 from S2. Let γ0 and γk+1 be the curves tracing
the boundaries of Π containing S1 and S2, respectively.

For 0 ≤ i ≤ j ≤ k + 1, let ∆i,j be the G-cylinder bounded by γi and γj .
For j = 0, . . . , k, note that ∆j,j+1 is (4c+2)-fat, and thus |V (G)∩∆j,j+1| ≤
2c∂G∆j,j+1 + 4c + 2 by Lemma 5. Consequently, if 1 ≤ j ≤ k − 1, then
|V (G) ∩∆j,j+1| ≤ 16c2 + 12c + 2. Note that |V (G) ∩∆1,k| ≤ f(⌈8c + 4⌉);
indeed, otherwise there exists the minimum index j ≤ k such that

|V (G) ∩∆1,j| > f(⌈8c+ 4⌉) ≥ f(∂G∆1,j),

and then by the minimality of j, we have that

|G∆1,j
| ≤ |V (G)∩∆1,j−1|+|V (G)∩∆j−1,j |+12c+6 ≤ f(⌈8c+4⌉)+16c2+24c+8 = t

contradicting the assumption that G is strongly f -hyperbolic up to size t.
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It follows that

|V (G) ∩∆| = |V (G) ∩∆0,1|+ |G∆1,k
|+ |V (G) ∩∆k,k+1|

≤ 2c(∂G∆0,1 + ∂G∆k,k+1) + 8c+ 4 + f(⌈8c+ 4⌉)

≤ 2c∂G∆+ 8c2 + 16c + 4 + f(⌈8c+ 4⌉) ≤ g(∂G∆− 2)− 2,

as required.

4 Further Remarks: Practical Considerations

Let us discuss some practical and computational issues. Firstly, Theorem 1
only enables us to verify that the class is hyperbolic for a particular Cheeger
constant, but does not tell us how to find such a constant. For a class which
is actually hyperbolic, we can in principle test larger and larger constants
and we are guaranteed to eventually succeed, but this does not give us a way
to decide the class actually is not hyperbolic. This likely cannot be avoided,
since there are hyperbolic classes with arbitrarily large Cheeger constants.

On the other hand, in practice one could likely get a good idea of what
Cheeger constant to aim for by experimentation with small graphs, or to
discover a way to construct counterexamples to hyperbolicity in the process.
This brings us to the issue of how large a Cheeger constant one can expect.
While earlier proofs often came up with quite large constants (around 2000
in [6]), the later works significantly improve on these bounds (less than 13
in [5], 19 in [16], albeit with slightly different definitions), and empirical
evidence suggests that the actual best possible values are even smaller. A
detailed inspection of the proof of Theorem 1 shows that to establish that a
class with Cheeger constant 5 is hyperbolic with Cheeger constant 10 (i.e.,
the case c = ε = 5), one would need to prove 5-hyperbolicity for graphs with
less than 90 000 vertices. As the number of graphs in a class that have a given
number of vertices typically grows exponentially, this is wildly beyond the
reach of conceivable computational power. Although with a better analysis
the bounds could likely be substantially improved, we have to concede our
result is mostly of a theoretical interest.

Of course, it is plausible that actually significantly smaller reducible
configurations exist. However, to date no one has been able to come up
with an explicit list of reducible configurations for 5-choosability of planar
graphs yet, indicating that the graphs in such a list likely cannot be very
small.

Finally, let us remark on what one would actually have to do to establish
hyperbolicity of a class G up to size t. For each graph H with at most t
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vertices drawn in a disk Σ such that |H| − ∂HΣ > c(∂HΣ − 1), one has
to verify that there is no graph G ∈ G drawn in any surface and a G-disk
∆ such that H is homeomorphic to G∆. In the case that G is the class of
graphs on surfaces of girth at least g and critical for k-coloring, this amounts
to showing that either H contains a cycle of length less than g, or that H
is not critical for k-coloring. Short cycles can be detected in polynomial
time, while to verify the criticality one likely has to use an exponential-
time brute-force algorithm; nevertheless, for reasonably small graphs both
tasks are tractable. This does not necessarily have to be the case for general
hyperbolic classes, although for the ones coming from the coloring problems,
it is likely to again work out to be equivalent to verifying a suitable version
of criticality with precolored boundary.
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