
A scalable solution to the nearest neighbor search

problem through local-search methods on

neighbor graphs∗

Eric S. Tellez1

CONACyT-INFOTEC
eric.tellez@infotec.mx

Guillermo Ruiz2

CONACyT-CentroGEO
lgruiz@centrogeo.edu.mx

Edgar Chavez3

CICESE
elchavez@cicese.mx

Mario Graff1

CONACyT-INFOTEC
mario.graff@infotec.mx

1 CONACyT-INFOTEC Centro de Investigación e Innovación en Tecnoloǵıas de la Información y
Comunicación. Circuito Tecnopolo Sur 112, Fracc. Tecnopolo Pocitos, CP 20313. Aguascalientes,

Ags, México
2 CONACyT-CentroGEO Centro de Investigación en Geograf́ıa y Geomática “Ing. Jorge L.
Tamayo”, A.C. Circuito Tecnopolo Norte No. 117, Col. Tecnopolo Pocitos II, C.P. 20313.

Aguascalientes, Ags, México.

3 CICESE Centro de Investigación Cient́ıfica y de Educación Superior de Ensenada, Ensenada,

Baja California, México

Abstract

Near neighbor search (NNS) is a powerful abstraction for data access;
however, data indexing is troublesome even for approximate indexes. For
intrinsically high-dimensional data, high-quality fast searches demand ei-
ther indexes with impractically large memory usage or preprocessing time.

In this paper, we introduce an algorithm to solve a nearest-neighbor
query q by minimizing a kernel function defined by the distance from
q to each object in the database. The minimization is performed using
metaheuristics to solve the problem rapidly; even when some methods in
the literature use this strategy behind the scenes, our approach is the first
one using it explicitly. We also provide two approaches to select edges
in the graph’s construction stage that limit memory footprint and reduce
the number of free parameters simultaneously.

We carry out a thorough experimental comparison with state-of-the-
art indexes through synthetic and real-world datasets; we found out that
our contributions achieve competitive performances regarding speed, ac-
curacy, and memory in almost any of our benchmarks.

∗A revised version of this manuscript has been published in Pattern Analysis and Appli-
cations, 24, 763–777 (2021). https://doi.org/10.1007/s10044-020-00946-w

1

ar
X

iv
:1

70
5.

10
35

1v
4

 [
cs

.D
S]

 2
9

Ju
n

20
21

eric.tellez@infotec.mx
lgruiz@centrogeo.edu.mx
elchavez@cicese.mx
mario.graff@infotec.mx
https://doi.org/10.1007/s10044-020-00946-w

Keywords: Nearest neighbor search, Metric search with heuristics, Combi-
natorial optimization

1 Introduction

The metric space abstraction for proximity search can be applied to a large
number of problems; for instance, it is a fundamental tool to solve problems
from statistics, data mining and pattern recognition to multimedia information
retrieval, machine learning, compression, biometric identification, and bioin-
formatics [Sko10]. The problem involves preprocessing a database of objects
equipped with a distance to find the nearest neighbors of a query, or objects
within a certain distance threshold. More formally, let U be a domain and
S = {s1, . . . , sn} ⊂ U a finite subset of U , and let d : U × U → R+ a distance.
Given a query q ∈ U , the similarity search problem consists of preprocessing
S to find objects close to q quickly. The preprocessing produces a search data
structure called index that has the objective of speeding up the computation of
similarity queries over S. This manuscript focuses on solving k nearest neighbor
queries, written as knn(q), which retrieves the k most similar items in S to the
query object q. We understand similar as close regarding the distance d.

Finding the k nearest neighbors for a particular application depends of the
metric function used. Different problems require different distance functions
and it is not clear what will be more suitable in a particular scenario. An
alternative is to train a custom metric using Metric Learning. Metric Learning
is the process to learn a metric such that the objects of the same class have
small distance and objects of different classes end far apart. This can be used
on image retrieval, person re-identification, and classification in general. Some
methods are Large Margin Nearest Neighbor [WS09], Neighborhood Component
Analysis [DKJ+07], and recently Li et al [LT15], used deep learning over images
labeled by the community to present a new algorithm, named weakly-supervised
deep metric learning which is able to preserve the distance of visual features as
well as the text labels.

Designing algorithms and data structures that efficiently solve the search
problem for small intrinsic dimensions is possible, but there is a compelling
body of theoretical and empirical evidence about the raising of the complexity
for high dimensional data, the so called curse of dimensionality (CoD). This
phenomenon arises in the distribution of the pairwise distances between objects;
roughly, the mass concentrates around the mean value, making it difficult to
distinguish objects using the distance function. The net effect is that, even for
highly selective queries, it is not possible to build a data structure that avoids
the evaluation of a large part of the database to solve a query. Another effect
is that the mean value increases with the dimension, this is valid for distance
functions computed accumulatively like most Minkowsky’s distance functions.

As Chavez et al. [CNBYM01] describe, most of the search structures found in
the literature will suffer from the CoD dimensional effect. The primary strategy

2

to cope with the CoD is to allow the retrieval of an approximate answer; the
correctness of the approximation can be measure by an approximation factor.
Another standard approximation scheme is to measure the number of errors
found in a result set; in this scenario, an error implies that the solution proposed
may omit objects of the correct response, or add some objects that are not part
of the exact result set. These methods are prone to introduce false positives
and false negatives errors. We are interested in the latter kind of approximation
algorithms since the approximation factor can be tricked when the underlying
distribution of pairwise distance functions have high mean values and high-
concentrations of mass around the mean; this is worth to consider since these
are the symptoms of the CoD.

In this paper, we introduce a graph based algorithm to approximate a
nearest-neighbor query q by minimizing a kernel function defined by the dis-
tance from q to each object in the database.

1.1 Overview

The next section puts in context our contribution giving a brief review of the
related state of the art literature. The rest of the manuscript is organized as
follows. Section 2 is dedicated to review the related literature and contrast it
with our approach. Section 3 discusses the fundamental assumptions behind
our contribution, the general ideas behind the adapted metaheuristics, our sim-
ilarity search algorithm, and also our neighborhood selection approaches. In
Section 4, we present experiments over synthetic and real-world databases, in
particular, we provide a broad comparison under different benchmarking condi-
tions like databases with increasing dimension and the effect of the database’s
size. Finally, Section 5 concludes the manuscript and suggests future directions
of research.

2 Related work

Locality Sensitive Hashing (LSH) is among the most well-known techniques for
approximate similarity search. It was first presented in [GIM99], with many
follow up work as in [AI08, HLH+15, AIL+15]. An LSH scheme is composed
of a set of specialized hashing functions that work for a particular problem,
e.g., vectors under the Euclidean distance, cosine similarity, or sets under the
Jaccard distance. The central idea of a hashing function is that close objects are
mapped to the same hash value (they will be assigned to the same bucket) with
high probability while distant objects are mapped to different hashes with high
probability. As usual, in this kind of problem, the complexity of LSH depends
both on the dataset and the set of queries, such that a complex problem will need
many hash functions to ensure the expected result’s quality. That is because
the hash functions are very often correlated, and their discriminate power is
sub-linear.

Most of the LSH methods use projections to map the original space. In

3

[GLGP13] was presented ITQ, an iterative method to find useful binary codes
for the points in the dataset. The codes can be seen as a vertex of the hypercube
{−1, 1}c where c is the length of the codes. The code associated with every point
is the closest vertex on the cube. The iterations find a good transformation of
the hypercube to approximate the data. Recently, on [FHL+18] was shown the
Complementary Binary Quantization (CBQ) method to learn hash functions
jointly based on prototypes for multiple hash tables. Such prototypes are well
distributed among the data; the hashed space’s distance notion resembles that
of the original space. That is possible because only one prototype is needed to
find the nearest neighbor. So, the hash functions can be seen as a map from the
original space to the Hamming space. One difference with the ITQ is that the
hypercube’s vertexes are more evenly distributed over the data, and therefore,
the hash functions are less redundant. Also, on the subsequent paper [LFW+20],
the authors show how this can be done in a distributed configuration producing
the D-CBQ method for use on big datasets.

The Fast Library for Approximate Nearest Neighbors, FLANN [ML14], is a
library that implements several indexing strategies and selects the more suitable
one, based on parameters like the search time, the construction time, and the
available memory. With those parameters, together with the parameters of the
indexes, a cost function is defined. FLANN builds and tries different instances
of the indexes using optimization techniques to find a local minimum to the
cost function. The instance corresponding to the local minimum will be the one
selected.

Product quantization (PQ) [JDS11] relies on vector quantization of sub-
spaces. The central idea is to apply a clustering algorithm, like k-means, in
several independent subspaces. The clustering is applied to a sample of the
dataset, encoding the rest of the database according to the k-means centers. The
authors compare their approach with FLANN using the SIFT-1M benchmark;
PQ is between two and five times faster than FLANN for the same quality of re-
sults. Centers serve as symbols or words, and then efficient indexing techniques
like Inverted Indexes can be used to support large datasets. In [GHKS14] the
encoding error of PQ is reduced through an iterative quantization that encodes
the database as a binary Hamming space, in essence. The vector quantization
idea is applied recursively in [YL16] improving PQ and the optimized PQ. Fol-
lowing this line, on [LDD+15] the authors proposed a hashing structure based
on PQ to capture the local and global properties of the data.

Another scheme is based on representing each object with an ordered set
of its k nearest references, where a reference is just an special type of object.
For instance, we can recognize this approach on CNAPP [TCN13], PP-Index
[Esu12], MIF [AGS14], and the quantized permutations [MMM15]. The simi-
larity among the sets that represent any pair of items hints the similarity of the
actual objects. Queries are resolved using an inverted index over the sets. This
structural similarity was systematically explored in [CGNT15], adding several
new indexes to the list. The role played by the selection of the set of references
is detailed in [AEF15].

An alternative to palliate the CoD consists of the usage of a combinatorial

4

solution. This is the kind of work presented in [GLS08] where the authors
create a navigation graph, and iteratively improve the distance from the current
node to the query, moving to a closer node. These algorithms have theoretical
interest, but its practical applications are limited due to their quadratic memory
requirements.

An alternative combinatorial algorithm that reduces this memory issue is
the Rank Cover Trees (RCT) [HN15]. Instead of using a random object to
start the search, the authors use a rooted tree. Node descendants in the tree
are obtained using a rank order, and since only rank information is used for
navigation, and the degree of the tree is bounded, the total number of nodes
visited in each search can be fixed beforehand. The Spatial Approximation
Sample Hierarchy (SASH) [HS05] introduces a multilevel data structure where
each level is a random sample of half the size of the previous level. Each object
in an upper-level connects to a number of its approximate nearest neighbors at
a lower level. Queries are resolved top-down searching for the nearest neighbors.
At each level, the degree of the tree is bounded, and the search is done top-down
seeking the most promising nodes. This process makes the whole searching
procedure bounded time-wise, but without proximity guarantees.

2.1 The navigable small world graph

We detail the base of our contribution, Navigable Small World (NSW), intro-
duced in [MPLK12]. Instead of building a tree-like SASH, the authors propose
a search graph incrementally built with consecutive insertions. Note that each
insertion is defined regarding the search algorithm with a simple rule: To insert
the j-th element, find the (approximate) N nearest neighbors among the j − 1
elements already indexed; then, the new item is linked (in both directions) to its
N nearest neighbors. The authors encourage the preservation of links to distant
objects since they can boost search performance. Notice that these long-links
will naturally arise using incremental construction.

The search algorithm starts selecting a random point and greedily follows
the neighbor that minimizes the distance to the query, repeating until no fur-
ther improvement is possible. This simple procedure performs fast but poorly
regarding the recall. However, the quality can improve with amplification, with
m independent searches from random starting points. In a follow-up paper
[MPLK14], the searching procedure is updated to use persistent sets with the
restarts. In other words, it stores the set of visited candidates along the en-
tire search process. At the beginning of each restart, the algorithm appends a
random item to the list of candidates to add diversity to the search process.

The total number of evaluated distance functions of the search is determined
by m ·N · hops; where m is the number of restarts, N the degree of each node
in the graph, and hops is the average number of hops needed to stop the search
procedure. In particular, the m and N parameters control both accuracy and
speed and need to be established for each dataset. While large m values can
improve the result’s quality, too many restarts may decrease the overall search
speed. Moreover, increasing N could also boost recall and speed at the expense

5

of using more memory, which can become an issue whenever we are dealing with
large datasets. Also, the search speed is not linear in N , since other parameters
become affected in the full expression, and surpassing the best value of N may
also lead to bad performances. The original paper experimentally shows, for
their benchmarking datasets, that fixing m = O(log n) and N = O(log n) for n
vertices it produces O(log3 n) searches, i.e., the number of hops is also O(log n).

Since NSW is built incrementally using object insertions, and each addition is
defined regarding the search algorithm; therefore, there is an unusual feedback
loop involved. A better approximation to the actual nearest neighbors may
produce a different underlying graph, and with different characteristics.

In [RCGT15] we develop a beam search based algorithm, that improves the
performance of NSW in many cases; however, in addition to the beam size
parameter and the neighborhood size, it needs to setup a small value σ that is
used to automatically stop the search.

A significant improvement to the search graph is made in [MY18], where a
Hierarchical Navigable Small World (HNSW) is introduced. The core idea is to
construct a hierarchy of navigable nets connecting the nearest objects between
layers. Each layer is denser than the previous one. A search is then solved
following nearest neighbors per layer, starting in the less dense one, and following
the connections to improve the approximation procedure. In addition to the
NSW, the HNSW requires taking care of the list of layers and its connections.
For neighborhood selection, HNSW uses a heuristic based on the Spatial Access
Tree (SAT, see [Nav02]). The SAT-based heuristic selects a sub-list of a large
list of neighbors. It starts with the node u being inserted and a list of candidate
neighbors L; L is a list of efConstruction nearest neighbors of u computed
using the index, L is ordered by distance to u. The actual neighborhood N is
computed, iteratively, as follows:

• For each p in L in order, compute the nearest neighbor to p among items
in the neighbor N and also u.

• If u is the nearest neighbor of p then p is added into the neighborhood N .

An HNSW user needs to tune two parameters, the efConstruction and M ,
the maximum size of the neighborhood (truncated for neighborhoods larger than
M).

2.2 Our contribution

We devise that the search graph, as mentioned above, is a combinatorial search-
space by itself. Then, the core idea is to navigate the graph using local in-
formation and the accumulated knowledge of previous evaluations until a local
minimum is reached. We use several strategies to avoid local minimum solutions,
and these approaches can improve the quality of the result set significantly.

Our approach is to adapt local-search methods, borrowed from combinato-
rial optimization, to solve nearest neighbor queries. This paper also studies
heuristics for reducing parameter tuning, and in particular, on neighborhood

6

selection heuristics. We characterize the search speed and quality of our search
structures based on the performance of synthetic and real-world datasets. In
the road, we also provide an extensive experimental comparison of our indexes
with state of the art methods.

3 Local-search methods to similarity search

d(u, q)

u q

u’
d(u’, q) = min {d(v, q) | v ∈ ᮂ(u)}

ᮂ(u)

Figure 1: An object u and its neighborhood N (u); u′ is the item closer to q in
N (u).

Our approach explores the improvement of the search algorithm of NSW
based in that the search graph defines a search space for an underlying combi-
natorial optimization problem. We claim that each query defines an optimiza-
tion landscape, using distance among the query to each object in the dataset.
That way, the process of finding a minimum value solves (approximately) its
associated nearest neighbor query. Figure 1 illustrates the central assumption
of the search graph to solve a query; the idea is that a query q can be solved
navigating the graph starting at some vertex u, such that our best initial guess
of knn(q) is u. We can improve our current estimate exploring the neighborhood
of u, N (u), selecting the best result, u′ in the figure. This process is repeated
until there is no better object that minimizes the smaller known distance. Since
we can be trapped in a local minimum, we need to perform different strategies
to find better approximations. A priority queue of fixed size is required to store
the most promising results to answer the knn(u) query. Using variations of this
general scheme, we can create different search graphs, as will be detailed below.

Before we detail our contribution, we dedicate the next subsection to review
the generic metaheuristics that were used in our approach.

7

3.1 Local search heuristics

As commented, one of the main issues in the scheme is to get away from local
minima; that is the reason why several heuristics exist. There is a plethora
of local search heuristics and metaheuristics besides the greedy search, here we
focus on those used in our approach. The interested reader is referenced to the
excellent book [EKB14] on the field.

Greedy search. It is interesting to revisit the Greedy Search (GS) strategy,
identified as the heuristic behind NSW. If each try in the greedy search has a
probability P of success, it can be amplified to any target success probability of
P ? using m independent tries. This amplification is a standard method in com-
binatorial optimization, and it is proved that m = O(log (1− P ?)/log (1− P)).
For the problem of near-neighbor search, success probability P can be assumed
to be the recall, and be measured experimentally. It is interesting to notice
that, under this assumption, any positive recall can be amplified with enough
tries. The limitation, however, is the assumption of independence; so, if the
greedy searches are not independent, the number of tries can be much larger to
achieve the desired recall. The amplification process is also known as Iterated
Hill Climbing (IHC).

Tabu search is a metaheuristic to avoid greedy decisions at each step. This
strategy is designed to escape from local minima and plateaus. The central
idea is to avoid taking the same path more than once; this is accomplished by
marking already visited vertices as prohibited and avoid visiting them on later
stages of the search process.

Beam Search metaheuristic stores a beam B of promising candidates (already
visited in the search process) of fixed size b. At each step, the beam search
computes a new beam B′ = ∪s∈BN (s) and selects the closer objects from B
and B′ (the new beam replaces the old one). The search stops whenever the
current beam B cannot be improved. Tabu search can be used in conjunction
with beam search to avoid non-essential computations. At the beginning of the
search process, B is populated with random vertices from the graph.

3.2 Our search algorithms

Our search algorithm is Beam Search (BS) (see Algorithm 1). The idea behind
BS is to populate a priority queue of fixed-size B, called beam, that contains
possible results and refines them iteratively. Note that our algorithm uses a
kind of memory to remember visited nodes like tabu search does (line 4). Lines
5-11 initialize the search procedure. The exploration of the beam (lines 15-
28) evaluates the neighborhoods of all objects in the beam, and it is replaced
using those objects with a smaller distance to the query object. When the
exploration finishes, the process has reached a global or local minimum. The
latter situation needs a strategy to recover, and we rely on repeating the beam
search process using the best-known result as seed. This process continues until
there is no improvement. The critical parameter here is the size b of the beam
and the implicit neighborhood. The use of beam search as an alternative to other

8

Algorithm 1 Similarity search with our beam search algorithm.

Require: The arguments of the function are: distance function dist, the search
graph G = (S,N (S), the query q ∈ U , the number of neighbors k, and the
beam size b.

Require: The algorithm needs the following functionality:

• R and B are priority min-queues of fixed size that store pairs
(dist(q, u), u), prioritized by distance to the query,

• the nearest function retrieves the pair with the minimum associated
item, an analogous farthest function,

• the popnearest function that removes the closer pair in the queue,

• pairs support comparison by distance, between pairs and raw distance
values,

• a pair p can be inserted into the queue Q when the queue has not
reached its maximum size or when p < farthest(Q).

Ensure: The result set R containing the k nearest neighbors of q.
1: function BeamSearch(dist, S,N , q, k, b)
2: initialize R as a priority min-queue of maximum size k.
3: initialize B as a priority min-queue of maximum size b.
4: states← ∅ . a dictionary to mark vertices as visited or explored
5: for i = 1 to b do . initializes the search with b random points
6: randomly select u from S
7: if u 6∈ states then . avoids already visited points
8: statesu ← visited . marks u as visited
9: insert (dist(u, q), u) into R . pushes u into the result set

10: end if
11: end for
12: repeat . navigate the graph while the result improves
13: prev ← farthest(R)
14: insert nearest(R) into B . seeds B with the current best neighbor
15: while |B| > 0 do . explore the beam
16: p← popnearest(B) . removes best approximation in B to

explore it
17: if statep 6= explored then . ignores already explored vertices
18: statep ← explored . marks p as explored
19: for c ∈ N (p) do . iterate each child c in the neighborhood of

p
20: if c 6∈ states then . avoids already visited elements
21: statesc ← visited . marks c as visited
22: if (dist(q, c), c) can be inserted into R then
23: insert (dist(q, c), c) into R and B
24: end if
25: end if
26: end for
27: end if
28: end while
29: until prev ≥ farthest(R) . stops when result set does not improve
30: return R
31: end function

9

schemes produces significant improvements in both recall and search speed, as
supported experimentally in §4.

Please remember that the literature contains two ways to define the neigh-
borhood; that is, the fixed neighborhood presented in NSW and the HNSW’s
SAT-based neighborhood over a large list of candidates. In this manuscript,
an additional two variants are shown. The first strategy fixes the size of the
neighborhood to dlog2 ne; where n is the current number of indexed items, that
is, the size of the neighborhood increases slowly as n grows. This heuristic
supposes that the neighbor is a logarithmic function of the size of the dataset.
Furthermore, we also add a SAT-based neighborhood selection (see §1) on the
logarithmic-size list of neighbors, that is, the resulting neighborhood will be
significantly smaller. We use these strategies to remove the tuning effort of
selecting neighborhoods.

3.2.1 Differences with previous approaches

As explained, our BS uses the beam search strategy, starting with a random
sample of the vertices that are improved iteratively. The process is repeated
until the repetition does not improve the result set. The construction of the
graph uses the search algorithm, as explained before; however, we introduce
two heuristics Log and LogSat, that do not require an explicit parameter. In
contrast, NSW requires to tune the number of greedy searches that are applied
to solve the search, and also, the size of the neighborhood. On the other hand,
HNSW requires to know the size of the neighborhood and the size of an internal
list of candidates. Note that the HNSW also needs to maintain its hierarchy
of layers; thus, our BS index has a more straightforward implementation. In
summary, our BS-Log and BS-LogSat only need to set the size of the beam;
as will be shown experimentally, both produce competitive performances for
almost any of our benchmarks using a broad range of beam sizes.

It is necessary to remark that some properties like space complexity can
be easily computed from parameters. The search-graph’s memory is bounded
by the neighborhood size and the size of the dataset; the explicit storage of
the database is also a significant memory requirement. Log and LogSat have a
variable-sized neighborhood, Log is logarithmic, and LogSat is upper bounded
by Log. The search speed can be approximated in NSW since this property
almost depends on the parameters, except for the number of hops that depends
on the convergence. In our BeamSearch method, Algorithm 1, the search speed
relies heavily on the convergence of the result, due to the beam search (BS)
metaheuristic and the automatic repetition of the BS, lines 12-29. The search
stops when the result’s radius converges (line 15 for BS and line 29 for the
repetition of BS); therefore, the dataset and the query are also a fundamental
part of the search speed and the recall of each query.

Finally, our implementation of NSW is called IHC, and it accepts neighbor-
hood strategies developed for BS.

10

4 Experimental results

In this section, we compare our techniques with the state of the art alternatives.
Our experiments were performed on an Intel(R) Xeon(R) CPU E5-2640 v3 @
2.60GHz workstation with 16-core and 128 GiB of RAM, running Linux CentOS
7. We do not use the multiprocessing capabilities in the search process, and both
indexes and databases are maintained in the main memory. We select synthetic
and real benchmarks. Unless otherwise specified, we report the performance of
querying for 30 nearest neighbors for all datasets. More detailed, the datasets
and query sets are listed below:

— GIST-1M. This database contains one million 960-dimensional feature vec-
tors [JDS11].1 This collection obeys the computer vision modeling de-
scribed in [OT01], which were designed for scene recognition. We use the
1000 official queries for this benchmark; the Euclidean distance, L2, is used
for measuring the distance between point pairs. The average sequential
search requires 0.385 seconds on our testing machine.

— SIFT-1M and SIFT-100M We also used two more datasets from [JDS11].
These datasets are subsets of the one-billion dataset of Scale-invariant
feature transform (SIFT) descriptors. Each descriptor consists of a 128-
dimensional vector. We use the 10,000 official queries, solved with the
Euclidean distance, i.e., L2. An exhaustive search needs 2.540 and 0.024
seconds, in average, for SIFT-100M and SIFT-1M, respectively.

— DEEPIMAGE-10M. The fourth real dataset is a ten-million subset of the one-
billion dataset from a deep-learning-based image feature extraction [BL16].
Each object is a 96-dimensional vector, and the distance notion is mea-
sured with the angle between vectors. The query collection has 10,000
vectors from the official query set; on average, each query is solved in
0.414 seconds using a brute force solution.

— RAND. We also generate several synthetic datasets in a unitary cube; these
are standard benchmarks to study the algorithms’ performance for a fixed
size and dimension. i) Four datasets of dimension 8, 16, 32, and 64; each
dataset contain three million vectors. A query is solved by exhaustive
search in 0.035, 0.042, 0.069, and 0.077 seconds, respectively. ii) Two more
datasets of 8-dimensional vectors of 300, 000 and 1, 000, 000 elements; the
exhaustive evaluation needs 0.005 and 0.011 seconds, respectively. These
datasets use 1000 vectors for benchmarking, and the L2 distance for mea-
suring similarity.

We compare our indexes based on Beam Search (BS) and Iterated Hill Climb-
ing (IHC) with HNSW, PQ, KNR, and LSH. For HNSW, PQ and LSH we used

1The collection was retrieved from http://corpus-texmex.irisa.fr/

11

http://corpus-texmex.irisa.fr/

the implementation of FAISS,2 written in C++; in particular, we use the cpu im-
plementation. We also use FALCONN-LSH for benchmarking DEEPIMAGE.3

We use our own implementation for BS, IHC and KNR, written in the Julia
language4 and it is also open-source.5 We also show the performance Seq, our
brute force search and Flat, the FAISS’s exhaustive search implementation.

We produce comparisons with several configurations for each index. These
configurations must be adjusted for each dataset to reach optimal performance;
however, we use several generic configurations that work for a wide range of
problems. For instance, Beam Search (BS) uses three different beam sizes (8, 16,
and 32) and three different strategies to compute the neighborhood: fixed neigh-
borhood (FN) with 8, 16, and 32 neighbors; logarithmic (Log), and logarithmic
with SAT (LogSat) neighborhoods. The same neighborhood strategies apply
for IHC; it also uses three different restarting points (8, 16, 32 restarts). We
test K nearest references (KNR) with K = 3,, and K = 7; in all cases, we fix
the number of available references to be

√
n. We also show the performance

of Product Quantization (PQ) with an Inverted Index, using several code sizes
(using 8, 12,, and 16 encoding bits). LSH uses hash codes from 1024 and 2048
bits; we tested codes from 8 to 2048 bits, but the quality of the result set is
degraded significantly for small codes.

Note that we compute all experiments using a single core; while allowing
multi-threaded construction in large datasets (DEEPIMAGE-10M and SIFT-
100M). Our multi-threading construction is almost straightforward and available
in our open-source library; on the other hand, FAISS has native support for
multi-threading construction. All our results are presented as the macro-average
of our measurements; that is, we report the average of the result per each query.
Please recall that our search and construction algorithms are entangled for BS
and IHC; therefore, the construction time is proportional to the searching time
and the size of the dataset.

4.1 The effect of the dimension in the performance

Figure 2 shows the performance of our synthetic 3 million benchmarks on differ-
ent dimensions. The first row shows the performance of the indexes on RAND-
3M (8-dimensional vectors); on the left side, we can observe the speedup in terms
of our brute-force search implementation (logarithmic scale). The Flat index
is 5.4 times faster than our exhaustive search; this speedup is related to SIMD
implementations, and other low-level optimizations found in the FAISS library.
On the right side, we found the memory usage related to the recall of the first
column.

It is interesting to note how each index modifies its performance depending
on the dimension of the dataset. In the case of PQ, it improves the recall perfor-
mance from 8 to 16, and from 16 to 32 dimensions. Since the speedup is reduced,

2Available at https://github.com/facebookresearch/faiss
3Available at https://github.com/FALCONN-LIB/FALCONN.
4https://julialang.org/
5Our source code is available at https://github.com/sadit/SimilaritySearch.jl

12

https://github.com/facebookresearch/faiss
https://github.com/FALCONN-LIB/FALCONN
https://julialang.org/
https://github.com/sadit/SimilaritySearch.jl

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103
RA

ND
 d

=8
, n

=3
M

sp
ee

du
p

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

m
em

or
y

(M
B)

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

RA
ND

 d
=1

6,
 n

=3
M

sp
ee

du
p

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

m
em

or
y

(M
B)

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

RA
ND

 d
=3

2,
 n

=3
M

sp
ee

du
p

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103
m

em
or

y
(M

B)

0.0 0.2 0.4 0.6 0.8 1.0
recall

100

101

102

103

RA
ND

 d
=6

4,
 n

=3
M

sp
ee

du
p

Seq
Flat
BS(8) FN
BS(16) FN

BS(32) FN
BS Log
BS LogSat
IHC(8) FN

IHC(16) FN
IHC(32) FN
IHC Log
IHC LogSat

KNR
PQ
LSH
HNSW

0.0 0.2 0.4 0.6 0.8 1.0
recall

100

101

102

103

m
em

or
y

(M
B)

Seq
Flat
BS(32) FN

BS(32) Log
BS(32) LogSat
IHC(32) FN

IHC(32) Log
IHC(32) LogSat
KNR

PQ
LSH
HNSW

Figure 2: Performance comparison on synthetic datasets, 8, 16, 32, and 64
dimensions. On the left, recall vs. speedup (higher is better), on the right side,
recall vs. memory (lower is better). Each row corresponds to a dataset, and the
x-axis (recall) is shared between figure pairs.

the reason for the better recall can be explained as PQ being transformed on a
kind of sequential scan as dimension increases; notoriously, the memory usage
remains pretty low. KNR is an index that achieves relatively good recall scores
with small memory footprints; however, its speedup is lower than graph-based

13

indexes.
The first graph-based index in this comparison is the HNSW, which achieves

faster searches; however, its recall is reduced as the dimension grows. Nonethe-
less, the memory usage of HNSW is among the largest ones. Our BS and IHC
perform pretty differently depending on the neighborhood strategy. The fixed
neighborhood (FN) for BS allows to achieve high recall values for eight and
16-dimensional vectors and remains high performant for the rest of our bench-
marks. However, the memory footprints are the highest among the compared
techniques. IHC-FN also achieves high recall values, yet never improves that of
BS-FN. The logarithmic neighborhood (Log) also produces high recall values for
almost all tested dimensions. This performance can suggest that the logarithmic
strategy can be used as a rule of thumb in the selection of the neighborhood.
Finally, the LogSat neighborhood strategy involves computing a Spatial Access
Tree (SAT) grouping on the logarithmic neighborhood; LogSat achieves high
recall scores using less memory than the Log neighborhood.

In general, it can be observed that the performance is degraded rapidly as
dimension increases; however, the more resilient indexes are BS indexes and
KNR indexes.

4.2 Scalability

0.4 0.5 0.6 0.7 0.8 0.9 1.0
recall

10 4

RA
ND

 d
=1

6,
 n

=3
00

K,
 1

M
, 3

M
se

ar
ch

 ti
m

e

BS(32) FN
BS Log

BS LogSat
IHC(32) FN

IHC Log HNSW

0.4 0.5 0.6 0.7 0.8 0.9 1.0
recall

100

101

102

103

m
em

or
y

(M
B)

BS(32) FN
BS(32) Log

BS(32) LogSat
IHC(32) FN

IHC(32) Log HNSW

Figure 3: Performance comparison on our 16-dimensional synthetic dataset. On
the left, recall vs. search time (higher is better), on the right side, recall vs.
memory (lower is better). Each point corresponds to a different size on the
database (300k, 1M, and 3M).

In Figure 3, we show the evolution of the search time of the indexes when
the size of the dataset varies. Here, we used 16 dimensional random vectors
with sizes of 300,000, 1,000,000 and 3,000,000 elements. For this experiment,
we focus our comparison on BS, IHC, and HNSW with the idea of close ranges
on the figures. On the left, we show the search time per query in seconds, on
the right, the memory used. Each point on the series corresponds to a different
size of the dataset. For each method, we selected the best configuration based

14

on the recall. The search time graph shows that the indexes with better recall
are the BS, but the HNSW is the fastest. An interesting property of the BS
is that the recall is kept essentially constant despite the increase of the dataset
size. Also, on the right, note how the needed memory for BS is less than that
of HNSW. In the rest of the section, we analyze the performance of real-world
datasets.

4.3 Performance on real datasets

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

GI
ST

 d
=9

60
, n

=1
M

sp
ee

du
p

0.0 0.2 0.4 0.6 0.8 1.0

101

102

103

m
em

or
y

(M
B)

0.0 0.2 0.4 0.6 0.8 1.0
recall

100

101

102

SI
FT

 d
=1

28
, n

=1
M

sp
ee

du
p

Seq
Flat
BS(8) FN
BS(16) FN

BS(32) FN
BS Log
BS LogSat
IHC(8) FN

IHC(16) FN
IHC(32) FN
IHC Log
IHC LogSat

KNR
PQ
LSH
HNSW

0.0 0.2 0.4 0.6 0.8 1.0
recall

101

102

m
em

or
y

(M
B)

Seq
Flat
BS(32) FN

BS(32) Log
BS(32) LogSat
IHC(32) FN

IHC(32) Log
IHC(32) LogSat
KNR

PQ
LSH
HNSW

Figure 4: Performance comparison of our indexes with state-of-the-art alterna-
tives in datasets with one million vectors. On the left side, recall vs. speedup
(higher is better); on the right side, recall vs. memory (lower is better).

Figure 4 shows the performance in two real datasets, GIST, and SIFT. Each
GIST vector contains one million 960-dimensional vectors, while SIFT contains
one million 128-dimensional vectors.

The first row at Figure 4 shows the performance for the GIST dataset; here,
HNSW is the faster solution, yet it produces lower recall scores as compared
with our graph-based alternatives. BS indexes achieve the highest ratings, and
in particular, the faster among them is BS-LogSat. BS Log improves this recall
with a small cost regarding speed. Note that both Log and LogSat are fixed
strategies, such that a potential user only needs to set up the beam size, in the
case of BS, and the number of restarts, in the case of IHC. These parameters
can be tuned at the search stage; in contrast, fixed neighborhood strategies need
more parameter tuning at the construction stage. We observe a speedup of 16.8

15

times from just using Flat instead of our exhaustive search. PQ and LSH obtain
a competitive speed but very low recall. KNR is on the other extreme of the
performance, i.e., high recall with low speeds. Regarding memory usage, the
dataset size (one million 960-dimensional vectors) dominates the requirements;
this effect flattens memory curves, i.e., first-row of Figure 4.

The bottom-row of Figure 4 compares the performance on the SIFT-1M
dataset. Here we can observe a similar performance than before, HNSW is
the faster index, but BS achieves better recall scores. In particular, BS-LogSat
achieves a competitive performance by trading speed, recall, and memory con-
veniently; BS Log is a bit more precise but also a bit slower and has higher
memory consumption. The Flat search of FAISS is 5.3 times faster than our
exhaustive search Seq; this speedup is similar to that found between BS and
HSNW. Note the considerable difference between memory consumption among
FAISS indexes and our implementations; this is because the highly optimized
distance functions of FAISS require vectors of 32-bit floating-point numbers
while we use vectors of 8-bit unsigned integers. These subtle details have a
noticeable impact on the search performance; however, our gain is using four
times lesser memory, and this saving will enable us to work with more massive
datasets.

4.4 Performance on large real-world datasets

0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

103

104

DE
EP

IM
AG

E
d=

96
, n

=1
0M

sp
ee

du
p

0.0 0.2 0.4 0.6 0.8 1.0

102

103

m
em

or
y

(M
B)

0.0 0.2 0.4 0.6 0.8 1.0
recall

100

101

102

103

104

SI
FT

 d
=1

28
, n

=1
00

M
sp

ee
du

p

Seq
Flat
BS(32) FN

BS LogSat
IHC(32) FN
IHC LogSat

KNR
PQ

LSH
HNSW

0.0 0.2 0.4 0.6 0.8 1.0
recall

102

103

104

m
em

or
y

(M
B)

Seq
Flat
BS(32) FN

BS(32) LogSat
IHC(32) FN
IHC(32) LogSat

KNR
PQ

LSH
HNSW

Figure 5: Performance comparison on two datasets: the DEEPIMAGE with
ten, and SIFT, with one hundred million vectors. On the left side, recall vs.
speedup (higher is better); on the right side, recall vs. memory (lower is better).

16

Large datasets require restricted memory indexes, which is particularly nec-
essary for indexes that need to access the dataset to work. Our contributions
fall into this index category, while others like LSH and PQ perform data projec-
tions that can alleviate the memory issues at the cost of recall or search speed
reductions.

Figure 5 compares the performance of search methods on two large datasets.
In this set of experiments, we limit the memory usage of the indexes to use them.
We fix the memory size of BS and IHC indexes using Log, LogSat strategies
that use a logarithmic neighborhood and a spatial-aware sample of a logarith-
mic neighborhood. We also compare a fixed neighborhood size of eight. In
particular, we restrict our comparison to BS with beam sizes of 32 and IHC
with 32 random restarts. KNR uses three near references, and HNSW fixes a
neighborhood of size eight.

In the first row, DEEPIMAGE, we can observe that memory usage is domi-
nated by the database; and the speed dominated by HNSW. As in previous ex-
periments, our BS-LogSat achieves competitive results in both recall and speed.
The BS and IHC indexes use neighborhoods of size 8, with a beam size of 32
and the same number of restarts for IHC. Notoriously, KNR also exhibits higher
recall scores with a small speed impact. Notably, the Flat index produces 10.5
times faster searches than our sequential search implementation. LSH and PQ
are the indexes with relatively low memory consumption. In this benchmark,
we use the LSH by [AIL+15] since the distance function is the angle between
vectors; we use 8, 16, and 32 tables and codes of 24 bits.

The search performance on the SIFT dataset with 100 million vectors is
depicted in the bottom-row of Figure 5. As before, HNSW is the faster index,
yet it has higher memory requirements due to the use of 32-bit floating-point
numbers. On the other hand, our BS-LogSat achieves the best recall while
maintaining a competitive search speed. PQ and LSH have a pretty small
memory-footprint but at the cost of both speed and result quality.

LSH and PQ indexes have a small memory footprint; others like HNSW solve
queries quickly and accurately. Our BS indexes achieve competitive tradeoffs
between speed, memory, and recall. This equilibrium is particularly suitable for
computationally limited environments or huge workloads.

4.5 On the construction cost

The construction time is a wall on many metric indexes. For instance, using 32
threads under our workstation 32 with 16 cores and hyper-threading. We en-
abled multithreading for our indexes, FAISS implementation also supports mul-
tithreading construction natively. All indexes were set to use 32 threads. The
construction of DEEPIMAGE-10M needs 397.4 seconds for BS-LogSat, 265.8
seconds for IHC-LogSat, 152.0 seconds for HNSW, and 60 seconds for KNR.
Both PQ and LSH use a few seconds to create the full index. The construction
of SIFT-100M requires 228 minutes for BS-LogSat, 105 minutes for IHC-LogSat,
96 minutes for HNSW, 33 minutes for PQ, and less than a minute for LSH. In
general, we can observe that faster and more accurate indexes require more

17

Table 1: BS’s recall and speedup performances for RAND-3M and several num-
ber of nearest neighbors k. In both cases, higher values are better; i.e., recall
goes from 0 to 1, and speedup is a positive score. Best scores per dataset and
k are marked in bold.

recall speedup

method N k = 1 k = 3 k = 10 k = 30 k = 100 k = 1 k = 3 k = 10 k = 30 k = 100

d = 8, n = 3× 106

BS(8) Log 0.92 0.98 0.99 0.98 0.96 121.8 123.9 126.0 84.5 51.5
BS(16) Log 0.92 0.98 1.00 1.00 0.99 80.0 89.4 108.9 73.1 42.4
BS(32) Log 0.91 0.99 1.00 1.00 1.00 113.2 66.6 64.6 62.4 41.6

BS(8) LogSat 0.71 0.92 0.95 0.94 0.89 200.9 211.9 94.8 86.4 51.3
BS(16) LogSat 0.71 0.92 0.98 0.97 0.94 204.0 141.8 140.3 124.4 69.1
BS(32) LogSat 0.71 0.93 0.98 0.99 0.98 209.5 113.8 94.6 77.1 43.2

d = 16, n = 3× 106

BS(8) Log 0.54 0.79 0.87 0.88 0.87 156.5 63.5 99.3 73.2 42.0
BS(16) Log 0.52 0.81 0.92 0.93 0.92 126.8 68.9 74.6 61.1 35.0
BS(32) Log 0.56 0.82 0.95 0.97 0.95 146.8 63.4 34.2 39.7 27.3

BS(8) LogSat 0.31 0.61 0.74 0.77 0.77 188.3 165.6 139.2 89.1 52.5
BS(16) LogSat 0.37 0.65 0.82 0.85 0.84 132.1 62.8 56.5 49.3 34.2
BS(32) LogSat 0.37 0.67 0.87 0.92 0.91 215.8 104.3 59.7 57.0 38.6

d = 32, n = 3× 106

BS(8) Log 0.16 0.29 0.43 0.50 0.56 98.1 80.6 87.4 65.6 47.2
BS(16) Log 0.14 0.35 0.52 0.61 0.66 60.0 34.6 48.1 49.0 32.2
BS(32) Log 0.16 0.36 0.59 0.70 0.74 130.4 42.2 40.0 41.4 32.1

BS(8) LogSat 0.05 0.16 0.26 0.33 0.41 83.7 93.4 97.1 80.9 46.1
BS(16) LogSat 0.06 0.19 0.37 0.46 0.53 276.6 103.5 95.8 83.7 59.1
BS(32) LogSat 0.09 0.23 0.44 0.58 0.63 213.2 97.8 57.3 63.9 41.1

d = 64, n = 3× 106

BS(8) Log 0.04 0.09 0.13 0.18 0.25 36.0 41.6 35.5 22.2 12.7
BS(16) Log 0.04 0.11 0.19 0.25 0.33 37.0 28.5 26.0 18.5 11.8
BS(32) Log 0.05 0.12 0.23 0.33 0.41 90.1 34.3 19.4 17.1 10.5

BS(8) LogSat 0.02 0.04 0.07 0.10 0.15 192.8 133.2 103.3 59.8 28.9
BS(16) LogSat 0.02 0.06 0.11 0.16 0.23 161.1 81.8 63.3 42.7 24.9
BS(32) LogSat 0.02 0.06 0.15 0.23 0.31 177.6 85.5 36.6 29.2 16.7

construction resources and time. Please note that the speed differences between
HSNW and BS are not preserved on the construction time, even when both are
based on similar principles. In other words, the simpler structure behind BS-
LogSat reduces the gap with the HNSW in the construction time as compared
with the gap in the search cost.

4.6 The performance impact of query size

This experiment focuses on describing the performance of BS and the number
of neighbors to be retrieved, k; we focus on BS and two neighborhood strategies
Log and LogSat. Due to the conditional statement of line 22 of Alg. 1, the
number of neighbors that we search controls the convergence of the process.
That is, small k values will converge faster than large values since small k
values will less likely to improve after some steps. While this implies that for
small k values, it may be better to search for a larger number of neighbors and

18

then cut to k, it is useful to know the dynamic of this parameter on the search
performance.

Table 1 shows the recall and speedup performances of our BS method while
searching for a different number of neighbors k. The table lists the performance
for several beam sizes on RAND-3M, i.e., with dimensions 8, 16, 32, and 64.

For almost all benchmarks, the best recall scores are achieved with Log
neighborhood, and in particular, for b = 32. Nonetheless, this high-performance
configuration will have a relatively higher memory cost than the LogSat strat-
egy, as described in our experimental comparison. On the other hand, LogSat
improves Log strategy regarding speedup; this is also observed in previous ex-
periments. The small neighborhood produced by LogSat is the cause of this
speedup improvement. It is also noticeable that small b values will produce fast
searches, and large b values will produce higher recall scores.

Regarding k, Table 1 shows a minimal effect for small dimensions, but it
becomes an issue as the dimension grows. For instance, for BS-Log with b = 32
and k = 1 we achieve a recall of 0.92, when d = 16, the recall reduces to 0.56,
and for d = 32 it reduces significantly to 0.16; for dimension 64, it becomes as
low as 0.05. The impact for queries with higher k is lesser, for instance, when
k = 100 the recall score goes from 1.00 (d = 8) to 0.41 (d = 64), for BS(32)-Log.

As commented before, it is possible to palliate the effect whenever queries
consist of few neighbors, i.e., small k, using a larger k′ to search and then cut the
fetched result to k. Table 2 illustrates how this strategy improves k = 1 (nearest
neighbor queries) for different values of k′ and several synthetic datasets. For
instance, for 8-dimensional vectors, expanding to k′ = 3 produces a small but
noticeable improvement as compared to k′ = 1 (first column in Table 1) for
Log neighborhood and a more significant improvement for LogSat strategy. A
close to perfect recall is achieved with k′ = 10, and this is remarkable for
BS-LogSat since it barely surpasses 0.7 recall scores without query expansion.
For d = 16, the recall scores were also improved for both BS-Log and BS-
LogSat, with respect to k′ = 1; here, we also obtain better recalls for larger
k′, more noticeable for BS-LogSat. Both 32 and 64-dimensional datasets show
lower scores even when k′ ≥ 10; however, in both dimensions, using k′ > 1
produces significant improvements over k′ = 1, see Table 1. Nonetheless, the
later performances are caused by the difficulty of searching in high dimensional
datasets, even with this relatively enlarged k′.

Please note that increasing k to alleviate the convergence problems works
mainly for whenever k is small. Table 3 illustrates this effect for k = 30 and
k′ = 100. For d = 8 and d = 16, the recall scores remain practically unchanged.
We observed a small improvement, for d = 32 and d = 64 and specially for
BS-LogSat. Based on this, the expansion of k′ seems to have a small impact for
relatively large k queries.

Table 4 shows the recall performance on varying k of BS(32), one of our
best configurations, for real datasets. We can observe that nearest neighbor
queries (k = 1) achieve pretty low recall scores for SIFT and GIST with LogSat
neighborhood. Please recall that BS-Log uses a logarithmic neighborhood, and
BS-LogSat takes a small sample among the logarithmic neighborhood using a

19

Table 2: Recall scores for RAND-3M datasets for k = 1 queries with expanded
k′; high recall values are better. Best scores per k′ and dimension are marked
in bold.

method N d = 8 d = 16 d = 32 d = 64

k′ = 3

BS(8) Log 0.99 0.83 0.32 0.10
BS(16) Log 0.99 0.83 0.38 0.12
BS(32) Log 0.99 0.86 0.40 0.13

BS(8) LogSat 0.95 0.63 0.17 0.05
BS(16) LogSat 0.94 0.69 0.21 0.06
BS(32) LogSat 0.95 0.70 0.28 0.06

k′ = 10

BS(8) Log 1.00 0.92 0.55 0.18
BS(16) Log 1.00 0.97 0.66 0.26
BS(32) Log 1.00 0.99 0.69 0.30

BS(8) LogSat 0.99 0.84 0.32 0.08
BS(16) LogSat 1.00 0.92 0.45 0.14
BS(32) LogSat 1.00 0.94 0.56 0.20

k′ = 30

BS(8) Log 1.00 0.97 0.72 0.16
BS(16) Log 1.00 0.99 0.81 0.23
BS(32) Log 1.00 1.00 0.89 0.35

BS(8) LogSat 1.00 0.93 0.47 0.42
BS(16) LogSat 1.00 0.97 0.66 0.53
BS(32) LogSat 1.00 0.99 0.78 0.63

k′ = 100

BS(8) Log 1.00 0.99 0.84 0.42
BS(16) Log 1.00 1.00 0.93 0.53
BS(32) Log 1.00 1.00 0.95 0.63

BS(8) LogSat 1.00 0.97 0.66 0.27
BS(16) LogSat 1.00 0.99 0.82 0.36
BS(32) LogSat 1.00 1.00 0.90 0.51

spatial-aware covering method; therefore, BS-LogSat always produce smaller or
equal neighborhoods than Log, and using it implies a tradeoff among quality and
memory. We can observe, in all datasets, how as k increases the recall may also
increase; this performance is linked to the convergence of the search algorithm,
as explained before. For DEEPIMAGE-10M we did not present results for Log
neighborhood strategy due to our self-imposed memory limits for large datasets,
see §4.4.

As commented before, it is hard to achieve high recall for k = 1 since k is
essential for convergence in Alg. 1. Here, the query expansion technique can
improve the result quality. Table 5 shows the recall performance for k = 1
queries and expansion k′ of 3, 10, 30, and 100. Note that k = 1 queries improve
its recall scores as compared to not expand queries; for instance, using k′ = 100
has a remarkable impact for SIFT-1M, it goes from a score of 0.51 to 0.99 for

20

Table 3: Recall performance for k = 30 with expanded query k′ = 100 for four
different dimensional datasets, i.e., RAND-3M. Best recall scores per dataset
are marked in bold.

method N d = 8 d = 16 d = 32 d = 64

BS(8) Log 1.00 0.95 0.66 0.29
BS(16) Log 1.00 0.97 0.77 0.39
BS(32) Log 1.00 0.99 0.84 0.48

BS(8) LogSat 0.98 0.88 0.50 0.18
BS(16) LogSat 0.99 0.94 0.62 0.27
BS(32) LogSat 1.00 0.97 0.73 0.36

Table 4: Recall scores for BS(32) indexes for different queries without query
expansion for SIFT-1M, GIST-1M, and DEEPIMAGE-10M datasets.

recall

N SIFT d = 128, n = 106 GIST d = 960, n = 106 DEEPIMAGE d = 96, n = 107

k=1 k=3 k=10 k=30 k=100 k=1 k=3 k=10 k=30 k=100 k=1 k=3 k=10 k=30 k=100

Log 0.51 0.76 0.90 0.93 0.93 0.39 0.65 0.81 0.85 0.85
LogSat 0.26 0.55 0.76 0.84 0.84 0.09 0.29 0.47 0.58 0.62 0.22 0.51 0.71 0.78 0.79

Table 5: Recall scores for BS(32) indexes for k = 1 queries using query expansion
k′ for SIFT-1M, GIST-1M, and DEEPIMAGE-10M datasets.

recall

N SIFT d = 128, n = 106 GIST d = 960, n = 106 DEEPIMAGE d = 96, n = 107

k′ =3 k′ =10 k′ =30 k′ =100 k′ =3 k′ =10 k′ =30 k′ =100 k′ =3 k′ =10 k′ =30 k′ =100

Log 0.79 0.94 0.98 0.99 0.67 0.86 0.93 0.96 - - - -
LogSat 0.58 0.83 0.94 0.97 0.30 0.50 0.70 0.81 0.53 0.78 0.89 0.93

BS(32)-Log; and from 0.26 to 0.97 using BS(32)-LogSat. The recall for GIST-1M
(k = 1) is improved consistently as k′ increases, and the effect for BS(32)-LogSat
is noticeable since improves from 0.09 to 0.81; the Log neighborhood achieves
0.96 when k′ = 100. The DEEPIMAGE-10M also significantly improves its
expected performance using query expansion, going from a recall of 0.22 to 0.89
for k′ = 30. Notoriously, k′ = 100 produces a recall of 0.93.

5 Conclusions

In this manuscript, we adapted the Beam Search (BS) metaheuristic to solve
nearest neighbor queries and introduce the use of logarithmic neighborhoods
(BS-Log) to create the underlying search graph. Moreover, we also introduce
an additional method BS-LogSat based on selecting a small subset of the log-
arithmic neighborhood. We give a broad review of the related state of the art
and provide an insightful explanation of our methods. Our primary effort was
to improve the search speed without reducing the quality of the search results
and producing relatively small data structures. These objectives were reached
for several datasets, all of them with a plethora of dimensions, sizes, and do-

21

mains. We also aimed to reduce the number of parameters for the indexes, since
parameter tuning puts a significant barrier to potential users; for instance, our
BS-Log and BS-LogSat need only a single parameter to work, i.e., the size of the
beam. An efficient and effective index with minimal user intervention is elusive.
Still, we believe our work is a milestone in this direction, and this goal deserves
effort from the research community.

Our experimental study found that our indexes achieve competitive perfor-
mances in most of our benchmarking datasets, as compared with state-of-the-art
alternatives. The memory requirements of our graph are smaller than alterna-
tive search algorithms reaching similar performances.

Similarly, it is interesting to notice that HNSW is blazing fast; this is due to
its high-performance algorithm and its highly optimized implementations using
SIMD instructions, a set of instructions found in modern CPUs. Our indexes
are also open-source and written in the Julia language. Distance functions are
optimized through the Julia native machinery, that in many cases, achieves
competitive implementations similar to that produced by many low-level opti-
mizations. In our experiments, we observed a sustained five to ten-fold speedup
improvement in the brute force implementation of FAISS and ours. Despite this,
our BS indexes are also competitive in many aspects. Our implementation also
accepts user-defined distance functions smoothly and efficiently; this feature can
be exploited in exploratory data analysis and other data-science tasks.

Since our indexes are constructed incrementally, the insertion operation
is native; however, the deletion algorithm is not yet studied. These features
are useful for applications using metric databases to represent knowledge, like
those using incremental learning. The literature in metric indexes used to solve
the deletion operation marking those items as unavailable for most operations
[CNBYM01]. In other approaches, the metric indexes can afford real deletions.
However, to maintain the invariants of the indexes, a partial or even a com-
plete reconstruction of the index is needed ([NR08, NR09, CPZ97]). A recent
approach uses the strategy of Bentley and Saxe ([NH14]) to produce dynamic
structures utilizing a list of log n static structures. The similarity search through
the combinatorial optimization approach is robust enough to support deletions,
straightforwardly. However, the approach requires more research on determin-
ing optimal replacements of the removed items, and if any other operations are
needed to ensure high-quality results after a large number of deletions. This
operation deserves attention in future research.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions to improve the quality of this manuscript.

22

References

[AEF15] Giuseppe Amato, Andrea Esuli, and Fabrizio Falchi. A compari-
son of pivot selection techniques for permutation-based indexing.
Information Systems, 52:176 – 188, 2015. Special Issue on Selected
Papers from SISAP 2013.

[AGS14] Giuseppe Amato, Claudio Gennaro, and Pasquale Savino. Mi-
file: using inverted files for scalable approximate similarity search.
Multimedia Tools and Applications, 71(3):1333–1362, 2014.

[AI08] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions. Com-
munications ACM, 51:117–122, January 2008.

[AIL+15] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razen-
shteyn, and Ludwig Schmidt. Practical and optimal lsh for angular
distance. In Advances in neural information processing systems,
pages 1225–1233, 2015.

[BL16] Artem Babenko and Victor Lempitsky. Efficient indexing of
billion-scale datasets of deep descriptors. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 2055–2063, 2016.

[CGNT15] E. Chávez, M. Graff, G. Navarro, and E.S. Téllez. Near neighbor
searching with k nearest references. Information Systems, 51:43 –
61, 2015.

[CNBYM01] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and
José Luis Marroqúın. Searching in metric spaces. ACM Comput.
Surv., 33(3):273–321, 2001.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An ef-
ficient access method for similarity search in metric spaces. In
Proceedings of the 23rd International Conference on Very Large
Data Bases, VLDB ’97, pages 426–435, San Francisco, CA, USA,
1997. Morgan Kaufmann Publishers Inc.

[DKJ+07] Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inder-
jit S. Dhillon. Information-theoretic metric learning. In Proceed-
ings of the 24th International Conference on Machine Learning,
ICML ’07, page 209–216, New York, NY, USA, 2007. Association
for Computing Machinery.

[EKB14] Graham Kendall Edmund K. Burke. Search Methodologies: In-
troductory Tutorials in Optimization and Decision Support Tech-
niques. Springer US, New York, NY, USA, second edition edition,
2014.

23

[Esu12] Andrea Esuli. Use of permutation prefixes for efficient and scalable
approximate similarity search. Information Processing & Manage-
ment, 48(5):889–902, 2012.

[FHL+18] Qiang Fu, Xu Han, Xianglong Liu, Jingkuan Song, and Cheng
Deng. Complementary binary quantization for joint multiple in-
dexing. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pages 2114–2120.
International Joint Conferences on Artificial Intelligence Organi-
zation, 7 2018.

[GHKS14] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(4):744–755, April 2014.

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity
search in high dimensions via hashing. In Proceedings of the 25th
International Conference on Very Large Data Bases, VLDB ’99,
pages 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[GLGP13] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative
quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 35(12):2916–2929, 2013.

[GLS08] Navin Goyal, Yury Lifshits, and Hinrich Schütze. Disorder in-
equality: a combinatorial approach to nearest neighbor search. In
Proceedings of the 2008 International Conference on Web Search
and Data Mining, pages 25–32. ACM, 2008.

[HLH+15] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and
Sung-Eui Yoon. Spherical hashing: Binary code embedding with
hyperspheres. IEEE transactions on pattern analysis and machine
intelligence, 37(11):2304–2316, 2015.

[HN15] M. E. Houle and M. Nett. Rank-based similarity search: Reduc-
ing the dimensional dependence. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(1):136–150, Jan 2015.

[HS05] Michael E Houle and Jun Sakuma. Fast approximate similarity
search in extremely high-dimensional data sets. In Data Engineer-
ing, 2005. ICDE 2005. Proceedings. 21st International Conference
on, pages 619–630. IEEE, 2005.

[JDS11] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product
Quantization for Nearest Neighbor Search. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(1):117–128, Jan-
uary 2011.

24

[LDD+15] Xianglong Liu, Bowen Du, Cheng Deng, Ming Liu, and Bo Lang.
Structure sensitive hashing with adaptive product quantization.
IEEE transactions on cybernetics, 46(10):2252–2264, 2015.

[LFW+20] X. Liu, Q. Fu, D. Wang, X. Bai, X. Wu, and D. Tao. Distributed
complementary binary quantization for joint hash table learning.
IEEE Transactions on Neural Networks and Learning Systems,
pages 1–12, 2020.

[LT15] Z. Li and J. Tang. Weakly supervised deep metric learning for
community-contributed image retrieval. IEEE Transactions on
Multimedia, 17(11):1989–1999, 2015.

[ML14] M. Muja and D.G. Lowe. Scalable nearest neighbor algorithms for
high dimensional data. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 36(11):2227–2240, Nov 2014.

[MMM15] Hisham Mohamed and Stéphane Marchand-Maillet. Quantized
ranking for permutation-based indexing. Information Systems,
52:163 – 175, 2015. Special Issue on Selected Papers from SISAP
2013.

[MPLK12] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Scal-
able distributed algorithm for approximate nearest neighbor search
problem in high dimensional general metric spaces. In Proc. 5th
International Conference on Similarity Search and Applications
(SISAP), pages 132–147, 2012.

[MPLK14] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and
Vladimir Krylov. Approximate nearest neighbor algorithm based
on navigable small world graphs. Information Systems, 45:61–68,
2014.

[MY18] Yury A Malkov and Dmitry A Yashunin. Efficient and robust
approximate nearest neighbor search using hierarchical navigable
small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 2018.

[Nav02] G. Navarro. Searching in metric spaces by spatial approximation.
The Very Large Databases Journal (VLDBJ), 11(1):28–46, 2002.

[NH14] Bilegsaikhan Naidan and Magnus Lie Hetland. Static-to-dynamic
transformation for metric indexing structures (extended version).
Information Systems, 45:48 – 60, 2014.

[NR08] Gonzalo Navarro and Nora Reyes. Dynamic spatial approximation
trees. ACM Journal of Experimental Algorithmics, 12:1.5:1–1.5:68,
2008.

25

[NR09] Gonzalo Navarro and Nora Reyes. Dynamic spatial approximation
trees for massive data. In Second International Workshop on Sim-
ilarity Search and Applications, SISAP 2009, 29-30 August 2009,
Prague, Czech Republic, pages 81–88, 2009.

[OT01] Aude Oliva and Antonio Torralba. Modeling the shape of the
scene: A holistic representation of the spatial envelope. Interna-
tional journal of computer vision, 42(3):145–175, 2001.

[RCGT15] Guillermo Ruiz, Edgar Chávez, Mario Graff, and Eric S. Téllez.
Finding near neighbors through local search. In Giuseppe Amato,
Richard Connor, Fabrizio Falchi, and Claudio Gennaro, editors,
Similarity Search and Applications, pages 103–109, Cham, 2015.
Springer International Publishing.

[Sko10] Tomáš Skopal. Where are you heading, metric access methods?: a
provocative survey. In Proceedings of the Third International Con-
ference on SImilarity Search and APplications, SISAP ’10, pages
13–21, New York, NY, USA, 2010. ACM.

[TCN13] Eric Sadit Tellez, Edgar Chavez, and Gonzalo Navarro. Succinct
nearest neighbor search. Information Systems, 38(7):1019 – 1030,
2013.

[WS09] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric
learning for large margin nearest neighbor classification. J. Mach.
Learn. Res., 10:207–244, June 2009.

[YL16] J. Yuan and X. Liu. Fast nearest neighbor search with transformed
residual quantization. In 2016 15th IEEE International Confer-
ence on Machine Learning and Applications (ICMLA), pages 971–
976, Dec 2016.

26

	1 Introduction
	1.1 Overview

	2 Related work
	2.1 The navigable small world graph
	2.2 Our contribution

	3 Local-search methods to similarity search
	3.1 Local search heuristics
	3.2 Our search algorithms
	3.2.1 Differences with previous approaches

	4 Experimental results
	4.1 The effect of the dimension in the performance
	4.2 Scalability
	4.3 Performance on real datasets
	4.4 Performance on large real-world datasets
	4.5 On the construction cost
	4.6 The performance impact of query size

	5 Conclusions

